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S U M M A R Y
Natural rocks and synthetic analogues can contain extremely small scaled magnetic minerals
varying in shape from approximately equidimensional nanoparticles to lower dimensionally
shaped lamellae resembling thin films or whiskers.

The magnetic ordering temperatures of such nanomagnetic structures can significantly
depend on their size and shape. Here, a general method for detailed numerical or analytical
calculations of these ordering temperatures is developed. Based on a modified mean-field
approach, the result proves a refined version of a known scaling law that links atomic-layer
number to the Curie temperatures of nanostructures. An analytic expression for the dependence
of the Curie temperature on the atomic-layer number is obtained for thin films and rectangular
nanostructures. It is confirmed by comparison to experimental results.

Key words: Biogenic magnetic minerals; Environmental magnetism; Magnetic and electrical
properties; Magnetic mineralogy and petrology; Rock and mineral magnetism.

1 I N T RO D U C T I O N

Detailed knowledge of grain-size dependent magnetic characteris-
tics is an essential prerequisite for rock magnetic studies. In partic-
ular, the superparamagnetic, submicroscopically fine ferrimagnetic
fraction provides important palaeoclimatic and environmental in-
formation (Evans & Heller 2003), but also is an important indicator
of remanence stability in rocks. As shown by Robinson et al. (2002),
fine-scale exsolution leads to appearance of nanoscale magnetic mo-
ments, or the so-called lamellar magnetism which is responsible for
the very stable natural magnetic remanence (NRM) found in rocks
bearing hemoilmenties. The origin of this type of magnetism is an
imbalance moment resulting from uncompensated moments of the
antiferromagnetic lattice, for example, haematite grains embedded
in the ilmenite matrix.

The surface-to-volume ratio is overwhelmingly larger in ultrafine
than in coarse grains. Surface effects therefore considerably influ-
ence the magnetic order of ferromagnetic nanostructures, where
the missing outside neighbours of the surface ions weaken the ex-
change coupling. As a consequence, the intensity of the spontaneous
magnetization Ms increases from the surface to the centre of a suf-
ficiently small nanoparticle. This phenomenon is most prominent
in the vicinity of the bulk Curie temperature T c, where exchange
interactions are comparable to thermal fluctuations, and the miss-
ing boundary bonds can lead to a considerable spatial variation of
Ms, and also to a lowering of the ordering temperature in very fine
particles and thin films with respect to the bulk T c.

The quantitative details of the above effects depend on size and
shape of the nanostructures, as well as on the atomic coordination
number of the neighbours missing on the surface. A spatial variation
of Ms, and the decrease of T c considerably influences results of
strong field magnetization measurements and determinations of T c

in natural rocks containing such ferromagnetic nanostructures like
thin films, fine-scale exsolution patterns or nanometer size particles.

The decrease of ordering temperature with size is described by
the scaling law of Fisher & Barber (1972), which links the number
of atomic layers N t to the relative decrease in Curie temperature T c

according to Tc−Tc(Nt)
Tc

= C N
−λ

t , where T c is the Curie temperature
of the bulk material, C is a constant and λ is the so-called ‘shift
exponent’. This law is based on the physical consideration that
the smallest dimension of a magnetically ordered structure has to
be larger than the magnetic spatial-response correlation length ξ ,
which describes the length scale over which a mean spin deflection
influences the mean position of the neighbouring spins. Otherwise,
local fluctuations influence the whole structure.

Because ξ increases with temperature as ξ ∝ [ Tc
Tc−T ]ν , where ν is

a critical exponent, the onset of ordering should occur when N t a0

≈ ξ , where a0 denotes the typical distance between adjacent atomic
layers. Thereby, one directly obtains Tc−Tc(Nt)

Tc
= C N

−1/ν

t , that is, the
scaling law with λ = 1/ ν and the fitting constant C.

For thin films, the theory of T c reduction is based on numerical
calculations, performed either using a mean-field approximation
(MFA), or Green’s function theory applied to a finite number of
ions (Jensen & Bennemann 2006).
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Here we apply Ginzburg–Landau (GL) theory, which is a natural
extension of the MFA, to investigate the variation of ordering tem-
perature, and the spatial distribution M s(r,T) for nanometer-scale
ferromagnetic grains of various shape by assuming a smooth vari-
ation of Ms over the volume. This approach was previously used to
study the spatial distribution M s(r,T) inside domain walls near the
Curie temperature (Bulaevsky & Ginzburg 1963). Later, the GL en-
ergy functional was used to determine the onset of phase transition
in superlattices (Wang & Mills 1992). An important advantage of
the GL approach is that in several important cases it yields analytical
instead of numerical solutions for both, the ferromagnetic ordering
temperature and the spatial variation of the intensity M s(r,T). Based
on these analytical solutions, it is even possible to formally ‘prove’
the validity of the scaling law for N t � 1.

However, because GL theory largely neglects spatio-temporal
correlations of the thermofluctuations even close to the Curie tem-
perature, where they become relevant, it tends to predict a too small
decrease in T c. The correction needed to improve the agreement
between GL theory and experiments is discussed in Section 3.

2 F R E E E N E RG Y D E N S I T Y I N T H E G L

The free-energy density of a ferromagnet according to GL theory,
is

F(r, t) = A

2
grad2m − at

2
m2 + b

4
m4 + Ean(m), (1)

where m(r,t) = M s(r,T)/M s0 is the local spontaneous magneti-
zation, M s0 = M s(0 K), A is an average exchange constant and
Ean(m) = Kan f (m) is the magnetocrystalline anisotropy energy,
where f (m) is a normalized function, invariant under the local mag-
netic symmetry group, Kan is the magnetocrystalline anisotropy
constant, a and b are positive constant energy densities and t =
(T c − T)/T c is the reduced temperature measured as the distance
from the Curie point T c. The values of A, a and b are assumed to be
independent of temperature.

