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S U M M A R Y
Kamacite particles (Fe–Ni, Ni < 5 per cent), are very common in extra-terrestrial materials,
such as meteorites. It is normally assumed that for kamacite particles to be reliable recorders
of magnetic fields, they need to be magnetically uniform (single domain, SD) and thermally
stable. Larger particles subdivide into non-uniform multidomain (MD) magnetic structures that
produce weaker magnetic signals, while small SD particles become magnetically unstable due
to thermal fluctuations and exhibit superparamagnetic behaviour. In this paper we determine the
first micromagnetic calculation of the stable SD range domain-state phase diagram for metallic
iron; previous calculations were analytical. There is a significant increase in the critical size
for the SD/MD threshold size, for example, for cube-shaped iron particles, the critical SD/MD
threshold has now been estimated to be 25 nm, compared to 17 nm for previous estimates.
The larger critical SD/MD threshold size for iron, agrees better with previously published
nanometric observations of domain state for FeNi particles, then early analytical models.

Key words: Numerical approximations and analysis; Magnetic and electrical properties;
Rock and mineral magnetism.

1 I N T RO D U C T I O N

Kamacite (Fe–Ni, Ni < 5 per cent) is commonly found to be the
dominant magnetic mineral in many different types of meteorites
including chondritic meteorites (Weiss et al. 2010; Pechersky et al.
2012; Gattacceca et al. 2014) and lunar rocks (Garrick-Bethell &
Weiss 2010). Of particular interest are the kamacite particles found
inside dusty olivines in chondrules in unequilibrated chondrites, as
they have the potential to carry pristine, pre-accretionary, primary
remanent magnetisations (Uehara & Nakamura 2006; Lappe et al.
2011; Lappe et al. 2013), that is, kamacite is one of the most likely
minerals to retain magnetic field intensity information acquired
during Solar Nebular formation, because the particles are protected
from chemical alteration by the encasing olivine. But for the ka-
macite particles to retain a meaningful palaeomagnetic signal, it is
important that the particles’ magnetic remanences are metastable
for billions of years. The magnetic state that is metastable longest,
is magnetically uniform, and is termed single domain (SD; Fig. 1a).
True SD states only occur in ellipsoid shapes; in other shapes, for ex-
ample, parallelepipeds, the magnetisation is non-uniform in corners
leading to flowering (Fig 1a). In this paper, we model parallelepiped
structures; we refer to flower structures as SD in this paper, when
strictly they are not SD.

When SD particles are smaller than a critical threshold size,
they are no longer magnetically stable because thermal energy can

easily overcome the energy barrier that otherwise prevents domain
switching. Such particles then have superparamagnetic (SP) be-
haviour (Newell 2006). The magnetisation in larger grains above
the SD threshold size, form complex non-uniform or multidomain
(MD) structures, which leads to decreased magnetic stability and a
reduction in the magnetic remanence per unit volume compared to
SD grains. Small MD structures usually reside in a ‘single vortex’
structure (SV; Fig. 1b).

In addition to volume, the magnetic domain state of a crystal
is strongly dependent on elongation; as particles become relatively
more elongated the SD to MD transition size increases. Evans &
McElhinny (1969) analytically calculated the first phase diagrams
for domain state (SP, SD and MD) as a function of axial ratio
[length versus grain-elongation axial-ratio (AR; short-axis/long-
axis or width/length)] for individual magnetite particles. Such do-
main state phase diagrams are commonly used to assess the mag-
netic stability of magnetic crystals (Schumann et al. 2008; Lappe
et al. 2011).

Using a slightly different approach, Butler & Banerjee (1975a,b)
determined domain state phase diagrams from analytic calculations
for both metallic iron and magnetite. Subsequently, for magnetite
both the SP to stable SD transition size (Winklhofer et al. 1997) and
the SD to MD transition size (Fabian et al. 1996; Newell & Merrill
1999; Witt et al. 2005; Muxworthy & Williams 2006) have been re-
examined and revised for individual particles through application
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Figure 1. Domain states in cube-shaped grains of metallic iron at room temperature for a grain with an edge length of 25 nm: (a) single domain (flower state),
and (b) single vortex state. In this paper, the term ‘SD state’ refers not just to homogeneous magnetization structures, but also to non-uniform domain structures
as shown in (a), which are essentially SD-like with a degree of flowering toward the edges of the grain. In (a) and (b), the crystallographic 〈100〉 direction is
aligned with the x-axis.

of the numerical micromagnetic equations of Brown (1963). Sim-
ilar numerical calculations have recently been made for elongated
greigite particles (Muxworthy et al. 2013).

