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S U M M A R Y
A spatially averaged mean-field model for fully or partially ordered members of the ilmenite–
hematite solid solution series is rigorously derived from the Heisenberg Hamiltonian by first
assuming no temporal correlation of atomic spins, and then by spatially averaging over spins
at equivalent atomic positions. The model is based on the geometry of exchange interactions
between nearest and next-nearest neighbours and predicts magnetization curves in homogenous
solid solutions with variable degree of order. While the general framework presented can also
be applied to atomic scale models, and to other solid solution series, here the symmetries of the
ilmenite–hematite lattice are exploited to show that four different sublattice magnetizations
and six independent combinations of exchange constants determine the temperature variation
of the magnetization curves. Comparing measured Curie temperatures TC and Ms(T) curves to
model predictions results in accurate constraints for these combinations. It is also possible to
calculate predictions for high-field magnetization slopes χHF, which not only improve accurate
experimental determination of the Curie temperature but also provide a new magnetic method
to estimate the order parameter for ilmenite–hematite solid solution samples.
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1 I N T RO D U C T I O N

1.1 Hematite–ilmenite solid solutions

Solid solutions in the hematite–ilmenite system, (1 − x) Fe2O3

+ x FeTiO3, are naturally occurring minerals with complex mag-
netic properties. The expression of chemical order in the hematite–
ilmenite system in terms of magnetic properties has been studied
by Brown et al. (1993) and Harrison (2006). Apparent single-
phase samples of different composition and degrees of order
exhibit self-reversal of thermoremanent magnetization (Nagata
1961; Hoffman 1992; Lagroix et al. 2004; Robinson et al. 2014)
and can show exchange bias of their room-temperature hystere-
sis curve (Meiklejohn & Carter 1959; Harrison & Becker 2004;
Harrison 2006; Fabian et al. 2011). Lamellar magnetism (Robin-
son et al. 2002, 2004) occurs when fine-scale exsolution and cation
ordering is induced by slow cooling. Burton et al. (2008) sum-
marized magnetic properties of synthetic, partially Fe–Ti ordered
hematite–ilmenite solid solutions in the composition range x = 0.6–
1 and temperature range 0–500 K. This extended earlier published
data based on a series of synthetic, partially Fe–Ti ordered sam-
ples prepared two decades earlier (Burton 1982). Also, Burton

(1982) and Burton (1991) qualitatively reconciled chemical order–
disorder and phase separation data with magnetic data in a consistent
thermodynamic model.

1.2 Mean-field modelling

To understand better the variability of magnetic behaviour in the
hematite–ilmenite system, we here describe a magnetic mean-field
model reflecting the geometric arrangement of atoms in the unit cell
and the distribution of Fe–Ti cations that depends on the chemical or-
der. The fundamental model parameters are the exchange-coupling
constants. Their geometry in ilmenite–hematite solid solutions was
described by Ishikawa & Akimoto (1957) and Ishikawa et al. (1985)
and many of their values for ilmenite and hematite were determined
by inelastic neutron scattering of spin waves by Samuelson (1969)
and Samuelson & Shirane (1970). Because these measurements
only probe Fe3+–Fe3+ interactions and Fe2+–Fe2+ intralayer and
next-nearest-neighbour interactions, Harrison (2006) estimated the
remaining values by comparing measured MS(T) curves to mod-
elling results from an atomic Monte-Carlo model. Alternative val-
ues were inferred from an atomic model based on density func-
tional theory, where ground state energy differences modelled for
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different spin states were projected onto the magnetic exchange-
coupling constants of the Heisenberg Hamiltonian (Nabi et al.
2010), which depend on the Coulomb repulsion parameter U in
the adopted generalized gradient approximation density functional
theory (DFT) model.

In relation to the above methods, mean-field modelling assumes
an intermediate role because it is based on finding a temporally and
spatially averaged solution to the Heisenberg Hamiltonian. Mean-
field theory dates back to the classical Curie–Weiss model of fer-
romagnetism and has been theoretically investigated thoroughly in
several physical contexts distinguished by the spatial dimension
D and the topology of the underlying lattice, and the dimension
N of the spins, where N = 1 allows unit spin values {−1, +1},
for N = 2 the spins can rotate on a circle in the plane and for
N = 3 they are free to rotate on the unit sphere. Ising models with
N = 1 are mathematically best understood (Ising 1925) and a fa-
mous theory of Onsager provides an analytical solution for D = 2
(Onsager 1944). The case N = 2 has been studied extensively in the
theory of superconductors (XY-model) either for D = 2 or D = 3
(e.g. Kosterlitz & Thouless 1973). The full Heisenberg model of
a ferromagnet corresponds to N = 3 and D = 3. In the following,
the mean-field equations for hematite–ilmenite solid solutions with
variable composition and degree of order are derived in a way
that can be generalized easily to other solid-solution systems. The
derivation is based on the Heisenberg model with N = 3 and D = 3,
and takes into account different spin values for Fe2+, Fe3+ and Ti4+

ions that can occupy the same sites.
When specializing to N = 1 and a small number of ion classes,

the results yield efficient computation schemes for Curie temper-
atures and magnetization curves that can be applied to different
natural solid-solution series. Besides the hematite–ilmenite sys-
tem (Ishikawa & Akimoto 1957), also the important magnetite-
ulvöspinel series has been studied in detail by such mean-field
models (Stephenson 1972). The general approach provides phys-
ical insight to the magnetic properties of solid solutions and can
be applied to arbitrarily complex numerical calculations. In agree-
ment with Landau theory, Fabian et al. (2013) found a peak for
the high-field susceptibility near the Curie temperature in ferrimag-
netic magnetite. This peak is absent in antiferromagnetic hematite.
The mean-field calculations presented here verify the absence of a
peak for antiferromagnetic, disordered solid solutions and predict a
quantitative relation between peak area and average degree of order
within a ferrimagnetic solid solution.

2 D E R I V I N G T H E M E A N - F I E L D M O D E L
F RO M T H E H E I S E N B E RG
H A M I LT O N I A N

The mean-field approximation is closely related to the classical
Curie–Weiss theory of ferromagnetism that postulates a strong
molecular field to explain the magnetization curve and Curie tem-
perature of ferromagnetic substances. A quantum-mechanical foun-
dation for molecular fields was discovered by Heisenberg (1928),
who showed that in special geometric settings electron pairs with
overlapping orbitals, due to their fermionic statistics, experience ad-
ditional spin-dependent potentials that can be interpreted in terms
of a very strong local field. Magnetic mean-field theory averages
the Heisenberg Hamiltonian, by assuming statistically uncorrelated
temporal spin fluctuations. Although mean-field theory has been
exhaustively studied for many magnetic systems, especially spin
glasses (Fischer & Hertz 1991), we include here a concise formu-

lation, partly to present a self-contained framework for our models
and partly because our focus lies on some aspects of solid solu-
tions, for which we could not find a corresponding treatment in the
literature.

