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Abstract

Reliability of magnetic recordings of the ancient magnetic field are strongly depen-
dent on the magnetic mineralogy of natural samples. Long term stability was recently
thought to be restricted to single-domain (SD) states, but micromagnetic models have
recently demonstrated that the so-called single vortex (SV) domain structure can have
even higher stability that SD grains. In larger grains (£ 10 pm in magnetite) the mul-
tidomain (MD) state dominates, so that large uniform magnetic domains are separated
by narrow domain walls. In this paper we use a parallelized micromagnetic finite element
model to provide resolutions of many millions of elements allowing us, for the first time,
to examine the evolution of magnetic structure from a uniform state, through the SV
state up to the development of the domain walls indicative of MD states. For a cub-octahedral
grain of magnetite, we identify clear domain walls in grains as small as ~3 pm with do-
main wall widths equal to that expected in large MD grains; we therefore put the SV
to MD transition at ~3 pum for magnetite, and expect well defined, and stable, SV struc-
tures to be present until at least ~1 pum when reducing the grain size. Reducing the size
further shows critical dependence on the history of domain structures, particularly with
SV states that transition through a so-called ‘unstable zone leading to the recently ob-
served hard-aligned SV states that proceed to unwind to SD yet remain hard aligned.

1 Introduction

In paleomagnetism, we are primarily interested in the ability of naturally occur-
ring magnetic minerals to retain reliable magnetic recordings of external fields over timescales
up to the age of the Solar System. For many years, our understanding of stable rema-
nences has relied on analytic theories of Néel (1949, 1955) and Stoner and Wohlfarth (1948).
These theories make the assumption that a particle’s magnetization is perfectly uniform
and predict that the magnetic stability of single-domain (SD) grains increases with grain
size up to a maximum size dy called the critical singe-domain grain size. Together, the
theories of Néel and Stoner-Wohlfarth have laid the foundation for much of the early the-
ory relating to man-made recording technologies. Yet, it has long been appreciated (Gottschalk,
1935; Nagata, 1953) that the characteristics of magnetic materials vary rapidly with grain
size, in a manner not expected from prevailing theory.

In contrast to the well defined particles used in the magnetic recording industry,
rock samples used in paleomagnetic studies generally have complicated magnetic min-
eralogies and a wide grain size distributions that extend well above dy (Roberts et al.,
2018). Experimental observations (Gottschalk, 1935; Stacey et al., 1961; Stacey, 1963;
Day et al., 1977) have shown us that the stability of grains larger than the expected thresh-
old size, decreases only gradually, rather than suddenly as might have been expected from
traditional theories of MD behaviour. Such grains, larger than dy but exhibiting better
than expected magnetic recording properties similar to SD, were termed pseudo-single-
domains (PSD) by Stacey et al. (1961).

The nature of PSD grains remained poorly understood until the advent of three-
dimensional numerical micromagnetic modelling (Schabes & Bertram, 1988; Williams
& Dunlop, 1989) that was able to determine the detailed structure of non-uniform do-
mains and discovered the by now familiar flower and vortex states. These numerical pre-
dictions have subsequently been verified via improved nanometric imaging of magnetic
structures (Dunin-Borkowski et al., 1998). More recently, Nagy et al. (2017; 2019) demon-
strated that vortex states have magnetic recording fidelity and stability equal to, and
even exceeding that, of SD grains, thereby theoretically extending the grain size range
capable of holding a paleomagnetically meaningful signal by at least an order of mag-
nitude. Roberts et al. (2018) recently suggested abandoning the term PSD in favour of
vortex behaviour, as the former term implies an ambiguous domain structure with un-
known or undefined mechanisms of magnetic recording, which no longer holds true.



With the exception of Nagy (2016) and Valdez-Grijalva et al. (2018) who looked
at SV-MD transition in magnetite and greigite respectively, little attention given to the
transition from the vortex state to the magnetically unstable multidomain (MD) states.
The SV to MD transition is of particular interest because recent numerical models of ther-
mal stability in small single-vortex (SV) grains (Nagy et al., 2017) have shown that grains
containing an easy-aligned SV domain state behave similarly to SD grains, in that switch-
ing between stable states occurs by coherent rotation of the magnetic domain structure.
This structure-coherent rotation requires substantial energy and so these domain states
exhibit both the high blocking temperatures and the high temporal stability required
for retaining recordings of magnetic fields over geological timescales.

In contrast to the stable SV state, ‘true’ MD states change via domain wall mo-
tion. Unless pinned by a crystal defects, MD walls move easily in response to changing
external fields and are poor paleomagnetic recorders. It is important to understand the
nature of the transition from the stable SV states to the unstable MD states so as to bet-
ter determine the grain size range capable of carrying reliable paleomagnetic recordings.

Observing magnetic behaviour of such small particles experimentally is challeng-
ing. To observe the magnetization inside a particle requires that it be electron transpar-
ent, i.e., ~200 nm or less. For larger particles, there are many techniques for observ-
ing surface magnetization structures, but they do not allow us to look at the magnetic
structure inside the particle. Only numerical modelling can currently allow us to do this.

In this paper we explore the particular case of the evolving magnetic domain struc-
ture in spherical and cub-octahedra particles of magnetite. We observe the change in do-
main state from SD to SV and then the evolution of domain walls typical of what we ex-
pect in MD states as we increase the grain size. We the shrink the grain and examine
the minimum grain sizes that hold MD and SV domain states. In order to achieve this,
we use a parallelized Finite-Element micromagnetic model (code reference), capable of
providing model resolutions of many millions of elements.