For large structures it is possible to separate the variation of the
absolute length m(r,t), from the rotation of the vector m(r,t). In
this approximation (1) splits into two independent equations for
absolute value m and direction m:

FL = −at

2
m2 + b

4
m4; (2a)

FDW = A

2
grad2m + Ean(m). (2b)

Eq. (2a) corresponds to the Landau theory of second-order phase
transitions, and minimization of (2a) determines the absolute value

of m as m0(t) =
√

at
b . Minimization of eq. (2b) describes spatial

changes of m that occur on the length scale of the characteristic
domain wall (DW) width dDW = √

A/Kan.
It was first noted by Bulaevsky & Ginzburg (1963) that in the

vicinity of Curie temperature T c the hierarchy of terms in (1) might
be different if at T → T c the magnetocrystalline anisotropy en-
ergy Ean decays slower than the Landau free energy (2a). In this
case the structure of the DW may differ strikingly from the Bloch
wall, because the intensity m instead of the direction of m changes
throughout the DW.

Variations in the intensity m are also important when the space
for a directional change of the vector m is restricted in at least
one dimension, such that the minimal size of the grain 2L � dDW.

Therefore, variations in m are important for ferromagnetic struc-
tures resembling thin films, nanowires and nanoparticles. In these
cases the surface ions have less interatomic interactions than the
ions in the interior. At elevated temperatures the intensity of mag-
netization of the surface layers can be considerably less than the bulk
magnetization value m0, whereas the interior magnetization already
may be close to m0. Although this behaviour is always present as a
surface effect, only in the case of 2L � dDW it notably influences
the overall magnetization and ordering temperature.

The problem of variable intensity m was studied by Wang &
Mills (1992) for an alternating sequence of ferromagnetic thin films
having exchange interaction at the boundaries. They solved it by
using numerical solutions of the Euler equation derived from the
minimization of the GL free energy density (1).

In this study we develop an analytical solution for the Euler
equation describing the variable magnetization across a thin film up
to T c, and a numerical model for the magnetization variation of m
in fine spherical and cubic particles up to T c.

3 E U L E R E Q UAT I O N F O R T H I N F I L M S

A complete analytical solution can be developed for thin films or
very thin 2-D lamellae, where the magnetization m(x), x ∈ (−L, L),
changes across the thin direction. The total number N t of atomic
layers in the film is related to the thickness 2L � dDW by N t =
2L/a0.

For a typical atomic layer distance of a0 ≈ 0.2 nm, and ∼100
atomic layers within a DW, such a thin film contains at most a
few tens of atomic layers. Besides specifically designed synthetic
thin films, also exsolution lamellae of a ferromagnetic inside a
paramagnetic material are described by these assumptions.

When m changes across the film, the first term in (1), due to
2L � dDW, becomes comparable to the second and third terms,
while the magnetocrystalline anisotropy energy, like the magneto-
static energy, remain negligible. Thus directional changes of m are
negligible, and only the intensity m is assumed to change as a func-
tion of x ∈ (−L, L). In this 1-D case the area density of the free
energy is

F(T ) = 2

L∫
0

[
A

2

(
dm

dx

)2

− at

2
m2 + b

4
m4

]
dx . (3)

Due to the assumed symmetry m(x) = m(−x), it is sufficient to
consider only the interval x ∈ (0, L). The Euler equation for the
variational problem of minimizing (3) is

ξ 2 d2u

dx2
+ u − u3 = 0, (4)

Where u = m/m0, so the range of variations of u at any given
temperature t is [0,1].

The characteristic length scale

ξ =
√

A

at
(5)

is the correlation length in the GL approximation (e.g. Fischer &
Hertz 1991). Its dependence on t determines the critical exponent
ν = 1

2 , corresponding to the scaling exponent λ = 2. The bound-
ary condition for m at the outer surface x = L requires m(L +
a0) = 0, or m + a0

dm
dx = 0|x=L . This condition is equivalent to that

used Wang & Mills (1992) for the case of zero exchange inter-
action with the outer layer. Setting the length unit a0 = 1 trans-
forms x and ξ into dimensionless lengths, and after normalizing
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the energy densities F, a0
3Kan, a0 A, a0

3a and a0
3b to kBT c, where

kB is the Boltzmann constant, the free energy (1) also becomes
dimensionless.

The boundary conditions for the inner and outer boundaries
thereby become

du

dx

∣∣∣∣
x=0

= 0,
du

dx

∣∣∣∣
x=N

= −u, (6)

Where N = N t/2 = L/a0 and the inner boundary condition reflects
the assumed mirror symmetry. After multiplication by du/dx, eq.
(4) can be integrated, leading to a constant potential

E = ξ 2

(
du

dx

)2

+ u2 − 1

2
u4. (7)

At x = 0 and x = N the boundary conditions (6) yield the relations

E = γ 2 − γ 4

2
, (8)