2.1 Mean-field approximation on the atomic scale

In analogy to the spin-glass Hamiltonian (Fischer & Hertz 1991) and
the Heisenberg Hamiltonian of a diluted ferromagnet (Kaneyoshi
et al. 1980), the exchange interaction between a system of N inter-
acting quantum spins �Si of the ilmenite–hematite solid solution with
an external magnetic field �h can be described by the Hamiltonian

H = −
∑
i �=n

Ji,nci cn �Si �Sn − gμB �h
∑

i

ci �Si . (1)

The numbers ci ∈ {0, 1} represent a specific geometric configu-
ration of the solid solution on the atomic scale, in that they are
zero whenever a Ti atom replaces an Fe atom in the corresponding
hematite site. The notation is sketched in Figs 1(a) and (b).

The constants Ji,n describe the exchange tensor, between atomic
spins at sites i and n, while μB is the Bohr magneton and g is the
gyromagnetic ratio (g ≈ 2). By using a general exchange tensor, the
effects of exchange anisotropy are formally represented, although
this will be neglected for the numerical modelling. The magnetic
quantum spins �Si here represent single Fe2+ or Fe3+ ions. They
will be spatially averaged only later to represent suitably chosen ion
classes (e.g. sublattices of identical ions). The mean-field approxi-
mation replaces these spin vectors �Si by normalized time averages

�mi := 〈�Si 〉/Si (2)

and their corresponding temporal fluctuations

�δi := �Si − Si �mi . (3)

Figure 1. Sketch of the mean-field approach. (a) For each pair of sites i or
n in a large lattice there is an exchange tensor Ji,n describing the exchange
energy between spins Si and Sn at these sites. (b) The information as to
whether there are actually Fe atoms at these sites which could interact is
encoded by the numbers ci ∈ {0, 1}. (c) A spatial grouping of all sites
into two classes. A mean-field model using these classes would average
over the spins in each class and finally only need two average spins and
three exchange couplings J1, 1, J2, 2, J1, 2. (d) The same for nine classes and
periodic boundaries. This is meant as an example that in numerical models
the number of classes can be very large to represent complex geometric
arrangements over many unit cells, for example, clustering of Fe atoms.
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Substitution into eq. (1) leads to the still exact expression

H =
∑
i �=n

ci cn

(
−Ji,n�δi �δn + Ji,n Si Sn �mi �mn − 2Ji,n �Si Sn �mn

)

− gμB �h
∑

i

ci �Si . (4)

At this point, the mean-field approximation is introduced, which
consists in a time averaging of the spins, and in neglecting the
time average of all pair correlations of the temporal fluctuations by
setting〈∑

i �=n

Ji,n�δi �δn

〉
= 0. (5)

This approximation is most reasonable when at elevated tempera-
tures large numbers of independent spin waves are synchronously
excited such that different regions of the system behave statistically
independent. In this case, eq. (5) is justified by Bernoulli’s theorem
(weak law of large numbers). At low temperatures (near 0 K), dis-
crepancies between mean-field predictions and Bloch’s law (Bloch
1928) indicate that pair correlations are coherent and that their time
average is not negligible. The partition function of the complete
quantum-mechanical spin ensemble,

Z =
∑

all configurations

exp
−H

k T
, (6)

determines all thermodynamic quantities and in the mean-field ap-
proximation its temporal average is

〈Z〉 = exp

⎡
⎢⎣

− ∑
i �=n

ci cn Si SnJi,n �mi �mn

k T

⎤
⎥⎦

×
N∏

p=1

cp Sp∑
σ=−cp Sp

exp

σ cp ||2 ∑
n

Sn cn Jp,n �mn + gμB �h||
k T

. (7)

The numerator of the last term can be interpreted as the projection
of the quantum spin �Sp onto an effective field at the pth position
given by

�heff ,p := 2 cp

g μB

∑
n

cn SnJp,n �mn + cp �h. (8)

This definition shows that for cp = 0 also the effective field is zero,
and because also cp Sp = 0, no spurious terms can occur in the
last sum in eq. (7). The effective field (8) represents the quantum-
mechanical version of the Curie–Weiss molecular field.

From the partition function 〈Z〉, the free energy F = −k T log 〈Z〉
is calculated as

F =
∑
i �=n

ci cn Si Sn Ji,n �mi �mn

− k T
N∑

p=1

cp log

⎡
⎣ Sp∑

σ=−Sp

exp
σ gμB ||�heff ,p||

k T

⎤
⎦ . (9)

The sum inside the natural logarithm is a geometric series such that
eq. (9) simplifies to

F =
∑
i �=n

ci cn Si Sn Ji,n �mi �mn

− k T
N∑

p=1

cp log
sinh

(
(2 Sp + 1)gμB ||�heff ,p||/(2 k T )

)
sinh

(
gμB ||�heff ,p||/(2 k T )

) .

(10)

2.2 Spatial averaging of the mean-field approximation

Apart from the mean-field approximation (5), the last expression
for F still exactly describes the magnetic interaction of a large
number N of atoms in the solid solution, typically in the order of
the Avogadro number. To obtain a tractable computational method,
it must be further simplified by spatial averaging, whereby the N
atoms are gathered into a small number L of classes of symmetrically
equivalent atoms as shown in Figs 1(c) and (d). It is assumed that the
atoms in ith class have small equivalent neighbourhoods B(i), where
exchange interaction occurs. The first term of F is then averaged to

F1 = N/L
L∑

i=1

∑
j∈B(i)

pi p j Si S j Ji, j mi m j , (11)

where now i, j = 1. . . L run over the small number of classes, while
pi, pj ∈ [0, 1] are the probabilities of ci = 1 or cj = 1 for the mem-
bers of classes i and j, respectively. This formulation implicitly
introduces the additional assumption that these probabilities de-
scribe independent events, that is, that the conditional probabilities
P(ci = 1|c j = 1) and P(ci = 1|c j = 0) are the same. Otherwise,
the coefficient in eq. (11) would be P(ci = c j = 1), which then
might be different from pi pj. Only for mathematical simplicity, the
exchange tensors have been replaced by scalar exchange constants
Ji, j between the members of classes i and j, describing isotropic
exchange interaction, and mi now denotes a scalar magnetization of
atoms in class i along a single direction. Performing the following
calculations for the more general tensorial and vectorial quantities
is not fundamentally different.