The micromagnetic calculations for magnetite have shown that
the earlier analytical calculations of by Evans & McElhinny (1969)
and Butler & Banerjee (1975b) whilst state-of-the-art at the time,
yield critical SD estimates significantly higher for elongated grains
than the numerical calculations, for example, for cubic particles
of magnetite the SD to MD transition was calculated by Butler &
Banerjee (1975b) to be ∼76 nm and Muxworthy & Williams (2006)
estimated it as ∼73 nm; however, for an AR of 0.4 this was ∼420
and ∼320 nm, respectively, a volume decrease of >50 per cent.
In addition, crucially numerical models have shown that there is
a range of grain sizes where both SD and SV structures can co-
exist depending on the magnetic history; this was not predicted by
traditional domain theory.

The estimate for the stable SD range for metallic iron by Butler &
Banerjee (1975a) is still the main reference for our understanding the
magnetic stability of iron/kamacite (Lappe et al. 2011; Gattacceca
et al. 2014). In this paper, we present a modern numerical determi-
nation of the stable SD range for individual, elongated metallic iron:
We determine both the SD to MD transition size, and the SP to SD
size. All the magnetic properties required to model, say, Fe0.95Ni0.05

are not currently known; we therefore consider metallic iron.

2 T H E S D / M D T H R E S H O L D S I Z E

To determine the SD/MD threshold size as a function of elongation
we employed the numerical algorithm described by Muxworthy &
Williams (2006) and Muxworthy et al. (2013), except that we use
the physical parameters for iron.

2.1 The micromagnetic algorithm

In the model, a grain is subdivided into a number of subcubes.
Each subcube represents the averaged magnetization direction of

many hundreds of atomic magnetic dipole moments. All of the
subcubes have magnetic moments of equal magnitude, but the mag-
netization of the different subcubes can vary in direction. To deter-
mine the magnetic structures using this finite difference model, two
approaches were considered; a combination of both a conjugate-
gradient (CG) algorithm (Williams & Dunlop 1989) and a dynamic
algorithm (Suess et al. 2002), and the CG algorithm alone. The rea-
son for the combined approach is that the dynamic algorithm gives
a more physical solution; however, it is computationally slow com-
pared to the CG method. In the combined approach, we use the CG
algorithm to rapidly generate a magnetic structure, which is then
put into the dynamic solver as an initial estimate. This increases
the efficiency of the algorithm by roughly an order of magnitude
compared to the dynamic solver alone.

In the CG algorithm, the domain structure is calculated by min-
imizing the total magnetic energy Etot, which is the sum of the
exchange energy (∝ the exchange constant A), the magnetostatic
energy (∝ MS

2, where MS is the spontaneous magnetization) and
the anisotropy energy (∝the first magnetocrystalline anisotropy con-
stant K1) (Brown 1963). Etot is calculated using a fast-Fourier trans-
form (FFT) to give a local energy minimum (LEM) for the as-
semblage. The increased efficiency with which the demagnetizing
energy can be calculated in Fourier space allows the high reso-
lution needed to examine large elongated particles. The dynamic
algorithm solves the dynamic Landau–Lifshitz–Gilbert equation.
We used a finitely damped solver detailed by Brown et al. (1989).
Instead of minimizing the energy, the solver minimizes the torque
on each magnetic moment.

In this study, the following room-temperature values for metallic
iron were used: A = 2 × 10−11 Jm−1 (Kittel 1949), MS = 1715 ×
103 Am−1 (Dunlop & Özdemir 1997) and K1 (cubic) = 4.8 × 104

Jm−3 (Graham 1958). Butler & Banerjee (1975a) used values of:
A = 1 × 10−11 Jm−1, MS = 1720 × 103 Am−1 and K1 = 4.5 × 104

Jm−3. The values used in this study are the ones now generally used
in other micromagnetic studies of iron.

To model non-uniform structures, it is usually argued that it
is necessary to have a minimum model resolution of two cells per
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Figure 2. Magnetic energy density of a iron cube as a function of length for
an initial SD configuration (cf. Fig. 1a) at room temperature. The grain size
was gradually increased until the SD structure collapsed into a vortex struc-
ture (cf. Fig. 1b) at dmax

100 = 25 nm. The size was then gradually decreased
until a SD state formed at dmin

100 = 24 nm. To maximize computational ef-
ficiency, the resolution was increased/decreased with each increase/decrease
in size, and the domain structure was rescaled between each pair of calcula-
tions. The magnetic energy is normalized by that of a uniform SD structure
of the same grain size.

exchange length (exchange length = √
(A/Kd), where Kd = μ0MS

2/2
and μ0 is the permeability of free space (Rave et al. 1998). For iron
at room temperature the exchange length is ∼3 nm; we used a
minimum resolution of ∼1.5 nm at all times.

