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The oldest magnetic record in our solar system
identified using nanometric imaging and numerical
modeling
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Recordings of magnetic fields, thought to be crucial to our solar system’s rapid accretion, are

potentially retained in unaltered nanometric low-Ni kamacite (~ metallic Fe) grains encased

within dusty olivine crystals, found in the chondrules of unequilibrated chondrites. However,

most of these kamacite grains are magnetically non-uniform, so their ability to retain four-

billion-year-old magnetic recordings cannot be estimated by previous theories, which assume

only uniform magnetization. Here, we demonstrate that non-uniformly magnetized nano-

metric kamacite grains are stable over solar system timescales and likely the primary carrier

of remanence in dusty olivine. By performing in-situ temperature-dependent nanometric

magnetic measurements using off-axis electron holography, we demonstrate the thermal

stability of multi-vortex kamacite grains from the chondritic Bishunpur meteorite. Combined

with numerical micromagnetic modeling, we determine the stability of the magnetization of

these grains. Our study shows that dusty olivine kamacite grains are capable of retaining

magnetic recordings from the accreting solar system.
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Unaltered meteorites originating from our own proto-
planetary disk acquired a thermoremanent magnetization
(TRM) during formation and present an excellent

opportunity to understand the extent of the early solar system
magnetic field. The most likely material to have retained this field
information is dusty olivine: assemblages of nanometric low-Ni
kamacite grains protected from alteration by their host olivine
crystal, found in the chondrules of unequilibrated primitive
chondrites1,2. A recent estimate of the ancient mag-
netic field intensity (paleointensity) from dusty olivine in
Semarkona3 has provided an upper bound of 54 ± 21 μT for the
magnetic field present in the chondrule-forming region (2.5
astronomical units (au)) of the protoplanetary disk during its first
two to three million years4,5. This estimate is widely used in
models for chondrule formation6,7 and for the accretionary
dynamics of the protoplanetary disk8,9.

The magnetization carriers in dusty olivine are dominantly
kamacite grains that have sizes greater than 25 nm and support
non-uniform vortex magnetization states10,11. Retention of
magnetic remanence over geological timescales, which is the
underpinning hypothesis that enables paleomagnetism, is only
predicted for uniformly magnetized grains by Néel’s single
domain (SD) theory12. Non-uniformly magnetized grains such as
magnetic vortex states are not described by Néel’s SD theory.
Despite efforts to understand magnetic vortex states13,14, it is
unknown whether non-uniformly magnetized kamacite grains
can retain their TRM for solar system timescales, i.e., 4.6 Ga. It is
therefore of great importance to establish which magnetization
states occur in the natural remanence carriers, and whether these
non-uniform magnetization states can retain a magnetic rema-
nence imparted by magnetic fields that were present in the pro-
toplanetary disk billions of years ago12,15.

Here we study chondrules from the unequilibrated ordinary
chondrite Bishunpur (LL3.1) using the advanced transmission
electron microscope (TEM) technique of in-situ temperature-
dependent off-axis electron holography16 (nanometric magnetic
imaging) and numerical micromagnetic modeling17 to determine
whether dusty olivine can retain a record of the magnetic field
from the early solar system.

Results
Room-temperature off-axis electron holography. We recorded
room-temperature magnetic induction maps from 19 kamacite
grains (Fig. 1 and Supplementary Figure 1) using off-axis electron
holography (hereafter holography) (see Methods) from the
meteorite Bishunpur (LL3.1). Scanning TEM (STEM) energy
dispersive X-ray spectroscopy analysis was used to establish that
the kamacite grains are almost pure Fe and are encased in for-
steritic olivine (see Supplementary Figure 2). The average axial
ratio (AR; length/width) of the dusty olivine kamacite grains is
1.5, they are ~ 150–600 nm in size (average 353 ± 137 nm × 250 ±
106 nm), and are typically found to have well-defined single
vortex (SV) magnetization states with their vortex cores aligned
out-of-plane and with little external stray magnetic fields (Fig. 1
and Supplementary Figure 1). Our findings are in accordance
with previous holography analyses of dusty olivine10,11.

Temperature-dependent off-axis electron holography. We
recorded in-situ temperature-dependent holographic magnetic
induction maps (see Methods) of four kamacite grains and pre-
sent the heating sequence for one of them in Fig. 2. The repre-
sentative kamacite grain shown in Fig. 2 was focused ion beam
(FIB) milled from its original morphology until it was electron
transparent for in-situ TEM experiments, likely affecting its AR.
Its saturated remanent magnetization state, which was induced at

room temperature, resembles that of a uniformly magnetized
grain or an in-plane vortex-core magnetization (Fig. 2b). This
remanent state was maintained when the grain was heated to 500
°C, with little change in its direction or intensity (Fig. 2b–g). At
600 °C, the grain underwent chemical alteration (Supplementary
Figure 3), likely through a reaction with the surrounding olivine,
as the TEM operates in high vacuum. Chemical alteration pre-
vents accurate determination of the magnetization state beyond
600 °C, due to the difficulty of removing the mean inner potential
contribution to the phase recorded from the new mineralization.