Spatial averaging over the second term in eq. (10), that is, replac-
ing ci by pi, requires further approximation. This is best understood
by separately studying the mathematical function

φa(ξ ) := log

(
sinh(2 a + 1) ξ

sinh ξ

)
, (12)

that appears in eq. (10) and is plotted in Fig. 2 for relevant values
of a. Note that neither φa nor ξ have physical units. The derivative

φ′
a(ξ ) := (2 a + 1) coth(2 a + 1) ξ − coth ξ (13)

is essentially the Brillouin function BJ (ξ ) = 1/(2J )φ′
J (ξ/(2J )).

When ξ > 1, such that e−ξ and e−(2a + 1) ξ are negligible φa(ξ ) ≈ 2 a ξ

is almost a linear function. In the case of μBheff, p 
 k T, which is
below TC, the second term of F is therefore well approximated by

F2 ≈ −g μB

N∑
p=1

cp Sp|heff ,p|, (14)

and because heff, p depends linearly on ci and mi, this can be averaged
over the members of the L classes to define an average effective field
for class j by

heff , j := 2

g μB

L∑
i=1

pi Si J j,i mi + h. (15)

With this definition the asymptotic value of F2 is

F2 ≈ −N/L g μB

L∑
j=1

p j S j |heff , j |. (16)

In the vicinity of ξ = 0 the function φa(ξ ) ≈ log (2 a + 1) is almost
constant, and depends on ξ only in second order. Also in this case
the spatial averaging can be directly performed, and it is therefore
not critical to use the approximation (15) also near ξ = 0 where it is
less accurate. Doing so in eq. (10) yields an approximate mean-field
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Figure 2. φa(ξ ) for a = 1, . . . , 5 together with asymptotic behaviour for ξ


 1 and near ξ = 0. Replacing eq. (8) by its asymptotic value, eq. (15) leads
to significant deviations only for 0.1 � ξ � 1, where local variations of
the effective field may become important. In the mean-field approach where
ξ = gμB ||�heff ,p||/(2 k T ), such values of ξ occur near the Curie temperature
where the effective-field energy is close to the thermal activation energy.

average free energy

F̄ := L

N
F =

L∑
i=1

∑
n∈B(i)

pi pn Si Sn Ji,nmi mn

− k T
L∑

j=1

p j φS j

(
gμB |heff , j |

2 k T

)
, (17)

where heff, j is given by eq. (15). If a minimum of F̄ lies within the

hypercube [−1, 1]L it is a solution of the set of L equations ∂ F̄
∂mi

= 0,
which for general values of Ji, n requires the validity of the system
of scalar equations

mi = BSi

( g μB

k T
heff ,i

)
, (18)

where i = 1. . . L, and BS denotes the spin S Brillouin function. This
nonlinear system of L equations for the L unknown magnetizations
can be solved to obtain possible mean-field magnetization states of
the system. Because solutions of eq. (18) may also correspond to
maxima or saddle points of F̄ , a numerical method must exclude
these possibilities.

3 M E A N - F I E L D M O D E L L I N G O F
H E M AT I T E - I L M E N I T E S O L I D
S O LU T I O N S

3.1 Exchange constants

The geometry of local exchange coupling in ilmenite–hematite solid
solutions as shown in Fig. 3 has been described by Ishikawa &
Akimoto (1957).

Exchange constants of hematite were determined by inelastic
neutron scattering of spin waves by Samuelson & Shirane (1970).
They relate exclusively to Fe3+–Fe3+ interactions. Neutron mea-
surements for ilmenite have been used to infer the intralayer and
next-nearest-neighbour Fe2+–Fe2+ interactions (Samuelson 1969).
Next-neighbour interlayer interactions do not occur in perfectly
ordered ilmenite because every second layer contains only Ti4+

ions. There are no direct measurements that constrain the value of
Fe2+–Fe3+ interactions. By inverse fitting of measured TC values to
Monte Carlo models, Harrison (2006) estimated values for Fe2+–
Fe3+ next-neighbour interactions and Fe2+–Fe2+ next-neighbour in-
terlayer interactions. Density functional theory (DFT) calculations
by Nabi et al. (2010) for ilmenite, hematite and ilmenite–hematite
interfaces provided theoretical estimates for all exchange constants.
These DFT calculations used the generalized gradient approxima-
tion that depends on a Coulomb repulsion parameter U, and two
solutions for U = 6 eV and U = 8 eV are provided by Nabi et al.
(2010). A brief overview of the different terminologies for the ex-
change constants in the literature is listed in Table 1. In the following
we use the terminology from Fig. 3 that corresponds to that of Nabi
et al. (2010).

3.2 Space-averaged mean-field model

To obtain a general model of a space-averaged hematite–ilmenite
solid solution, we represent each type of Fe-ion in the magnetic
unit cell by an average moment. The magnetic unit cell, based on
that of Fe–Ti ordered ilmenite, contains 12 puckered layers in the
c-direction. Each layer may contain up to four Fe3+ or Fe2+ ions,
as many as two in up and two in down positions. In the most gen-
eral case, this gives rise to 48 different average magnetic moments
m(L , t, π ), where L = 1, 2, . . . , 12 is the layer, t = 2, 3 is the ion
type Fet+ and π = ±1 denotes the up-down position. In a partially
ordered Ilmx solid solution (x ∈ [0, 1]), with Q ∈ [−1, +1] repre-
senting the degree of chemical order, the probability P(L , t) to find
an Fet+ ion at an Fe/Ti site in layer L is

P(L , 3) = 1 − x ; P(L , 2) = x

2

{
1 − Q for L ≡ 0 mod 2
1 + Q for L ≡ 1 mod 2.

