Зарегистрироваться
Статьи
Stabilization of Metals in Subsurface by Biopolymers: Laboratory Drainage Flow Studies.

Авторы: Etemadi O., Petrisor I., Kim D.

2003 г.

Soil and Sedim.

      Environmental contamination with heavy metals and radionuclides remains a major problem worldwide. The current clean-up methodologies are based on energy-intensive engineering processes, which are disruptive and costly. A new universal technology targeted for the permanent enclosure and fixation of nuclear and other extreme hazardous metallicwastes in subsurface sites is needed. Such technology will be useful in treating contamination at many sites in the U.S., with specific applications to Department of Energy (DOE) sites. Biopolymers are potential tools for such an innovative technology. Biopolymers have repeated sequences, and therefore provide ample opportunity for chemical reactions with metals, soil particles, and other biopolymers. They also have the additional ability of creating cross-linking interpenetrating networks that can encapsulate the contaminants. Based on this concept, in the present work five biopolymers (xanthan, chitosan, polyhydroxy butyrate, guar gum, polyglutamic acid) were investigated for potential use in the stabilization of metals in the subsurface. The effects of these biopolymers (used alone and in combinations) on soil characteristics (permeability, shear strength) and their metal uptake ability have been studied using laboratory drainage flowsystems. Biopolymer solutions were run through the experimental sandpack columns, followed by copper solution and leaching agents (distilled water and hydrochloric acid). The permeability and shear strength of sand were evaluated. Copper uptake capacity of each biopolymer and combination of biopolymers was also studied along with subsequent leaching. All biopolymers tested improved sand characteristics (by decreasing permeability and increasing shear strength) and had good metal uptake ability (60–90%) with relatively low leachability (10–22%). While biopolymers used alone were more efficient in metal uptake, the combination of two biopolymers (xanthan and chitosan) had an increasing plugging effect. These results show the potential of using biopolymers in subsurface metal stabilization.

Файл: 417.pdf


Назад Добавить коментарий
железо и магнитные свойства почв
тяжелые металлы в почвах
исследования с применением синхротронного излучения
TRM
вязкая намагниченность
морские базальты
изверженные породы
осадки
коэрцитивные свойства
химическая намагниченность
самообращение TRM
метод Телье
термомагнитные измерения
осадочная намагниченность
геохимия
синтезированные образцы
анизотропия магнитной восприимчивости
тектоника
field2
field3
При поддержке РФФИ, № 06-07-89186