High-temperature micromagnetic modeling of a large grain. In
order to determine whether the 458 × 98 × 60 nm grain was in a
uniform or a vortex state, we used a finite element method (FEM)
micromagnetic algorithm17 (MERRILL, see Methods) to model
the three-dimensional magnetization states compatible with the
grain’s shape and mineralogy. We found that the grain was in a
multi-vortex state with its magnetization aligned with the long
axis (also the saturation axis) (Fig. 2h, i). Using a nudged elastic
band (NEB) numerical algorithm17–20, we then calculated the
energy barriers related to changes of the magnetization state. The
thermal relaxation time across these barriers at 300 °C, the
highest temperature reached by Bishunpur chondrules since
formation 4.6 Ga21, are many orders of magnitudes longer than
the age of the solar system (see Supplementary Note 1–3 and
Supplementary Figures 4–9).

Micromagnetic modeling of Fe parallelepipeds. In order to
determine the stability of dusty olivine kamacite grains in more
general cases, we used the MERRILL path minimization algo-
rithm17–20,22 to calculate the thermal relaxation times as a
function of size and AR for Fe cubes and cuboids. Initially, we
found local-energy minimum (LEM) magnetization states for the
Fe cubes and cuboids by performing 100 energy minimizations
for randomized magnetization directions for each morphology
(Fig. 3). For the smaller grain sizes (below 23 nm), the LEM states
correspond to uniform magnetization states that are aligned with
the easy magnetocrystalline axis for equidimensional grains and
with the long axis for elongated grains (Fig. 3a). As the grain size
increases toward 23 nm, there is increased “flowering”23,24

(Fig. 3a). In equidimensional Fe grains that have sizes above 23
nm, magnetic vortex states with their cores aligned along the hard

Color
wheel

Fig. 1 Magnetic induction map of a Bishunpur kamacite grain. Magnetic
induction map of a kamacite grain in dusty olivine reconstructed from
electron holograms acquired at room temperature. The contour spacing is π
radians. The direction of the projected in-plane magnetic induction is
indicated by the arrows and the color wheel. Scale bar: 200 nm
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magnetocrystalline axis are the LEM state (Fig. 3b), whereas for
sizes above 27 nm the core aligns with the easy magnetocrystal-
line axis (Fig. 3c). In elongated Fe grains, the core aligns with the
short axis.

Transition paths between vortex LEM states were found to be
structure-coherent rotations22 of the vortex core from one LEM
state to another (see Supplementary Movie 1), in agreement with
previous observations of magnetite22. Although the individual
moments do not rotate coherently, the rotation of the vortex core
itself is similar to the coherent rotation of magnetization vectors
that we observe in uniform LEM states. The energy barriers
between uniform states (Fig. 4) are very low for equidimensional
Fe grains (Fig. 3a). Equidimensional grains that have sizes below
29 nm are unstable on solar system timescales, as all uniform SD
magnetization states in equidimensional grains are unstable over
this timescale, although different reversal modes are active at
different grain sizes13. Astonishingly, for equidimensional cubes

only vortex states with their cores aligned along easy axes in
grains with sizes above 29 nm are capable of retaining magnetiza-
tions over solar system timescales. We found that these states are
stable up to at least grain sizes of 50 nm, which was the largest SV
modeled.