(19)

This assumes that in the positive ordered state Q = 1, all Ti ions
have moved to the even layers (L ≡ 0 mod 2), while for the anti-
ordered state Q = −1, the Ti ions have moved to the odd layers. To
calculate the average effective field acting on an ion of type t in layer
L and position π , one has to add all contributions from all possible
neighbouring ions weighed by their respective probability

heff (L , t, π ) =
∑

t ′,L ′,π ′
S(t ′) P(L ′, t ′) m(L ′, t ′, π ′) ν(
L , π, π ′)

× Jtt ′ (
L , π, π ′). (20)

Here 
L represents the periodic difference


L = absmin {L ′ − L + 12Z} (21)

and ν(
L, π , π ′) denotes the multiplicity of the geometric situation,
that is, the number of equivalent neighbours, and Jtt ′ (
L , π, π ′) is
the exchange constant for the geometric link.

For S ⊂ Z , absmin S := max{m : |m| = min |S|}.
Note that symmetry requires

Jtt ′ (−
L , −π,−π ′) = Jtt ′ (
L , π, π ′),

ν(−
L , −π,−π ′) = ν(
L , π, π ′).
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Magnetic mean-field modelling 1033

Figure 3. Geometric configuration of local neighbours involved in exchange interactions. Letters indicate those sites where exchange interactions with the
highlighted central position (circle) are taken into account, provided they are occupied by an Fe instead of a Ti atom. Sites with equal letters have the same
interaction constants. The signs indicate whether an atomic position is upward (+) or downward (−) puckered. (a) Exchange coefficients J1 and J6 describe
exchange coupling to the two unique neighbours directly above and below the central atom. (b) J2 belongs to the only intralayer interaction. (c) J3 is the
strongest, and J4 and J5 are equal slightly less strong nearest-neighbour interlayer interactions. (d) J7 and J8 are weak next-nearest-neighbour interactions, as
J6 in (a). If the central atom is upward puckered, all interactions are mirror symmetric with respect to the central c-plane.

Table 1. Different nomenclatures for exchange con-
stants in ilmenite–hematite solid solutions. The first
three columns refer to the nomenclatures of Nabi et al.
(2010); Ishikawa & Akimoto (1957); Ishikawa et al.
(1985); Harrison (2006), ν is the geometric multiplicity
of the interaction as shown in Fig. 3. The type of in-
teraction is either intralayer (intra), nearest-neighbour
interlayer (nn) or next-nearest-neighbour (nnn).

Nabi et al. Ishikawa et al. Harrison ν type

J1 J 0
3 J1 1 nn

J2 J 1
1 J2 3 intra

J3 J 0
2 J3 3 nn

J4 J 0
1 J4 3 nn

J5 J 0
1 J4 3 nn

J6 J 1
3 J5 1 nnn

J7 J 1
4 6 nnn

J8 J 1
5 3 nnn

J 1
2 3 intra

J 1
6 3 intra

Based on the crystal structures of ilmenite and hematite, mean-
field models for ordered and disordered solid solutions were set
up according to eq. (18). To permit a maximal degree of freedom
for possible symmetry breaking, both models consider four atomic
layers in the c-planes, each containing Fe2+, Fe3+ , and Ti4+ ions in
either an upper or lower position. For the ordered case, where every
odd layer contains only Fe2+, Fe3+, while every even layer contains
only Fe3+, Ti4+, this results in a maximal number of 12 different
classes of Fe atoms. In the disordered case, up to 16 classes need
to be considered. However, in none of the numerically calculated

cases intralayer or mirror symmetry were broken, such that only the
four different ion classes, corresponding to Fe2+, Fe3+ in even and
odd layers, are of practical importance.

4 H E M AT I T E - I L M E N I T E S O L I D
S O LU T I O N S

While the intention of this article is to provide a simple and intelligi-
ble unified method to develop mean-field models for solid-solution
series of rock-magnetic importance on arbitrary levels of sophisti-
cation, it also provides some new insight into the specific system of
ilmenite–hematite solid solutions. There is a huge body of literature
on mean-field and micromagnetic properties of hematite, which has
been extensively reviewed and extended by Morrish (1994). The
theoretical approach presented here largely reproduces this work
in a more general setting that encompasses hematite–ilmenite solid
solutions of any degree of order.

4.1 Independent exchange parameters

The geometry of the exchange interactions as shown in Fig. 3, to-
gether with the averaging assumptions of the mean-field model,
implies that only some specific combinations of exchange coef-
ficients determine the mean-field behaviour of hematite–ilmenite
solid solutions. In the case of hematite, where only Fe3+–Fe3+ in-
teractions occur, this has been discussed by Morrish (1994), and his
arguments remain essentially valid for the solid solutions, although
three types of Fek+–Fel+ interactions with (k, l) ∈ {(2, 2), (2, 3),
(3, 3)} need to be considered. Analysis of the full equations reveals
that the effective field at each site only depends on the following six
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Table 2. Expressions in mean-field energy.

C1, 1 = B2, 2 2 (1 + Q)x C1, 2 = B2, 3 2 (1 + Q)x C1, 3 = A2, 2 2 (1 + Q)x C1, 4 = A2, 3 2 (1 + Q)x
C2, 1 = B2, 3 5 (1 − x) C2, 2 = B3, 3 5 (1 − x) C2, 3 = A2, 3 5 (1 − x) C2, 4 = A3, 3 5 (1 − x)
C3, 1 = A2, 2 2 (1 − Q)x C3, 2 = A2, 3 2 (1 − Q)x C3, 3 = B2, 2 2 (1 − Q)x C3, 4 = B2, 3 2 (1 − Q)x
C4, 1 = A2, 3 5 (1 − x) C4, 2 = A3, 3 5 (1 − x) C4, 3 = B2, 3 5 (1 − x) C4, 4 = B3, 3 5 (1 − x)

Table 3. Literature values for exchange constants for hematite–ilmenite solid solutions and an example for an
alternative fit to experimental values of TC.

