Bending and Collapse: Magnetic Recording Fidelity of Magnetofossils From Micromagnetic Simulation
Авторы: Pei Z., Berndt T., Chang Liao et al
2022 г.
JGR Solid Earth
Magnetosome chains produced by magnetotactic bacteria are important paleoenvironmental and
paleomagnetic recorders. It has been shown that magnetic properties of magnetosome chains are closely related
to their morphology and chain structures; however, the in situ structures of magnetosome chains in sediments
(magnetofossils) are not known. Magnetosome chains are subject to various deformations after cell dissolution
and are therefore unlikely to be fully intact, obscuring their original magnetic signals. Here, we use finite
element micromagnetic simulations to quantify changes in magnetic signals in response to chain deformation, in
particular, as a function of variable degrees of bending and collapse. Our results indicate that bending/collapse
leads to a significant coercivity reduction and domain state transition of the chain. Therefore, hysteresis
parameters can be used to assess the degree of chain bending/collapse in magnetofossil-rich sediments.
Calculations of the contributions of chain bending/collapse to the post-depositional remanent magnetization
(pDRM) of magnetofossils indicate that pDRM remains both faithful to the pre-bending/collapse natural
remanent magnetization, and that the remanence of some structurally deformed magnetofossil assemblages
remains thermally stable over billion-year timescales, suggesting that even strongly deformed magnetosome
chains in ancient geological materials retain faithful paleomagnetic records and thus have potentials for tracing
ancient geomagnetic field variations and microbial activities on early Earth.
Файл: 1082.pdf
|