Elongation of the grain increases the stability of the
magnetization state and increases the uniform to non-uniform
transition size (Fig. 4)25. Uniform magnetization states increase
in energy barrier with increasing size, whereby a flowering of the
magnetization vectors at the grain edges further increases the
structural stability up to a peak close to 20 nm (Fig. 4). Beyond
this peak, a vortex is formed during the magnetization reversal,
which leads to an intermediate decrease in the energy barrier
with increasing grain size13 up to a trough at 25–35 nm (Fig. 4).
For larger grain sizes, the easy axis vortex state is the LEM,
increasing in stability with increasing grain size (Fig. 4). The
kamacite grains that are found in chondrules from Semarkona11
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Fig. 2 Visualizing the magnetization of a Bishunpur kamacite grain during in-situ heating. a Electron hologram of a Bishunpur dusty olivine kamacite grain
before heating. The fringes due to electron beam interference are used to determine the phase shift of the electron beam passing through the sample. b–g
Magnetic induction maps reconstructed from holograms of the kamacite grain heated in-situ from 20 to 500 °C (the grain underwent chemical alteration
above 500 °C). h Micromagnetic model of a minimum energy state magnetization distribution at 300 °C for a Fe tetrahedral mesh modeled after the grain
in a–g. Curie temperature for Fe is 760 °C and peak temperature of Bishunpur is ~ 300 °C21. The regions of high helicity (red) are highlighted by a contour
plot to display the vortex cores in the modeled kamacite grain. i Electron holography-style magnetic induction map simulated from the micromagnetic
solution in h. The contour spacing for b–g is 1.57 radians. The direction of the projected in-plane magnetic induction in b–g is indicated by the arrows and
the color wheel. Scale bar: 50 nm
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and Bishunpur (this study) have ARs of ~ 1.5. At such
elongations for all grain sizes modeled (10–50 nm) the
magnetizations are stable for timescales greater than the age of
the solar system, independent of their uniform or non-uniform
states (Fig. 4d). The lower temperatures that are experienced in
space only slightly change the Fe material parameters, but
significantly decrease thermal activation, and thus increase the
calculated relaxation times. Therefore, micromagnetic modeling
strongly indicates that the kamacite TRM imparted during dusty

olivine formation in the protoplanetary disk remains stable to the
present day (Fig. 4).

Furthermore, the remanence imparted during dusty olivine
formation would have survived the heating that Bishunpur is
predicted to have experienced since its accretion (~ 300 °C)21.
Temperature-dependent electron holography reveals for the first
time the high-temperature stability of non-uniform remanent
magnetization states in low-Ni kamacite directly observed up to
500 °C and the obtained thermal relaxation times at 300 °C are
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Fig. 3 Representative magnetization states for Fe cubes. Global energy minimum (GEM) magnetization states for cubes of Fe determined using a finite
element method (FEM) micromagnetic algorithm. a 20 nm cube in a uniform magnetization state along the easy axis; b 25 nm cube in non-uniform hard
axis magnetization state; c 30 nm cube in a non-uniform easy axis magnetization state. Helicity was determined by calculating m · (∇ ×m), where m is the
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Fig. 4 Relaxation times for Fe cubes and cuboids at room temperature. a–d Graph displaying the relaxation time, i.e., stability for different values of axial
ratio (AR) and size of Fe cuboids calculated using the nudged elastic band (NEB) method for global energy minimum (GEM) magnetization states
determined using a finite element method (FEM) numerical algorithm. The size describes the volume of the equivalent cube (i.e., the volume of a 20 nm
cuboid with a 1.1, 1.2, or 1.5 AR is equivalent to the volume of a 20 nm cube). Horizontal lines mark relaxation times of 100 s, 1 Ma, and the age of the solar
system (4.6 Ga). Solid versus dashed curves indicate whether the GEM state is a uniform or vortex magnetization state. Incoherent rotation of uniform
states, which proceeds via intermediate vortex states results in a reduction in stability. When the GEM assumes a non-uniform vortex state (dashed
curves) through <100>, its stability increases with increasing grain size. Observed chondrule dusty olivine kamacite grains have an average AR of 1.5, which
according to the above data are stable over solar system timescales irrespective of magnetization state for all of the sizes tested (10–50 nm)
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longer than the age of the solar system (Fig. 2b–g and
Supplementary Notes 1–3). This confirms that even multi-
vortex states can carry a primary remanent magnetization from
the protoplanetary disk.

Discussion
Paleomagnetic data are some of the only sources of evidence of
early solar system conditions that constrain mechanisms
of heating and momentum transport in the protoplanetary
disk6–9,26,27. Our observations and calculations show that SV or
multi-vortex magnetization state Fe grains in dusty olivine will
carry magnetic remanence originating from the early solar sys-
tem. Most current paleointensity protocols implicitly assume that
the magnetization carriers behave like uniform SD magnetization
states, as the protocols are based on Néel’s theory of SD grains12.
Non-uniform magnetization states are the most abundant state of
magnetization present in rocks and meteorites, however their
thermal and temporal stabilities are poorly understood and they
have previously been considered to be poor magnetic recorders.
This study presents a step change in our understanding of non-
uniform magnetic states. It is now clear that a more compre-
hensive understanding of the thermomagnetic characteristics of
magnetic vortex states will facilitate more sophisticated and
sample-specific paleointensity estimates, which will further our
understanding of how the protoplanetary disk evolved into our
present-day planetary system.