A2, 2 A2, 3 A3, 3 B2, 2 B2, 3 B3, 3 Reference

−102.75 −236.175 −455.4 24.66 9.635 −7.4 Harrison (2006); Samuelson & Shirane (1970)
0. −247.7 −402.7 4. −41.3 −33.1 Nabi et al. (2010), U = 8 eV
0. −290.3 −533.1 12. −45.3 −57.6 Nabi et al. (2010), U = 6 eV

−87.7 −253.7 −386.9 27.4 1.1 28.3 Alternative fit

Figure 4. Experimentally determined Curie temperatures on a series of synthetic hematite–ilmenite solid solution samples from Burton (1982). Data for
samples with x ≥ 0.6 are taken from Burton et al. (2008). (a) Curie temperatures as determined from the indicated Ms(T) curves. The dashed line represents
previous calculations by Ishikawa & Akimoto (1957). (b) Top: the Ms(T) measurement (black) for Ilm23 shows primarily the Curie temperature of magnetite,
which is magnetically predominant, though volumetrically negligible. Only the derivative (grey) clearly indicates the lower ordering temperature of Ilm23.
Bottom: a clear peak in high-field susceptibility occurs at the magnetite Curie temperature. No discernable peak occurs at the lower ordering temperature of
Ilm23.

combinations of the 24 exchange constants:

Ak,l = J k,l
1 + 3J k,l

3 + 3J k,l
4 + 3J k,l

5 (22)

Bk,l = 3J k,l
2 + J k,l

6 + 6J k,l
7 + 3J k,l

8 . (23)

Here J1, . . . , J8 are the exchange constants in the nomenclature of
Nabi et al. (2010), and the superscripts denote to which Fek+–Fel+

interaction the combination applies. When, in addition, variable
composition x and degrees of order Q are taken into account it
turns out that still only a small number of combinations occur in the
mean-field energy. These combinations are listed in Table 2.

The dependence of Cp, q as defined in Table 2 on order Q and
composition x make it possible to determine individual factors Ak, l

and Bk, l by varying these parameters. Different literature values
for the exchange constants result also in different values for the
Ak, l and Bk, l as seen in Table 3, such that deviations between these
predictions should lead to measurable effects.

4.2 Constraints from experimental Curie temperatures

Experimental Curie temperatures as shown in Fig. 4 and reported
by Burton et al. (2008) can be fit by adjusting Ak, l and Bk, l. Al-
though there are uncertainties related to the measurement of TC

(Fabian et al. 2013), the values for the hematite–ilmenite series are
relatively well established. Fig. 4 shows that for x < 0.4 the deter-
mination of TC is complicated by the fact that the solid solutions are
predominantly disordered with Q almost zero in this region such
that already tiny amounts of magnetite create a considerable sig-
nal, overprinting the signal from the almost antiferromagnetic solid
solution.

Using least-squares minimization it is possible to create alterna-
tive fits to those of Harrison (2006) and Nabi et al. (2010) because
the predicted Curie temperatures depend not very sensitively on the
values for Ak, l and Bk, l. To create such fits, it is necessary to cal-
culate TC in dependence of Ak, l and Bk, l for any x and Q. Because
at the Curie temperature the character of the solution mi = 0 for
i = 1, . . . , L to the set of equations (18) changes from a minimum
above TC to a maximum below TC, this allows for a simple method
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Figure 5. Difference 
TC(x) = TC(Q = 0) − TC(Q = 1) between the Curie
temperatures TC(Q = 0) of the disordered and TC(Q = 1) the ordered solid
solution as a function of composition x. The two lines represent different
modelling results that both fit the experimental data. The solid line is based
on the exchange constants from Harrison (2006), and the dashed line is
based on the exchange constants for the alternative fit listed in the last line
of Table 3. This result indicates that based on current data it is not possible
to decide whether ordered or disordered phases have higher TC.

to determine the Curie temperature by linearizing eq. (18) around
this zero solution. Directly at TC the linear system obtained has at
least two solutions corresponding to the emergent positive and neg-
ative branches of spontaneous magnetization. For a linear system,
this means that the solution becomes singular at TC, and the deter-
minant of the linear system is zero. In the case of hematite–ilmenite
solid solutions, this leads to the condition that at TC the following
determinant vanishes:∣∣∣∣∣∣∣∣∣

4 T − 2 C1,1 5 C1,2 2 C1,3 5 C1,4

C2,1 75 T − 35 C2,2 −14 C2,3 −35 C2,4

2 C3,1 −5 C3,2 4 T − C3,3 −5 C3,3

14 C4,1 −35 C4,2 −14 C4,3 75 T − 35 C4,4

∣∣∣∣∣∣∣∣∣
= 0,

(24)

where Ci, j, as defined in Table 2, depend on x and Q. The resulting
fourth-order equation in T can be solved for any composition x, order
parameter Q, and for any values for the exchange constants Ak, l and
Bk, l. The largest real solution then corresponds to the predicted value
of TC. This equation generalizes a similar equation of Ishikawa &
Akimoto (1957).

The last line in Table 3 reports one alternative fit for Ak, l and Bk, l

obtained in this way, but many other fits are equally good, depending
heavily on the weighing and error estimates for the experimental
data points. The main reason for choosing the shown solution is that
it illustrates the open problem whether disordered or ordered solid
solutions in the ferrimagnetic region 0.4 < x < 0.87 have higher TC.
Fig. 5 shows that while the exchange constants of Harrison (2006)
result in higher TC for disordered solid solutions, the alternative fit
gives higher TC for the ordered case when x < 0.83 and lower TC

when x > 0.83. The question therefore cannot be resolved based on
our current experimental data.

4.3 Ms(T) curve shape

Another important application of mean-field modelling is the pre-
diction of Ms(T) curves for any choice of parameters Ak, l, Bk, l, x
and Q as shown in Fig. 6, which for convenience is based on the
exchange couplings from Harrison (2006). Figs 6(a) and (b) show
the sublattice magnetizations for x = 0.6 in the disordered and per-
fectly ordered states. It is based on 16 (a) and 12 (b) classes of iron
atoms in the hematite lattice and demonstrates that for the chosen
exchange constants no symmetry breaking occurs such that only 4
or 3 different magnetization branches occur as used in the simpli-
fied model for the Curie temperature determination. In Fig. 6(a) the

total magnetization of the antiparallel sublattices is zero, making
the completely disordered state a perfect antiferromagnet. In the or-
dered configuration in Fig. 6(b), only the Fe3+ ions in neighbouring
Fe and Ti layers cancel each other, while Fe2+ ions occur only in Fe
layers. Because neighbouring layers are antiparallel due to negative
exchange coupling, all Fe2+ ions are aligned in the same direction
and produce a net ferrimagnetic moment. Also, the shape of the
overall magnetization curve thus reflects the Fe2+ sublattice only,
and not the significantly different curve shape for the Fe3+ sublattice
magnetization.

A 3-D view of the variation of this curve shape with composition
x is shown for Q = 1 in Fig. 6(c). It includes the variations of
TC and Ms(0) as marginal projections. 2-D plots are provided in
Figs 6(d)–(f).