(1 + ξ 2)β2 − β4

2
= γ 2 − γ 4

2
, (9)

where γ = u(0), β = u(N).
Together with these relations, the differential eq. (7) has the

complete analytical integral, implicitly given by

x

ξ
=

γ∫
u

dũ√
γ 2 − γ 4

2 − ũ2 + ũ4

2

=
√

2

2 − γ 2

{
K

(
γ√

2 − γ 2

)
− F

[
arcsin(u/γ ),

γ√
2 − γ 2

]}
,

(10)

where F(ϕ, k) =
ϕ∫
0

dϕ̃√
1−k2 sin2 ϕ̃

is the incomplete elliptic integral of

the first kind, and K(k) = F(π /2,k) is the corresponding complete
elliptic integral. Using the definition of F, the last term in (10) can

be written as F[arcsin(u/γ ), γ√
2−γ 2

] =
arcsin(u/γ )∫

0

dϕ√
1− γ 2

2−γ 2 sin2 ϕ

, such

that the implicit representation of u in (10) can be transformed to
the explicit solution

u(x) = γ sn

[
K

(
γ√

2 − γ 2

)
− x

√
2 − γ 2

√
2ξ

,
γ 2

2 − γ 2

]
, (11)

where the Jacobi’s elliptic function sn(z, k) is the inverse of F(ϕ,k).
Eq. (11) completely determines the magnetization profile in terms
of the correlation length ξ , and the central magnetization γ = u(0).

From (9), (6) and (10) we find the following relationships between
the number of layers N, the intensity of magnetization γ in the centre
and the intensity of magnetization β on the boundary:

β =
√

1 + ξ 2 −
√

ξ 4 + 2ξ 2 + (γ 2 − 1)2], (12)

N

ξ
=
√

2

2 − γ 2

{
K

(
γ√

2 − γ 2

)
− F

[
arcsin

β

γ
,

γ√
2 − γ 2

]}
.

(13)

Near the transition temperature t0 of the thin film, for t→ t0, both
magnetizations vanish, γ → 0. Thus in the vicinity of t0 from (12)
we obtain γ ≈ β

√
1 + ξ 2 and eq. (13) becomes

N
/
ξ ≈ π/2 − arctg (1/ξ ) , (14)

from which the critical value ξ c of the correlation length (ordering
temperature) can be determined. Because the correlation length ξ

diverges close to the bulk Curie temperature t = 0, one can use the
approximation ξ � 1, leading to arctg(1/ξ ) = 1/ξ and

ξc = Nt + 2

π
. (15)

Now with the help of (5) we have in the GL approximation for

the ordering temperature t0 ≈ Aπ2

a(Nt +2)2 .
The free energy F in the MFA is given by (A4) in the Appendix.

Comparing the energy terms in (1) and the expansion (A9), one
obtains explicit expressions for b and in terms of the spin quantum
number S:

a = 3S

1 + S
, b = 9S[1 + 2S(1 + S)]

10 (1 + S)3

and the ratio A/a = z1/z, where z1 is the number of neighbours in
the adjacent layer. With this expression for A/a,

t0 ≈ z1π
2

z (Nt + 2)2
, (16)

which is asymptotically equivalent N−2
t dependence in agreement

with the scaling law prediction λ = 2.
Below we consider for the sake of simplicity only cubic struc-

tures. For the simple cubic (scc) structure z = 6, z1 = 1, the body
centred (bcc) lattice has no exchange interactions in the same layer
as all nearest neighbours are located in the adjacent layers so z1 =
4, z = 8, for the face centred (fcc) structure one obtains z1 = 4, z =
12. Then from (16) it follows that the decrease of T c for the same
thickness of a film is the largest for the bcc structure, when

t0 ≈ π 2

2 (Nt + 2)2
. (17)

The dashed line in Fig. 1 shows the change in T c, as predicted
by (17) for thin films in comparison to experimental data of Li &
Baberschke (1992) for Ni (111) on W(100).

While GL theory predicts 	T c/T c from 1 per cent, for 30 layers
to 15 per cent for 4 layers, experimental data show substantially
larger deviations (Fig. 1, crosses). More similar data are reviewed
in Jensen & Bennemann (2006). This difference between GL the-
ory and real data is at least partly due to the fact that the MFA
neglects the enhanced thermofluctuations near T c and thus leads to
a wrong scaling law (5) between correlation length and temperature.
Indeed, while in the MFA the critical exponent is ν = 1

2 , in a 3-D
Heisenberg model the value ν ≈ 0.7 has been found, correspond-
ing to λ = 1.42 (Pelissetto & Vicari 2002). By using the improved
scaling law

ξ = 1√
2tν

, (18)

with ν = 0.71, (17) becomes

t0 ≈
(

π√
2 (Nt + 2)2

)λ

, (19)

and a much better agreement with the data can be achieved (solid line
in Fig. 2). Based on this observation, in the following calculations

C© 2012 The Authors, GJI, 191, 954–964
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Figure 1. Relative deviation t0 of thin-film Curie temperatures from the bulk
Curie temperature as a function of thin-film layer number Nt for a film with
bcc lattice. The crosses present the experimental data by Li & Baberschke
1992 for Ni (111) on W(100). The dashed line shows the GL approximation
(17) while the solid line represents the corrected for the thermofluctuations
dependence t0(N) (19).