2.2 SD/MD critical sizes for individual elongated grains

There are several methods for determining the SD/MD crit-
ical size (d0). Here, the unconstrained method is employed
(Fabian et al. 1996; Witt et al. 2005; Muxworthy &
Williams 2006). In this approach, a small grain, say 10 nm in length,
with an initial SD structure (Fig. 1a) is gradually increased in size
until the domain structure collapses to a SV (i.e. MD) state at dmax

(Figs 1b and 2). The grain size is then decreased until the vortex
structure becomes SD at dmin (Fig. 2).

The model calculations for a cube are shown in Fig. 2. The dmin

and dmax values are interpreted to represent the lower and upper
bounds, respectively, of a range of sizes where both SD and SV
structures can co-exist. We have calculated dmin and dmax values as
function of AR. For the most elongated grains, that is, AR < 0.4,
dmin and dmax are poorly defined because the collapse is gradual and
less abrupt. In such cases, the dmin and dmax values are estimated at
the point where the reduced magnetization passes through 0.8 on
the increasing/decreasing curves, where the reduced magnetization
is the magnetic moment divided by the magnetic moment of an ideal
SD grain.

The elongation induced anisotropy dominates the magnetocrys-
talline anisotropy for AR less than ∼0.9. For AR ∼1, the shape of
the particle becomes important, that is, configurational anisotropy
and surface roughness comes into effect (Williams et al. 2006),
with cubes having different surface anisotropy energies com-
pared to other shapes, etc. It has been numerically demonstrated
(Shcherbakov & Sycheva 2001) that for magnetite spheres dmin and
dmax converge and that the SD/SV critical size is close agreement
with analytical calculations. However, perfect spheres are uncom-
mon in nature and display magnetic characteristics distinct from
all other shapes, even shapes with small variations from a sphere
(Williams et al. 2011).

Figure 3. Critical SD to MD threshold lengths (maximum grain dimension)
for individual iron particles as a function of axial ratio (AR). (a) Elongation
along the 〈100〉 (easy anisotropy for K1 > 0) direction, and (b) along the
〈111〉 (hard anisotropy for K1 > 0) direction. Both dmax and dmin are shown.
The lengths were determined using the method defined in Fig. 2. For highly
elongated grains, that is, AR < 0.5, dmax and dmin are poorly defined. For
these smaller values of AR, dmax and dmin were defined as the length where
the reduced magnetization passed through 0.8 with increasing/decreasing
grain size. AR = 1 is a cube and AR = 0 is an infinitely long rectangular
cuboid. Also shown is the theoretical model of Butler & Banerjee (1975a),
and in (a) bmax

100 and bmin
100 determined micromagnetically using the

material parameters used by Butler & Banerjee (1975a). For clarity for
AR = 1: dmax

100 ∼27 nm, dmin
100 ∼23 nm, bmax

100 ∼20 nm, bmin
100

∼17 nm, dmax
111 ∼25 nm and dmin

111 ∼24 nm.

In addition to calculating dmin and dmax as a function of AR, we
have considered the relationship between the relative orientation
of the cubic magnetocrystalline anisotropy and the particle elon-
gation. We model two extreme cases: first, where the elongation is
in the easy direction (i.e. 〈100〉 axes for K1 > 0) (yielding dmin

100

and dmax
100) and second where it is in the hard direction (dmin

111

and dmax
111). In the scenario with elongation along the easy direc-

tion, the magnetocrystalline anisotropy enhances the shape effect.
In contrast, when the elongation is along the hard direction, the
magnetocrystalline anisotropy competes with the shape effect.

Generally dmin
100, dmax

100, dmin
111 and dmax

111 increase as AR de-
creases (Fig. 3). In Fig. 3, the y-axis is the particle length as used by
Butler & Banerjee (1975a), rather than the mean diameter as used
by Witt et al. (2005). Use of the particle length enables easier com-
parison with the results of Butler & Banerjee (1975a), but mixes
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the effects of shape and volume. The dmax
100 value is the largest

of the four estimates for all values of AR. Orienting the magneti-
zation along the easy axis enhances the effect of elongation, while
orientation along the hard direction increases curling of the mag-
netization at the edges of the grains, which breaks symmetry, and
encourages nucleation of vortex states and decreases d0. As AR is
reduced, the difference between dmin

100 and dmax
100, and dmin

111 and
dmax

111 decreases as the shape anisotropy increasingly dominates
the magnetocrystalline anisotropy.