Methods
Sample preparation for electron microscopy. Samples for the advanced TEM
technique of off-axis electron holography (hereafter holography) were prepared
using FIB milling from a polished section of the Bishunpur meteorite and either
attached to a Cu Omniprobe grid for room temperature analysis or placed on the
windows of a silicon nitride EMheaterchip for in-situ heating in a DENSSolutions
double tilt TEM specimen holder. FIB milling, (S)TEM imaging, chemical analysis,
and holography experiments were conducted at the Ernst-Ruska Centre for
Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich,
Germany.

Off-axis electron holography. Electron holograms were acquired using an FEI
Titan 80–300 TEM operated in Lorentz mode at 300 kV using a charge-coupled
device camera and an electron biprism typically at 50 V. Magnetic induction maps
were recorded after tilting the sample to ± 70° and applying a vertical magnetic
field of > 1.5 T using the conventional microscope objective lens, in order to
acquire images before and after reversing the direction of magnetization in the
sample. Evaluation of half of the difference between phase images recorded with
opposite magnetization directions in the sample was used to remove the mean
inner potential contribution to the phase. The mean inner potential was subtracted
from the unwrapped total phase shift in order to construct magnetic induction
maps that were representative of the magnetic remanence28.

Temperature-dependent electron holography. In order to determine the change
in magnetic induction during heating, the sample was magnetized and images were
recorded at room temperature, at 100 °C, and then at temperatures up to 800 °C in
100 °C intervals. The same procedure was followed during cooling. The ramp
during heating was 50 °Cmin−1 and each temperature interval was maintained for
10 min, to allow sufficient time for imaging. The mean inner potential was sub-
tracted from the unwrapped total phase shift acquired at each temperature interval,
to allow the construction of magnetic induction maps representative of the mag-
netic remanence, as shown previously29.

Micromagnetic modeling. Magnetic domain stability is highly grain-size-
dependent. At very small grain sizes, uniform magnetization is typically unstable
due to thermal fluctuations. As the grain size increases, a non-uniform magneti-
zation state becomes the most energetically favorable state23,25. We determined the
magnetization states associated with different grain sizes of Fe using FEM
micromagnetic simulations17. Tetrahedral meshes were generated for this using
MRshRRILL and FEM models were performed using MERRILL17. The magnetic
free energy was determined for each of the tetrahedra and summed over all tet-
rahedra to determine Etot, which the FEM discretized for the minimization of an
initial state, m, where the magnetization at each node of each element was given a

random direction for the grain in question, Ω, according to the expression

Etot ¼
Z

Ω

A ∇mj j þ K1 m2
xm

2
y þm2

xm
2
z þm2

ym
2
z

h i
�Ms Hz �m½ � �Ms

2
Hd �m½ �

� �
dV ;

ð1Þ

where the material is defined by the following temperature-dependent parameters:
A, the exchange constant; K1, the magnetocrystalline anisotropy; and Ms, the
saturation magnetization. Hz and Hd are external and self-demagnetizing fields,
respectively. The material parameter constants used for room temperature Fe25: A
= 2 × 10−11 Jm−1, K1= 4.8 × 104 Jm−3, and Ms= 1.72 × 106 Am−1. The material
parameter constants used for Fe at 300 °C: A= 1.52 × 10−11 Jm−1, K1= 2.2 × 104

Jm−3, and Ms= 1.61 × 106 Am−1.
LEM magnetization states are found by minimizing Etot using a modified

conjugate gradient method18. For each grain geometry and size for which the
relaxation time was evaluated, 100 minimizations were performed to calculate the
most favorable LEM states. Two different magnetization states, L1 and L2, with
lowest energy were then selected as the start and end configurations of an initial path
of 100 magnetization states transforming L1 into L2. MERRILL’s combined NEB and
action minimization method was used to determine the nearest minimum-action
path connecting L1 and L2, which also defines the corresponding thermal energy
barrier17,18. For non-uniform vortex states, L1 and L2 were required to have the same
helical sense of vortex core rotation (helicity), as unwinding of the core requires
much more energy than retaining the same helicity. Helicity was determined by
calculatingm · (∇ ×m), wherem is the magnetization vector. The relaxation time (τ)
is related to the energy barrier (ΔE) by the Néel–Arrhenius equation12

τ ¼ 1
C
eΔE=kBT ð2Þ

where C is the atomic switching frequency (10−9 s), kB is Boltzmann’s constant, T is
the temperature in Kelvin, and ΔE= ES− E(L1) is the energy difference between the
highest saddle point and the LEM L1 determined by the NEB method. The relaxation
time directly determines whether dusty olivine can theoretically retain its
magnetization over solar system timescales.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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