Figure 2. Magnetization versus layer number across a thin film containing
Nt = 8 layers for different temperatures shown near the curves.

we will use (18) to translate correlation lengths into temperatures.
Fig. 2 presents the intensity of spontaneous magnetization m =

m0u(y) across a film for Nt = 8 according to the analytical solution
(11). The threshold temperature for this Nt is t0 = 0.12. The bulk

magnetization m0 = √
at/b =

√
5(S+1)2 t

3[S(S+1)+1/2] was calculated in the

frame of mean-field theory for S = 5/2.
Note that at the surface not only the magnetization is smaller, but

also the increase of magnetization is much shallower than for the
central moments. Indeed, near t ∼= t0 from (12) we have β ≈ γ /.ξ ,
that is, the magnetization on the boundary is about ξ (t) times less
than that in the centre. This drastic difference in the intensity of

Figure 3. Comparison between the spontaneous magnetization m0 in bcc-
ordered bulk material (top curve), and a thin film with Nt = 8. The middle
curve represents the centre, the bottom curve the surface of the thin film.
All curves are plotted as a function of reduced temperature.

the magnetization in the centre and at the surface is illustrated in
the Fig. 3. It shows the behaviour of spontaneous magnetization
m0u(y) in bulk material (u ≡ 1), in the centre and at the surface
for Nt = 8 as a function of reduced temperature t. On cooling, the
magnetization in the centre slowly approaches the bulk value, while
the magnetization at the surface is still far from m0 even at t = 0.3.

4 T H E I N - F I E L D M A G N E T I Z AT I O N O F
T H I N F I L M S N E A R T c

The Curie temperature of natural materials is commonly determined
by measurements of the strong field magnetization. To predict the
temperature variation of strong field magnetization the magnetic
field energy has to be added to the free energy in (3), which becomes

F(T ) =
L∫

0

[
A

2

(
dm

dx

)2

− sign(t)
a |t |

2
m2 + b

4
m4 − mh

]
dx, (20)

where the magnetic field h is normalized to kBT c/(μ0 M s(0 K)),
which corresponds to the molecular field in mean-field theory.

Similar to eq. (7), the functional (20) also has the potential

E = ξ 2

(
du

dx

)2

+ sign(t)u2 − 1

2
u4 − hnu, (21)

where

hn = h
√

b
/

(a |t |)3/2.

The boundary conditions (6) now yield the relations

E = sign(t)γ 2 − γ 4

2
+ γ hn,

[
sign(t) + ξ 2

]
β2 − β4

2
+ βhn = sign(t)γ 2 − γ 4

2
+ γ hn . (22)

From (20) in analogy with (10) we obtain the magnetization

x

ξ
=

γ∫
u

dũ√
sign(t) (γ 2 − ũ2) − γ 4

2 − hnγ + ũ4

2 + hnũ
. (23)

C© 2012 The Authors, GJI, 191, 954–964
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Figure 4. (a) In-field net-magnetization m(t) for thin film with Nt = 16 (curve 3) and 40 (curve 2) at h
√

b/.a3/2 = 0.001 (from right to left). (b) The curve 2
shows the sum of m(t) for the collection of thin films with Nt = 6,8,. . .40 at h

√
b/.a3/2 = 0.001. For the comparison, the curve 1 in both figures presents m0(t)

dependence for the bulk material.

In this case, u(x) can be efficiently calculated by numerically
solving the system of eqs (22) and (23). The net magnetization
of the film can be then calculated simply by summation of the
magnetization of the planes constituting the film. Some results of
such the calculations with ξ determined by (18) are shown in Fig. 4.

Fig. 4 clearly shows that the presence of ultrafine grains consider-
ably reduces the Curie temperature determined as the maximum of
either first or second derivative in relation to t. Certainly, the char-
acter of overall m(t) behaviour is pre-determined by the distribution
function of total volume of films with given size Nt. In this aspect,
the curve 2 in Fig. 4(b) was obtained from the suggestion that each
member of the sum gives the same contribution in the resulting
magnetization. In other words, it was suggested that the number of
films with given size is inverse in Nt. As is seen, a distinctive feature
of this case is that the increase m(t) right below the Curie point t =
0 is quite smoothed so that dm/dt is almost constant in the vicinity
of T c.

4 M A G N E T I Z AT I O N O F R E C TA N G U L A R
NA N O PA RT I C L E S U P T O T c

We now turn from thin films towards 3-D nanoparticles. The 3-D
analogue of eq. (4) is

ξ 2	u + u − u3 = 0, (24)

where 	 is the Laplace operator (3-D grains). For a cubic structure it
is natural to consider a rectangular nanoparticle with the sizes Ntx =
2Nx, Nty = 2Ny and Ntz = 2Nz. The reduced transition temperature
t0 can be found again from the linearized eq. (24) ξ 2	u + u = 0,
which in the Cartesian coordinates has the solution

u = γ cos
kx x

ξ
cos

ky y

ξ
cos

kz z

ξ
(25)

with the condition

k2
x + k2

y + k2
z = 1. (26)

Remind that the constant γ in (25) is the magnetization in the
centre of the grain.

The boundary conditions are . du
dx |Nx = du

dy |Ny = du
dz |Nz = −u or

cot
kx Nx

ξ
= kx

ξ
, cot

ky Ny

ξ
= ky

ξ
, cot

kz Nz

ξ
= kz

ξ
. (27)

From (26) and (27) we obtain the coefficients kx, ky and kz as well
as the critical correlation length ξ . Using the inequality ξ �1, so that
arctan kx Nx

ξ
= kx

ξ
and so on, we find instead of (27) kx (Nx +1)

ξ
≈ π

2 ,
etc. Now accounting for (26) obtain

ξ−2
c = π 2

[
1

(Ntx + 2)2
+ 1(

Nty + 2
)2 + 1

(Ntz + 2)2

]
, (28)

which is exactly three times more than the square of the critical
correlation length for thin film of the same size Nt. For a long
whisker it is twice the reduction for a thin film. Accordingly, the
ordering temperature in a cube in analogy with (19) is

t0 ≈
( √

3π√
2 (Nt + 2)

)λ

. (29)

The internal magnetic structure of a cubic particle is truly 3-D. To
visualize it, numerical modelling using the MFA was used assuming
that the order parameter mi of the ith ion with spin S obeys the eq.
(A11) from the Appendix

mi = BS

⎡
⎢⎣

3S
∑

j
m j

2z(1 + S)

Tc

T

⎤
⎥⎦ , (30)

where Bs is the Brilluoin function and the sum in (30) must be
performed over the set NNi of nearest neighbours of the ith ion.
The structure is here calculated for ions with spin quantum number
S = 5/2.