In a similar way, the change of the Ms(T) curve can be studied for
a constant composition x as a function of order Q. Fig. 6(g) provides
a 3-D view of this variation for x = 0.6. Here TC is almost constant
and Ms(0) varies linearly. Yet the variation at other temperatures
is not completely linear, as can be seen best by comparing the
normalized curves for Q = 1 and Q = 0.1 in Fig. 6(h).

All these calculations are numerically fast and accurate for bulk
materials whenever the fundamental assumptions of the mean-field
approach are met.

4.4 High-field susceptibility and magnetic order

Experimental evidence as presented in Fig. 7 shows that ferrimag-
netically ordered solid solutions exhibit a peak in high-field suscep-
tibility. Here a field H0 is considered high if it is considerably larger
than the remanent coercivity Hcr, and the high-field susceptibility
for H0 � Hcr is

χHF(H0, T ) := ∂ M

∂ H
(T, H0), (25)

slightly above TC. The measurement procedure for these curves
is described in Fabian et al. (2013), where this peak is related to
the para-effect that increases the in-field saturation magnetization
(Holstein & Primakoff 1940) and provides an independent experi-
mental method to constrain TC in ferrimagnets. The para-effect is
due to an improved average statistical alignment of the thermally
activated ion spins in applied fields of an achievable magnitude (1–
10 T), which near TC can significantly increase the effective field
and therefore also increase the apparent Ms. Fig. 7(a) shows that in
Ilm43 this peak is absent, or at least almost completely suppressed.
According to experimental data of Ishikawa & Akimoto (1957),
ilmenite–hematite solid solutions are disordered between x = 0 and
x = 0.4. Fig. 7(a) thus provides evidence that in general there is no
peak of χHF in disordered solid solutions. For hematite, Fabian et al.
(2013) argued that antiferromagnetic coupling prevents improved
mean statistical alignment of both sublattices parallel to the field to
lower the combined magnetic field and exchange energy. As long
as field-induced spin canting due to H0 is small, the susceptibility
perpendicular to the sublattice magnetization,

χ⊥ := ∂m⊥(T, H )

∂ H
(T, H0) ≈ Ms

heff
(T ), (26)

is the main contribution to the antiferromagnetic susceptibility be-
low TC. It is only negligibly influenced by the para-effect and shows
no peak near TC.

The peak in the parallel susceptibility χ ‖, as visible in Figs 7(b)
and (c), can be calculated from our mean-field model and confirms
the suggestion and measurements of Fabian et al. (2013) that in
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Figure 6. Modelling results for magnetization curves of hematite–ilmenite solid solutions in dependence of composition x and order parameter Q based on
the exchange constants from Harrison (2006). (a) Sublattice magnetization μ in units of μB per formula unit of Ilm60. In the disordered state Fe2+ and Fe3+
ions cancel each other in neighbouring layers. (b) In perfectly ordered Ilm60, only the Fe3+ residing in Ti layers cancel their moments with Fe3+ in Fe layers.
Because Fe2+ ions reside only in Fe layers, their moments all point in the same direction. (c) Ms(T) curves for perfectly ordered (Q = 1) hematite–ilmenite
solid solutions in a 3-D view show variation of TC and Ms(0). (d) TC for ordered and disordered solid solutions differ by less than 5 K in the region x < 0.87
where ferrimagnetism occurs. (e) Ms(T) curves, in units of μB per formula unit, for hematite–ilmenite solid solutions with Q = 1 versus (f) with Q = 0.5. (g)
Ms(T) curves for Ilm60 as a function of Q in a 3-D view show linear variation Ms(0) and almost constant of TC. The slight variation in curve shape is best seen
in the normalized curves in (h).

magnetically disordered (Q = 0) systems, this peak disappears. Be-
cause the peak occurs near TC, its quantitative calculation by mean-
field methods will be affected by the approximation in eq. (14),
illustrated in Fig. 2, and therefore may be less accurate, though
essentially correct.

To illustrate this quantitatively, Fig. 8 reports a set of mean-field
calculations for differently ordered ilmenite–hematite solid solu-
tions of composition Ilm40, at the lower boundary of compositions
where chemical order can occur (Harrison 2006; Ghiorso & Evans

2008; Robinson et al. 2012). The mean-field calculation assumes
that the field is aligned with the sublattice magnetizations and there-
fore concerns the high-field susceptibility χHF, ‖. To quantify the
peak size in an applicable way, the peak area a is calculated as the
integral

a =
∫ Tmax

Tmin

χHF(H0, Q, T ) − χHF(H0, 0, T ). (27)
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Figure 7. MS(T) curves and high-field magnetic susceptibility χHF(T) according to Fabian et al. (2013) for Ilm43 (sample Ilm40-160278) (a), Ilm72 (sample
Ilm70-191073) (b) and Ilm81 (sample Ilm80-030676) (c) (Burton 1982). In (a), the absence of a recognizable peak near TC ≈ 320 ± 5 C shows that the Ilm43
solid solution is predominantly disordered and antiferromagnetic, while the presence of a magnetite component is clearly indicated by a peak in χHF(T) near
TC ≈ 520 ± 5 C. For the partially chemically ordered solid solutions Ilm72 (b) and Ilm81 (c), each χHF(T) curve has a broad peak near the respective Curie
temperatures resulting from the ferrimagnetic para-effect slightly above TC. Note the different T scales in (b) and (c).
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Figure 8. Left: Modelled magnetic high-field susceptibility χHF, ‖ for different ordering states of Ilm40, using exchange constants of Harrison (2006) and
applied fields between 1.2 and 1.5 T. A completely disordered solid solution shows no peak near its Néel temperature (TN ≈ 596 K), while at Q = 0.2 the
modelled peak at an identical TC is clearly visible. Right: a bilogarithmic plot of peak area a as a function of Q indicates almost quadratic increase of a with Q
(Tmin = 520 K, Tmax = 610 K).

This reflects the integral of the deviation from the disordered high-
field susceptibility χHF(H0, 0, T) for Q = 0 over a temperature in-
terval around TC. Fig. 8(b) indicates that peak area growth is almost
quadratical with Q. A fit to the numerical computation yields a
∝ Q1.89. Experimentally, peak area is a more robust quantity than
peak maximum height because slight variations, for example, in
composition strongly affect height but not area. A quantitative com-
parison of this theoretical relation to experimental data requires an
independent and reliable method to determine the bulk degree of
order Q in hematite–ilmenite solid solutions. In addition, due to
the predicted nonlinear variation of a with order Q, even the small-
scale structure of the solid solution will be important. An equal
mixture of two homogenous compounds with Q = 0.2 and Q = 0.8
should have a different peak area a (∼0.3518) than the homogenous
average-order solid solution with Q = 0.5 (a ∼ 0.2698). A quanti-
tative experimental study of a in relation to Q and its nanostructure
in hematite–ilmenite solid solutions is an important aim for future
research.