For comparison, the calculated results of Butler & Banerjee
(1975a) are depicted in Fig. 3. Our micromagnetic estimates of
the SD/MD threshold size are higher than those obtained from the
analytical results of Butler & Banerjee (1975a). For example, for a
cubic grain, the micromagnetic model gives an estimate of ∼24 nm
(dmin

100) compared to ∼17 nm from of Butler & Banerjee (1975a).
This trend was opposite to that found for magnetite (Muxworthy
& Williams 2006), where the micromagnetic calculation produced
lower estimates than the analytical one. To examine whether the
difference is due to the method of calculation or the slightly differ-
ent choice of material constants, we micromagnetically calculated
dmin

100 and dmax
100 (bmin

100 and bmax
100) for the parameters used by

Butler & Banerjee (1975a) detailed above in Section 2.1 (Fig. 3a).
It is seen that bmax

100 is similar to the original calculation of Butler
& Banerjee (1975a) for AR < 0.7; for AR = 1, bmax

100 ∼ 20 nm.
For AR = 1, bmin

100 ∼ 17 nm, very close to the estimate of Butler &
Banerjee (1975a); clearly the choice of input parameters is critical.

While the results differ to those of Butler & Banerjee (1975a),
the micromagnetic results of this study are in good agreement with
the threshold size of ∼23 nm determined experimentally or bulk
samples containing symmetric iron particles (Kneller & Luborsky
1963), and ∼28 nm determined micromagnetically for cubes of iron
(Snoeck et al. 2008).

The difference between dmin
100 and dmax

100, and dmin
111 and

dmax
111, is relatively smaller than for magnetite (Muxworthy &

Williams 2006) and greigite Muxworthy et al. (2013). For exam-
ple, for magnetization along the magnetocrystalline easy axis, for
AR = 1 for magnetite (K1 < 0), dmin

100 and dmin
111 are ∼61 and

∼67 nm, respectively (Muxworthy & Williams 2006), compared to
iron; dmin

100 and dmin
111 are ∼23 and ∼24 nm, respectively.

3 T H E S P / S D B O U N DA RY

SD grains below a certain critical volume (the blocking volume, vb)
are magnetically unstable and have SP behaviour. For an individual
particle the relaxation time tm, is given by Néel (1949):

tm = τ0 exp(E A/kT ), (1)

where EA is the anisotropy energy barrier, k is Boltzmann’s con-
stant, T is the temperature and τ 0 is the atomic reorganization time
(∼10−9, Worm 1998). The relaxation time tm can be a few nanosec-
onds for SP particles that undergo thermal relaxation during lab-
oratory experiments to billions of years for stable SD particles in
geological and planetary samples. This equation is strictly for a
system with only two possible states; however, in elongated grains
this is the case. For symmetrical samples with higher order magne-
tocrystalline anisotropy, small errors will occur in blocking volume
estimations.

We directly determine the SP/SD threshold from the energy bar-
rier (eq. 1) from the anisotropy energy surface. The model includes
both the cubic magnetocrystalline anisotropy of iron plus a ‘shape
anisotropy’, which is calculated in the magnetostatic energy term.

Figure 4. Blocking volume curves on a volume versus axial ratio for sin-
gle crystals of iron. Grain elongation is in the 〈100〉 direction. Two relax-
ation times for tm at 300 K are shown: 100 s and 4 Gyr, the other is for
tm = 4 Gyr at 195 K. The blocking volumes were determined directly from
eq. (1).

Values of tm = 100 s and 4 Gyr at 300 K are plotted against grain
volume in Fig. 4. The longer timescale was chosen because of poten-
tial interests in magnetic stabilities over the age of the Earth, while
the shortest timescale demonstrates variability in tm. Additionally,
as the surface temperature of asteroids is ∼100–200 K, we also
determine tm = 4 Gyr, using data for iron at 195 K (Graham 1958,
1960). For single crystals, vb decreases with increasing elongation
(decreasing AR), in agreement with calculations for various miner-
als (Muxworthy & Williams 2009; Newell 2009; Muxworthy et al.
2013). Decreasing either the temperature or tm decreases vb, but the
trend is similar, just shifted to lower values. The room-temperature
SP/SD transition results (Fig. 4) are very similar to those of Butler &
Banerjee (1975a), except for AR > 0.9, where Butler & Banerjee
(1975a) calculated the SP/SD transition separately for shape and
magnetocrystalline anisotropy controlled particles. In contrast, in
this paper the combined anisotropy was used in the calculation.