C© 2012 The Authors, GJI, 191, 954–964
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Figure 5. Magnetization m against the reduced temperature t for bcc (full
lines) and fcc (dashed lines) lattices. Total number of layers in both cases
is Nt = 17. 1—magnetization of cube vertices, 2—magnetization at cube
centre, 3—total magnetization.

These numerical models are strictly valid well below the Curie
temperature. Temperatures t close to t0 must be rescaled, as for the
linearized T c calculations mentioned above. Rescaling near T c is
necessary, because the numerical calculations rely on the MFA, and
do not take into account temporal correlations of the thermofluc-
tuations. The temperatures t in Figs 5 and 6 therefore correspond
to (29) with λ = 2. Accordingly, the temperatures related to the

magnetic structures shown in Figs 5, 6 and later figures, which
demonstrate the spatial distributions M s(r) must be rescaled if they
are close to t0. As in the thin film case, a first-order correction to
the temperatures given in these figures can be obtained simply by
renormalization t → tλ/.2 with λ = 1.42 if t/t0 < 3. For larger t the
MFA is physically reasonable and the corresponding t values are
correct in very good approximation.

Near the corners and at the edges of a cube the number of broken
bonds is largest and accordingly the lowest magnetization intensity
is observed in these areas in Figs 5 and 6. Quantitatively, in the
corners of the body centred cube from (25) and (27) one obtains in
the linear approximation

u(N , N , N ) = γ cos3(N/
√

3ξ ) ≈ a
π 3

8N 3
, (31)

where a is the magnetization in the centre. Similarly, on the edges
u ≈ a π2

4N 2
t

, and on faces u ≈ a π

2Nt
. In other words, if the order

parameter m on faces is N times less than the value of m in the
centre, it drops in the corners by a factor of N 3

t .
The magnetization cross-sections in Fig. 6(c) clearly show that

slightly below the ordering temperature (t = 0.05) the intensity of
magnetization is very inhomogeneous over the volume and has a
spherically smoothed core with a periphery where the intensity is
much lower in accordance with (31). On cooling, the core grows
and becomes more homogeneous but the near-surface region is still
weakly magnetized (Figs 6b and a).

5 D I S C U S S I O N

The above-mentioned theoretical calculations provide a sufficiently
detailed framework for using the reduction of the Curie temperature
as a quantitative method to determine grain sizes of extremely small
ferromagnetic minerals in natural materials.

Figure 6. Numerical models of the magnetization intensity across a bcc(001) cubic nanoparticle with Nt = 21 layers. The top graphs in (a)–(c) show the
intensity of magnetization across the central layer at the indicated temperatures t. The bottom graphs show the corresponding magnetization over the surface
layer. The critical temperature for this particle is t0 = 0.03. (The rescaled critical temperature is t0 = 0.08.)

C© 2012 The Authors, GJI, 191, 954–964
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The main advantage of the GL approach is that it leads to analyt-
ical formulae for the Curie temperatures of thin films, whiskers and
rectangular nanoparticles. A crude estimate claims that long-range
ordering approximately sets in when Nt ≈ ξ . The more detailed anal-
ysis above showed that the correct relationship between these two
lengths is given by eq. (15) for a thin film, and by (28) in the more
general case of a rectangular particle. In accordance with common
sense, 2- or 3-D grains experience the phase transition at consid-
erably lower temperatures than thin films of the same thickness.
Because thin films can be treated as 1-D objects, their theoretical
analysis is much easier, and not only the ordering temperatures
but also the spatial distribution of their spontaneous magnetization
can be expressed analytically. Based on the understanding of these
analytical solutions it is possible to derive quantitative predictions
that can be compared to experimental data and provide grain size
information independent of other methods commonly used in rock
magnetism.

Sadeh et al. (2000) studied the size dependence of T c for a suite
of magnetite nanoparticles obtained by coprecipitation (squares in
Fig. 7). This bilogarithmic plot of the t0 data as a function of nominal
grain size dnom shows that even rather big grains, with sizes up to
20 nm can have significantly lowered ordering temperatures. To fit
these data with the quantitative scaling law (29), a reduced effective
grain size deff , so that Nt = deff /a0, must be applied with dnom by
a factor 3–6 less than dnom. This discrepancy probably is due to
the fact that the precipitated grains consist of densely clustered
smaller ones. It also could occur due to high dislocation densities or
fracturing, both of which are however unlikely here. The scaling law
with a reduced exponent λ = 1.42 seems to be applicable only to
the smallest grain sizes dnom < 10 nm or deff < 3 nm. Interestingly,
the GL model with λ = 2 provides a reasonable fit for the whole
grain size interval if some variation in dnom/deff is allowed. It should
be noted that typically a pure power-law t0 ∝ C/ dλ is fit to the data
by freely adjusting C. This adjustment here is replaced by using
the more rigorous law (29), which only allows for adjustments of
the effective grain size, which have to be physically reasonable, for
example, 1 < dnom/deff < 10.

