Зарегистрироваться
Статьи
Testing correction for paleomagnetic inclination error in sedimentary rocks: a comparative approach.

Авторы: Tauxe L., Kodama K., Kent D.

2008 г.

Phys.Earth Planet.Int.

     Paleomagnetic inclinations in sedimentary formations are frequently suspected of being too shallow. Recognition and correction of shallow bias is therefore critical for paleogeographical reconstructions. The elongation/inclination (E/I) correction method of Tauxe and Kent (2004) relies on the twin assumptions that inclination flattening follows the empirical sedimentary flattening formula and that the distribution of paleomagnetic directions can be predicted from a paleosecular variation (PSV) model. This paper tests the reliability of the E/I correction method in sev eral ways. First we consider the E/I trends predicted by various PSV models. We explored the role of sample size on the reliability of the E/I estimates and found that for data sets smaller than  100 − 150, the results were less reliable. The Giant Gaussian Process-type paleosecular variation models were all constrained by paleomagnetic data from lava flows of the last five million years. Therefore, to test whether the method can be used in more ancient times, we compare model predic- tions of E/I trends with observations from five Large Igneous Provinces since the Early Cretaceous (Yemen, Kerguelen, Faroe Islands, Deccan and Paran´a basalts). All data are consistent at the 95% level of confidence with the E/I trends predicted by the paleosecular variation models. The Paran´a data set also illustrated the effect of unrecognized tilting and combining data over a large latitudinal spread on the E/I estimates underscoring the necessity of adhering to the two principle assumptions of the method. Then we discuss the geological implications of various applications of the E/I method. In general the E/I corrected data are more consistent with data from contemporaneous lavas, with predictions from the well constrained synthetic apparent polar wander paths, and other geological constraints. Finally, we compare the E/I corrections with corrections from an entirely different method of inclination correction: the anisotropy of remanence method of Jackson et al. (1991) which relies on measurement of remanence and particle anisotropies of the sediments. In the two cases where a direct comparison can be made, the two methods give corrections that are consistent within error. In summary, it appears that the E/I method for recognizing and corrected the effects of sedimentary flattening is reasonably robust for at least the Mesozoic and Cenozoic when the source of scatter is geomagnetic and sedimentary flattening in origin.

Файл: 811.pdf


Назад Добавить коментарий
железо и магнитные свойства почв
тяжелые металлы в почвах
исследования с применением синхротронного излучения
TRM
вязкая намагниченность
морские базальты
изверженные породы
осадки
коэрцитивные свойства
химическая намагниченность
самообращение TRM
метод Телье
термомагнитные измерения
осадочная намагниченность
геохимия
синтезированные образцы
анизотропия магнитной восприимчивости
тектоника
field2
field3
При поддержке РФФИ, № 06-07-89186