5 D I S C U S S I O N A N D C O N C LU S I O N S

We derive a rigorous mean-field model to calculate magnetization
curves and Curie temperatures for solid solutions of natural minerals
as a function of their degree of chemical order. The model is based
on ionic configurations and requires the corresponding exchange
constants as input. Due to the inherent constraints of the mean-field
approach, quantum effects at low temperatures and correlations of
thermal fluctuations near TC are neglected. This is related to the
well-known limitation of mean-field models to correctly represent
spin-glasses (Fischer & Hertz 1991), and means that modelling
results for ilmenite content 0.87 ≤ x < 1 must be regarded with
care, because due to the loss of Fe percolation in the ordered state
hematite–ilmenite solid solutions in this composition range show
locally variable clustering and spin-glass behaviour (Ishikawa et al.
1985; Burton et al. 2008; Harrison 2009). The additional simplifica-

tion achieved by averaging over unit cells, leading to not more than
48 classes of ions, is sufficient to predict Curie temperatures for a
bulk system with long-range order, below the percolation threshold
of about Ilm87. For systems between Ilm87 and Ilm100 it is as-
sumed and experimentally verified that spin-glass behaviour occurs
due to the formation of interacting clusters of Fe-ions, separated
by weak, partly ferromagnetic and partly antiferromagnetic links,
which necessarily are in a state of frustrated equilibrium (Ishikawa
et al. 1985; Burton et al. 2008; Harrison 2009). Such clusters cannot
be modelled with a 16-class mean-field model, but the presented
methods can be applied to studying numerical periodic-boundary
mean-field models that contain large number of classes representing
complex Fe-ion networks. Such models should be better apt to grasp
the complexity of the spin-glass phase, but it is unclear whether this
is sufficient to understand the experimental results (Ishikawa et al.
1985; Burton et al. 2008). At the very end of the solution series, for
Ilm100, mean-field modelling works again, because the geometric
situation is both, simple and spatially homogenous, and the model
predicts the correct antiferromagnetic Néel temperature.

The here developed mean-field method is readily extendable to
3-D models and to inhomogenous systems like lamellar inter-
growths. It can be used for rapid and robust prediction of Ms(T)
curves and thus can be applied to parameter studies. Inverse fitting
of exchange constants can be achieved by minimizing the misfit
between measured and predicted TC values from a linearized TC

calculation. By applying the described method to the hematite–
ilmenite solid solution system, we find that the range of values
for the exchange constants, consistent with available measurement
data, is still too large to decide whether the ordered or the disor-
dered solid solution of a given composition has higher TC. We also
derive numerically an approximately quadratic relation between the
area of the peak in high-field susceptibility and the chemical order
parameter. This supports a previous observation that antiferromag-
netic, disordered, hematite–ilmenite solid solutions show no peak in
high-field susceptibility, while it clearly occurs in ordered ferrimag-
netic materials. Experimental verification of a quantitative relation
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between peak area and ordering state Q would provide a power-
ful and simple technique to determine average bulk order Q in
hematite–ilmenite solid solutions. However, future calibration mea-
surements will require hematite–ilmenite solid solution samples of
identical composition but with different Q values determined by
independent means, for example, neutron powder diffraction (Har-
rison & Redfern 2001).

A C K N OW L E D G E M E N T S

We wish to thank Tiziana Boffa Ballaran at Bayerisches Geoinstitut,
Bayreuth, who has provided long-term assistance for our research
in Fe–Ti oxides in the form of refined lattice parameters of many
samples, and information on possible impurities.

This work was supported by grant 189721 from the Research
Council of Norway (Nanomat Program) in the EU Matera Program.
VSM measurements have been performed using visiting research
fellowships to the Institute of Rock Magnetism (IRM), University
of Minnesota, USA, which is supported by an NSF Instruments and
Facilities Grant. V.S. is supported by funds allocated under the state
support of Kazan Federal University to improve its competitiveness
among the world’s leading research and education centres.

R E F E R E N C E S

Bloch, F., 1928. Zur Theorie des Ferromagnetismus, Z. Physik, 61, 206.
Brown, N.E., Navrotsky, A., Nord, G.L.J. & Banerjee, S.K., 1993. Hematite-

ilmenite (Fe2O3-FeTiO3) solid solutions: determinations of Fe–Ti order
from magnetic properties, Am. Mineral., 78, 941–951.

Burton, B.P., 1982. Thermodynamic analysis of the systems CaCO3-
MgCO3, α-Fe2O3 and Fe2O3-FeTiO3, PhD thesis, State University of
New York at Stony Brook, Stony Brook, NY, USA.

Burton, B.P., 1991. The interplay of chemical and magnetic ordering, Re-
views in Mineralogy and Geochemistry, 25, 303–322.

Burton, B.P., Robinson, P., McEnroe, S.A., Fabian, K. & Boffa Ballaran, T.,
2008. A low-temperature phase diagram for ilmenite-rich compositions
in the system Fe2O3-FeTiO3, Am. Mineral., 93, 1260–1272.

Fabian, K., Robinson, P., McEnroe, S.A., Heidelbach, F. & Hirt, A.M., 2011.
Experimental study of the magnetic signature of basal-plane anisotropy in
hematite, in The Earth’s Magnetic Interior, Vol. 1 of IAGA Special Sopron
Book Series, pp. 311–320, eds. Petrovsk, E., Ivers, D., Harinarayana, T.
& Herrero-Bervera, E., Springer-Verlag.

Fabian, K., Shcherbakov, V.P. & McEnroe, S.A., 2013. Measuring the Curie
temperature, Geochem. Geophys. Geosyst., 14(4), 947–961.

Fischer, K.H. & Hertz, J.A., 1991. Spin Glasses, Cambridge Univ. Press.
Ghiorso, M. & Evans, B., 2008. Thermodynamics of rhombohedral oxide

solid solutions and a revision of the Fe–Ti two-oxide geothermometer and
oxygenbarometer, Am. J. Sci., 308, 957–1039.

Harrison, R.J., 2006. Microstructure and magnetism in the ilmenite-hematite
solid solution: a Monte Carlo simulation study, Am. Mineral., 91, 1006–
1023.