Figure 7. Experimental data of t0 versus grain size by Sadeh et al. (2000) for
precipitated magnetite grains (squares). The solid and dashed lines represent
fits to the scaling law (29) for λ = 1.42 and λ = 2, with reduced effective
grain size, which mathematically reflects clustering and fracturing.

Figure 8. Crosses are the experimental data. The full line presents the curve
obtained from numerical modelling of thin films (lamellae) for λ = 1.42 and
the size Nt = 22.

A practical example of a grain size determination from an M s(T)
curve comes from well-crystallized magnetite exsolution lamel-
lae within a synthetic haematite–ilmenite solid solution containing
nominally 40 per cent ilmenite. The weight-normalized M s(T) curve
above the Ilm40 Neel temperature TN ∼ 330 ◦C indicates that the
sample contains about 0.1 per cent vol magnetite. M rs(T) is zero
above TN showing that the magnetite is superparamagnetic in this
temperature region. Transmission electron microscope (TEM) im-
ages show sporadic well-crystallized magnetite lamellae inside the
bulk Ilm40 with minimum side lengths below 10 nm (McEnroe
et al. 2007). The normalized M s(T) curve of this sample above TN

is shown by crosses in Fig. 8.
A quantitative numerical model of these data is based on 35 per

cent bulk magnetite and 65 per cent of thin lamellae, corresponding
to a thickness of N t = 22. The fit (solid line in Fig. 8) is calculated
as the sum of 35 per cent bulk magnetization m0(t) and 65 per
cent magnetization from an ensemble of thin films with Nt = 22
(thickness 4–5 nm). It is based on the integral of (11) from x = 0 to
N , which gives the overall film magnetization as

Mt (Nt ) = Ln

⎧⎨
⎩

1 + γ sn[N (
√

2(2 − γ 2)ξ,
γ 2

2−γ 2 ]

dn[N (
√

2(2 − γ 2)ξ,
γ 2

2−γ 2 ]

⎫⎬
⎭
/√

2ξ . (32)

Here dn(z, k) is the Jacobi’s elliptic function and the correlation
length ξ is given by (18).

A similar grain size can be directly read from Fig. 7, when noting
that the break of the measured M s(t) curve lies around t = 0.03,
which corresponds to a nominal size of dnom ≈ 22 nm in Fig. 7,
which yields an effective size of deff ∼ 4–6 nm.

From a Langevin model of the 700 K hysteresis loop of this
sample, an approximate average volume of (15 nm)3 is determined
for the magnetite lamellae. Both results together imply a thin elon-
gated or oblate lamella shape, which agrees with the TEM image in
McEnroe et al. 2007.

A reduction of T c due to the effect of nanosize is probably also
relevant for the Yucca mountains tuffs, for which published T c
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measurements of Tiva Canyon samples show T c around 800–825 K
(Worm & Jackson 1999; Carter-Stiglitz et al. 2006), while the bulk
T c of magnetite is 858 K. This difference has been interpreted to
indicate the presence of titanium, at about a fraction of 10 per cent
ulvospinel. TEM images show that the Tiva Canyon ferromagnetic
particles are of needle shape with small size 5–10 nm, thus the
number of planes at across the needle is about 25–50. According
to the previous calculations, their reduction of ordering tempera-
ture should be approximately t0 ≈ (Nt + 2)−λ. With λ = 1.42 this
gives t0 = 0.02–0.05 or 15◦–40◦ reduction from the bulk T c of
magnetite. Thus, at least part of the difference between the T c of
pure magnetite and the ordering temperature must be due to particle
size.

Ferromagnetic particles below their critical size of √ (A/K) are in
a single-domain state and should carry an essentially homogenous
magnetization, leading to sharp nuclear gamma resonance lines.
However, close to the ordering temperature, the magnetization in
nanosize particles becomes inhomogeneous over the volume as is
illustrated in Figs 2, 3, 5 and 6. The inhomogenity of magnetiza-
tion implies that the effective field Heff acting on an ion inside the
particle depends on its location. The resulting broad distribution of
magnetic hyperfine fields is similar to that observed in amorphous
materials (Yoon et al. 2000; Kiss et al. 2011). One consequence
of this is the widening of the nuclear gamma resonance lines for
nanostructures at elevated temperatures. To estimate the effect, one
must find the distribution function (d.f.) f (Heff ). As far as the ef-
fective field of the hyperfine splitting is proportional to the local
order parameter u, the d.f. f (Heff ) is identical to the distribution
function f (u).

For a thin film, the area-density of spins is independent of the
distance x from the film’s middle plane. Therefore, the cumulative
distribution function n(u) = prob(m/m0 > u) simply becomes n(u) =
x(u)/N , where x and u are related to each other through (10). Fig. 9
shows examples of such cumulative distribution function for a thin
film containing Nt = 40 layers. The cumulative distribution function

Figure 9. Plot of the cumulative distribution n(u) of local order parameter
u for a thin film (t0 = 0.015) with Nt = 40 layers for temperatures t = 0.023,
t = 0.038 and t = 0.2, from left to right).

of effective fields steeply increases at the right end of the plots,
due to the prevalence of fields from the almost homogeneous core,
even at the temperatures close to the ordering temperature. At lower
temperatures, more moments are almost perfectly ordered, and more
effective fields lie near the maximum value. This leads to a steep,
step-like increase of the cumulative distribution.