4 D O M A I N - S TAT E P H A S E D I A G R A M

We have constructed a domain-state phase diagram for elongated
metal iron particles (Fig. 5), using tm = 100 s and 4 Gyr at 300
K calculations for the SP/SD transition, and the dmin

100 and dmax
100

data. The micromagnetic models are theoretically more accurate
than previous analytical models (Butler & Banerjee 1975a), but the
choice of input material parameters is also important.

In agreement with Butler & Banerjee (1975a), for long tm

(∼4 Gyr) at 300 K, there is a direct SP to MD transition for near
equate iron particles. This paper finds the transition to be for AR >

0.95, in contrast Butler & Banerjee (1975a) predicted this transition
for AR > 0.8.

4.1 Comparison with electron holography data

Plotted in Fig. 5 are domain-state observational data for 40 olivine-
hosted FeNi (kamacite) particles from Lappe et al. (2011), deter-
mined by the advanced transmission electron microscopy technique
of off-axis electron holography. Electron holography directly images
the magnetisation on nanometric scales allowing the identification
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Figure 5. Stable SD grain size ranges for individual particles of metallic
iron. Grain elongation is in the 〈100〉 direction. The grey area between
dmax and dmin indicates the range where both SD and SV (MD) states are
possible. For the SP/SD transition lines are for tm = 100 s and 4 Gyr at
300 K. Published domain-state observational data for 40 Fe–Ni particles in
synthetic ‘dusty olivines’ are also plotted (Lappe et al. 2011). Lappe et al.
(2011) examined each particle more than once, and determined whether
they were always SD, always SV (MD) or displayed mixed states. Increasing
levels of Ni, will increase the SD to MD transition size.

of domain state, that is, SD-like or SV-like (Dunin-Borkowski et al.
1998). Lappe et al. (2011) examined each particle more than once,
and determined whether they were always SD, always SV or dis-
played mixed states; there was little indication of inter-grain mag-
netostatic interaction. The samples were synthetic ‘dusty-olivines’
produced from natural olivine crystals from Iceland.

Generally the SD states plot within the theoretical SD region,
and the SV states within the theoretical MD region; importantly,
the micromagnetic model better describes the data than the model
of Butler & Banerjee (1975a). There are a few particles that do not
agree with the numerical results, however, there are three possible
causes for this: (1) The dimensions of the particles were determined
from 2-D images, not tomography, therefore the thickness (and vol-
ume) of the particles is not accurately known, that is, there is a large
degree of error as to the exact position of the particles on the domain
state plot (Fig. 5). (2) The amount of nickel in the Fe–Ni is unknown;
the model assumes stoichiometric iron; as the Ni content increases
from Fe to Fe0.95Ni0.05 in the Fe–Ni system, MS increases slightly,
whilst A and K1 decrease slightly (Tarasov 1939; Bozorth 1951).
This will cause the SD/MD boundary limit to increase slightly.
(3) It is becoming increasingly realised that the interpretation of
electron holography images is not always straightforward, and com-
monly it is necessary to use micromagnetic solutions to interpret
the images (Bryson et al. 2013; Almeida et al. 2014); Lappe et al.
(2011) did not do this as this has only recently become standardised.

5 C O N C LU S I O N S

We have calculated and constructed the first domain-state phase
diagram using a 3-D micromagnetic algorithm for elongated iron
particles (Fig. 5). The predicted SD to MD transition size is larger
than in the previous calculations of Butler & Banerjee (1975a). This
difference has been shown to be partially related to the choice of
material parameters used. For AR = 1 the SD to MD transition
size agrees well with previous micromagnetic results (Snoeck et al.

2008). The analytically determined SP to SD transition is similar to
that of Butler & Banerjee (1975a), except for equant grains as this
paper calculated the transition using a combination of shape and
magnetocrystalline anisotropy. Direct observations of the domain
state of FeNi particles by electron holography (Lappe et al. 2011),
agree better with the new domain-state phase diagram (Fig. 5) than
that of Butler & Banerjee (1975a). Increasing levels of Ni, will
increase the SD to MD transition size.
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