Harrison, R.J., 2009. Magnetic ordering in the ilmenite-hematite solid so-
lution: a computational study of the low-temperature spin glass region,
Geochem. Geophys. Geosyst., 10, 1–17.

Harrison, R.J. & Becker, U., 2004. Magnetic and chemical ordering in
the ilmenite-hematite solid solution: from lamellar magnetism to self
reversals, Geochim. Cosmochim. Acta, 68, A80.

Harrison, R.J. & Redfern, S.A.T., 2001. Short- and long-range ordering in
the ilmenite-hematite solid solution, Phys. Chem. Miner., 28, 399–412.

Heisenberg, W., 1928. Zur Theorie des Ferromagnetismus, Z. Physik, 49,
619–636.

Hoffman, K.A., 1992. Self-reversal of thermoremanent magnetization in
the ilmenite-hematite system—order-disorder, symmetry, and spin align-
ment, J. geophys. Res., 97, 10 883–10 895.

Holstein, T. & Primakoff, H., 1940. Field dependence of the intrinsic domain
magnetization of a ferromagnet, Phys. Rev., 58, 1098–1113.

Ishikawa, Y. & Akimoto, S., 1957. Magnetic properties of the FeTiO3—
Fe2O3 solid solution series, J. Phys. Soc. Japan, 12, 1083–1098.

Ishikawa, Y., Saito, N., Arai, M., Watanabe, Y. & Takei, H., 1985. A new
oxide spin glass system of (1 − x) FeTiO3– x Fe2O3. i. magnetic properties,
J. Phys. Chem. Solids, 54, 312–325.

Ising, E., 1925. Beitrag zur Theorie des Ferromagnetismus, Z. Phys., 31,
253–258.

Kaneyoshi, T., Fittipaldi, I.P. & Beyer, H., 1980. A theory of a diluted
ferromagnet, Phys. Status Solidi b, 102, 393–401.

Kosterlitz, J.M. & Thouless, D.J., 1973. Ordering, metastability and phase
transitions in two-dimensional systems, J. Phys. C: Solid State Phys., 6,
1181–1203.

Lagroix, F., Banerjee, S.K. & Moskowitz, B.M., 2004. Revisiting the mech-
anism of reversed thermoremanent magnetization based on observations
from synthetic ferrian ilmenite (y = 0.7), J. geophys. Res., 109, B12108,
doi:10.1029/2004JB003076.

Meiklejohn, W.H. & Carter, R.E., 1959. Exchange anisotropy in rock mag-
netism, J. Appl. Phys., 30, 2020, doi:10.1063/1.1735116.

Morrish, A.H., 1994. Canted Antiferromagnetism: Hematite, World Scien-
tific.

Nabi, H.S., Harrison, R.J. & Pentcheva, R., 2010. Magnetic coupling pa-
rameters at an oxide-oxide interface from first principles: Fe2O3-FeTiO3,
Phys. Rev. B, 81, 214432, doi:10.1103/PhysRevB.81.214432.

Nagata, T., 1961. Rock Magnetism, revised edition, Maruzen.
Onsager, L., 1944. Crystal statistics. I. A two-dimensional model with an

order-disorder transition, Phys. Rev., 65, 117–149.
Robinson, P., Harrison, R.J., McEnroe, S.A. & Hargraves, R.B., 2002.

Lamellar magnetism in the haematite-ilmenite series as an explanation
for strong remanent magnetization, Nature, 418, 517–520.

Robinson, P., Harrison, R.J., McEnroe, S.A. & Hargraves, R.B., 2004. Nature
and origin of lamellar magnetism in the hematite-ilmenite series, Am.
Mineral., 89, 725–747.

Robinson, P., Harrison, R.J., Miyajima, N., McEnroe, S.A. & Fabian, K.,
2012. Chemical and magnetic properties of rapidly cooled metastable
ferri-ilmenite solid solutions: implications for magnetic self-reversal and
exchange bias, II. Chemical changes during quench and annealing, Geo-
phys. J. Int., 188, 447–472.

Robinson, P., McEnroe, S.A., Fabian, K., Harrison, R.J., Thomas, C. &
Mukai, H., 2014. Chemical and magnetic properties of rapidly cooled
metastable ferri-ilmenite solid solutions: implications for magnetic self-
reversal and exchange bias, IV. The fine structure of self-reversed ther-
moremanent magnetization, Geophys. J. Int., 196, 1375–1396.

Samuelson, E., 1969. Spin waves in antiferromagnets with corundum struc-
ture, Physica, 43, 353–374.

Samuelson, E. & Shirane, G., 1970. Inelastic neutron scattering investigation
of spin waves and magnetic interactions in α-Fe2O3, Phys. Status Solidi b,
42, 241–256.

Stephenson, A., 1972. Spontaneous magnetization curves and Curie points
of spinels containing two types of magnetic ion, Phil. Mag., 25, 1213–
1232.

 by guest on June 18, 2015
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


1040 K. Fabian et al.

Table A1. Inferred chemical compositions of some synthetic ilmenite solid solutions of
Burton (1982).

Sample Label a (Å) c (Å) V (Å3) Est. Comp. x (per cent)

Ilm 10 904C 6-19-77 powder 5.0409(1) 13.7775(2) 303.19(1) 13.0
Ilm 20 (Nov.16,1973) powder 5.0460(1) 13.8037(2) 304.38(1) 22.7
*Ilm 40 887C 5.0557(1) 13.8528(2) 306.64(1) 40.5
Ilm 40 16021978 powder 5.0571(1) 13.8569(2) 306.90(1) 42.5
Ilm 54.6 600C 28h 5.0657(1) 13.8978(2) 308.86(1) 56.6

A P P E N D I X

Table A1 lists lattice parameters from high-resolution X-ray diffrac-
tion of some ilmenite solid solutions of Burton (1982) used in this
study and inferences concerning their compositions. Diffraction and
parameter refinements were performed by Tiziana Boffa Ballaran
at Bayerisches Geoinstitut, Bayreuth. From the resulting unit cell
volumes, average compositions x (mol.%FeTiO3) were inferred us-

ing a standard working curve. Many of the results used here were
published in Burton et al. (2008), but several samples lie outside
the composition range x > 0.60 covered there. Table A1 lists the
parameters and composition inferences for the additional samples
used in this paper, also, for comparison, one other Ilm40 sample
(*) not used here. The composition inferences are used for Figs 4
and 7.
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