Figs 10 and 11 present numerically modelled cumulative his-
tograms of y for two cubic bcc grains with Nt = 17 and Nt = 37
layers, respectively. The corresponding physical sizes are about 3.5
and 7 nm. For higher temperatures, close to the ordering tempera-
ture, one obtains a smooth distribution function with its maximum
at low fields (left diagrams in Figs 10 and 11). This is especially
distinct for smaller grains (Fig. 10) and reflects predominant contri-
bution of the less-ordered peripheral volume in comparison to the
better-ordered core volume.

The right-hand diagrams in Figs 10 and 11, as well as Fig. 12,
show that at lower temperatures the spectra still display non-smooth
behaviour. This consists of a large step at highest fields, and three
additional small steps at lower fields. Note that Fig. 12 relates
to a rather big grain, with Nt = 53 bcc(001) layers at t = 0.76,
which corresponds to a temperature far below T c and the size
about 10 nm. Apparently, the main peak reflects the almost ho-
mogeneously magnetized core, while the intermediate ones are
due to the spins situated on the faces, edges and vertices of the
grain.

It is worth noting that the temperatures where the inhomogeneity
of magnetization may lead to the widening of nuclear gamma-
resonance lines lies in moderate and elevated temperature range as
it is seen from the Figs 9–12. The effect can be notable for the grains
of a few nanometres up to 20 nm size, which are usually superpara-
magnetic at these temperatures. Hence, in practice the observation
of the widening of superfine splitting at moderate temperatures re-
quires an application of a strong external magnetic field to suppress
the superparamagnetic behaviour of the grains.

The results obtained here for ferromagnetic particles essen-
tially remain valid also in case of antiferromagnetic particles (e.g.
ilmenite and haematite). Instead of the magnetization m, the order
parameter in this case is the antiferromagnetic vector t = (a−b)/2
which represents the antiparallel sublattice magnetization vectors
a and b. It is also possible to extend the above-mentioned results
to the more general case of ferrimagnetic particles. The main dif-
ficulty with this generalization is that a set of two Euler equations
for the two ferrimagnetic sublattices would have to be solved. It is
worthwhile to remind that for both titanomagnetites and haemoil-
menites the exchange interactions between the sublattices are much
stronger than the in-plane interactions. Thus, this case is simi-
lar to the one considered here case of the bcc lattice when half
of bonds are lost on the surface. Hence, we also should expect
quite strong effect of their T c and M s values on their size and
shape. While a detailed discussion of these generalizations is be-
yond the scope of this paper, semi-quantitative estimations can be
done on the basis of the above-mentioned results for ferromagnetic
particles.

6 C O N C LU S I O N S

Ultrafine magnetite particles are frequently studied in rock and
environmental magnetism. They either are indicative for the forma-
tion mechanism of iron oxides or notably influence the magnetic
properties of natural rocks. Characterization of this fine fraction is
important, and several methods are known. Here we develop a new
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Figure 10. Cumulative distribution histograms f (u) of the local order parameter u for a cubic particle with Nt = 17 layers at temperatures t = 0.052 (left-hand
side), and t = 0.33 (right-hand side).

Figure 11. Cumulative distribution histograms f (u) of the local order parameter u for a cubic particle with Nt = 37 layers (t0 = 0.01) at temperatures t = 0.02
(left-hand side), and t = 0.5 (right-hand side).

quantitative approach that uses the variation of Curie temperature
with grain size.

The effect is well known for nanostructures in material science,
but a quantitative theory and a practical application to rock mag-
netism has been missing.

Based on an analytical approach, a general GL MFA is
used to derive magnetic ordering temperatures and spontaneous-
magnetization distributions for different classes of nanostructures,
including thin films, whiskers and nanoparticles of different shapes.
Analytical expressions for the ordering temperatures of these nanos-
tructures are given. Closed-form expressions for all magnetic prop-

erties are obtained for thin films, which can be described by 1-D
differential equations. A comparison to experimental data shows
that the improved scaling law, derived here, better describes the
ordering temperature of nanostructures than the commonly used
power laws.

On a practical level, Fig. 7 provides a simple means to transfer
reduced Curie temperatures for magnetite to approximate particle
sizes. Quantitative calculations of spontaneous magnetization dis-
tribution functions in nanostructures contribute to the understand-
ing of line broadening in nuclear gamma resonance in magnetic
nanoparticles.
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Figure 12. Cumulative distribution function f (u) of the local order param-
eter u for a cube with bcc(001) lattice and Nt = 53 layers at low temperature
t = 0.76.

A C K N OW L E D G M E N T S

The research was supported by grant 189721 from the Re-
search Council of Norway (Nanomat Program) in the EU Matera
Program.

R E F E R E N C E S

Bulaevsky, L.N. & Ginzburg, V.L., 1963. Temperature dependence of the
shape of the domain wall in ferromagnetics and ferroelectrics, Zh. Eksp.
Teor. Fiz., 45, 772–779.

Carter-Stiglitz, B.S., Solheid, P.A., Egli, R. & Chen, A.P., 2006. Tiva
Canyon Tuff (II), IRM Q., 16(1), 1, 8–10, http://www.irm.umn.edu/
quarterly/irmq16-1.pdf.

Evans, M. & Heller, F., 2003. Environmental Magnetism, Principles and
Applications of Enviromagnetics, Vol. 86, Academic Press, San Diego,
CA.

Fisher, M.E. & Barber, M.N., 1972. Scaling theory for finite-size effects in
the critical region, Phys. Rev. Lett., 28, 1516–1518.

Fischer, K.H. & Hertz, J.A., 1991. Spin Glasses, Cambridge University
Press, Cambridge.

Jensen, P.J. & Bennemann, K.H., 2006. Magnetic structure of films: depen-
dence on anisotropy and atomic morphology, Surf. Sci. Rep., 61, 129–199.

Kiss, L.F., Balogh, J., Bujdoso, L., Kaptas, D., Kemeny, T., Kovacs, A. &
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A P P E N D I X

The exchange energy of two identical interacting magnetic ions
(ith and jth) in the classic Heisenberg approximation is Eexc =
−2J Si Sj , where J is the exchange integral. If the finite volume
effect can be neglected, and only nearest neighbours are taken into
account, all spins in a ferromagnetic grain are statistically identical.
Let 〈Si 〉 be the time average of the spin, then the Hamiltonian of N
interacting spins is

H =
∑
i �= j

−J Si Sj

=
∑
i �= j

{−J (Si − 〈Si 〉)(Sj − 〈Sj

〉
) + Ji, j 〈Si 〉

〈
Sj

〉− 2Ji, j Si

〈
Sj

〉}.
(A1)

The MFA means the neglect of the terms of type (Si −〈Si 〉)(Sj −〈
Sj

〉
), which describe the temporal correlations between spins. Then

the statistical sum Z = ∑
exp −H

kB T , where the summation must be

done over all possible configurations, reduces to

Z = exp

⎛
⎜⎝

−∑
i �= j

J 〈Si 〉
〈
Sj

〉
kB T

⎞
⎟⎠ N∏

i=1

S∑
n=−S

exp

n
∑

j
2J
〈
Sj

〉
kB T

. (A2)

Suggest now that there is a slow change of the intensity of the
average spins 〈Si 〉 in the direction [100] so that all spins in any
plane (100) are identical. Let z1 be the number of neighbours in
each adjacent layer and z0 is the number of nearest neighbours in
the same plane, so the total number of neighbours is z = z0 + 2z1.
Let now i be the number of (100) planes in the stacking sequence
and m = 〈Si 〉/S. Then the free energy can be written as

F = − kT ln Z = Np S2
∑

i
J
[
z0m2

i + z1mi (mi+1 + mi−1)
]

−NpkB T
∑

i

ln

(
S∑

n=−S

exp
2n J S[z0mi + z1(mi+1 + mi−1)]

kB T

)
,

(A3)

where Np is the number of ions in a plane. With the approximation

mi+1 + mi−1 = 2mi + d2m
dx2 |x=i we get from (A3), normalizing it to

Np

F = J S2
∑

i

(
zm2

i + z1mi
d2m

dx2
|x=i

)

− kB T
∑

i

ln

⎛
⎝ S∑

n=−S

exp
2n J S

[
zmi + z1

d2m
dx2 |x=i

]
kB T

⎞
⎠. (A4)
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Summarizing the geometrical progression in (A4), we obtain

F = JS2
∑

i

(
zm2

i + z1mi
d2m

dx2
|x=i

)

− kB T
∑

i

ln

⎛
⎝ sh

{
(2S + 1)J S

(
zmi + z1

d2m
dx2 |x=i

)/
kB T

}
sh
{

z J S
(

mi + z1
d2m
dx2 |x=i

)/
kB T

}
⎞
⎠

(A5)

The expansion of the second term of (A5) into series at
z1
z

d2m
dx2 /.kB T gives

F = z JS2
∑

i

(m2
i + z1

z
mi

d2m

dx2
|x=i )

− kB T
∑

i

ln

(
sh {(2S + 1)z J Smi/kB T }

sh {z J Smi/kB T }
)

− JS

[
Smi + coth

J Szmi

kB T
− (1 + 2S)coth

J S(1 + 2S)zmi

kB T

]

× z1
d2m

dx2
. (A6)

Now, expanding (A6) into series at m up to fourth degree but
omitting the term z1

z m3 d2m
dx2 /.kB T as the nest degree of smallness,

obtain

F = z JS2

[
1 − 2J S(1 + S)z

3kB T

]∑
i

m2
i

+ 2J 4 S5z4(1 + S)[1 + 2S(1 + S)]

45(kB T )3

∑
i

m4
i

− z1 JS2

[
1 − 4JS(1 + S)z

3kB T

]∑
i

mi
d2m

dx2
. (A7)

From (A7) follows the well-known expression for the Curie tem-
perature that is

kB Tc = 2J S(1 + S)z

3
. (A8)

Substituting m d2m
dx2 by d

dx

(
m dm

dx

) − (
dm
dx

)2
and noting that∑

i

d
dx

(
m dm

dx

)|x=i = 0, due to the symmetry requirement, we obtain

from (A7), (A8) the free energy per an ion

F

kB Tc
= − 3St

2(1 + S)
m2 + 9S[1 + 2S(1 + S)]

40(1 + S)3
m4

+ 3S

2(1 + S)

z1

z
JS2

(
dm

dx

)2

,
(A9)

which is a particular form of the GL equation.
For coarse grains (bulk material) the role of surface is neglected

and all ions can be considered identical, their magnetization m is
constant. Then the condition of minimum of Fmf in relation to m
gives

m = Bs

[
3Sm

2 (1 + S)

Tc

T

]
, (A10)

where Bs is the Brilluoin function.
For the case of nanoparticles when the surface effects are impor-

tant, the spins are not identical due to the dependence of the intensity
of magnetization from the position. Then the order parameter of ith
ion can be represented by the obvious generalization of (A10)

mi = Bs

⎡
⎢⎣

3S
∑

j
m j

2z (1 + S)

Tc

T

⎤
⎥⎦ , (A11)

where the summation is performed over the nearest neighbours of
the ith ion.
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