2 Materials and methods

We use a standard micromagnetic approach in this study. Given a magnetic region
Q, we find the the unit vector along the magnetization M, here 7 (i.e. ||7j|| = 1), that
minimizes the effective field energy. This energy has three possible sources: (1) F,, the
magneto-crystalline anisotropy interaction, (2) F,, the exchange interaction and (3) Ejy,
the energy resulting from the self demagnetizing field, Hy,. These three energy terms can
be expressed as:
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where K is the dominant magneto-crystalline anisotropy term, A is the exchange con-
stant, Mj is the saturation magnetization and L is the length scale at which we choose

to measure our particles (in this study we use 10~ m, i.e. nanometers). The room tem-
perature values for K7, A and M; used to model magnetite in this study are listed in Ta-
ble 1. Equations (1) and (2) are computationally cheap to calculate as they are highly
local. Computation of Equation (3) proceeds by solving Maxwell’s equations in a current-
free regime. In this case it is possible to write Hy = —Vp, where @ is the magnetic scalar



Table 1. Material parameters for magnetite at room temperature.

‘ parameter ‘ value ‘ unit ‘ source ‘
K, —1.24 x 10* | Jm=3 Bickford Jr. (1950)
A 1.33 x 10711 | Jm™! Heider and Williams (1988)
M 4.8 x10° | Am~! | Pauthenet and Bochirol (1951)

potential calculated by solving
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with the condition ¢ — 0 as ||Z|| — oo.

Calculation of ¢ is computationally expensive as it is a result of long range inter-
actions involving each moment within the magnetic region. Several strategies are avail-
able to calculate p, the most popular being the boundary element method (BEM) (Lindholm,
1984; Fredkin & Koehler, 1990; O Conbhui et al., 2018). Unfortunately it is well known
that the BEM results in a dense matrix vector system, which leads to two problems: (1)
the computation grows as O(N 2), where N is the number of vertices at the surface of
the magnetic region, and (2) the problem is not well suited for parallelization, because
each row of the dense matrix must fully participate in the resulting matrix-vector com-
putation. The approach taken in this study uses a spatial transform technique (Figure
1) where the space outside the magnetic region € is also included in the finite element
mesh and is bounded by a spherical-shell of radius R;. This sphere is then enclosed in
a second shell of radius R, representing the boundary at infinity where the condition
¢ = 0 can be applied. The spatial transform,
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is then used to distort the finite element shape functions within the region €., in order

to account for the condition that the magnetic scalar potential is zero at infinity (Imhoff,
Meunier, & Sabonnadiere, 1990; Imhoff, Meunier, Brunotte, & Sabonnadiere, 1990; Brunotte
et al., 1992; Abert et al., 2013). The integral form that solves Equation (4) can then be

split into three parts:
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where v (Z) is the finite element shape function, and J~! and |.J| are the inverse Jaco-

bian matrix and Jacobian of Equation (5) respectively (see supporting information, Sec-

tion S1). The solution of Equations (6) to (8) was implemented in the FEniCS finite el-

ement environment (Logg et al., 2012; Alnes et al., 2015) (https://doi.org/10.5281/
zenodo.2584378). This method results in a fully sparse matrix-vector system that is amenable
to execution in a parallel environment (Nagy, 2016).

2.1 Geometries, meshing and processing

Two geometries were selected for this study, a sphere and cub-octahedron. The cub-
octahedral geometry is shown in Figure 2 and was scaled using the scaling factor .S in



Figure 1. Schematic outlining the three regions of the method used. €2 is the magnetic region
which is enclosed in the free space region s U . The region €25 corresponds to the area where
no mapping is applied to solve for the magnetic scalar potential, whereas {2 corresponds to the

region in which the mapping is applied.

Equation (9) to generate a cub-octahedron with volume equivalent to a sphere of diam-
eter d,

30

Meshes were generated using Trelis (Trelis, 2018) and element sizes between 7 nm (for
smaller models) and 10 nm (for the largest models) were chosen as these values are both
close to the 9 nm exchange length for magnetite (Rave et al., 1998). The exchange length
is a guide to the maximum element size used in micromagnetic modelling so the values
chosen here provide a good trade off between accuracy and feasibility of performing com-
putations (supporting information, Section S2).
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Figure 2. The cub-octahedral geometry used in this study. This geometry is uniformly scaled

so that it occupies a volume equivalent to a sphere of a given diameter given by (9).



Evolution of domain structures within the magnetite grain proceeded by first sat-
urating the smallest model (30 nm), then minimizing for the total energy (Equations
1 - 3). This solution was then linearly interpolated to the next largest mesh and min-
imized again. The process continued until the model size reached 2700 nm equivalent-
spherical volume diameter (ESVD) for cub-octahedra and 1500 nm ESVD for spheres;
the maximum sizes were selected given resource constraints. After reaching the maxi-
mum size, the geometry size was then reduced, repeating the minimizations between steps.
Our micromagnetic models were run on the ARCHER supercomputer service (http://
www.archer.ac.uk).

Figure 3. Vortex structure in a 100 nm cub-octahedron aligned along the [111] direction, (a)
vectors have been colored by the anisotropic deviation of moment, ADM (10). A vortex core
is visible on the [111] plane highlighted by the yellow triangle. (b) the helicity isosurface that

corresponds to the vortex core.

3 Results
3.1 Visualization

Results were visualized using Paraview (Ahrens et al., 2011; Ayachit, 2015). The
image in Figures 3a & 3b illustrate a typical micro-magnetic solution of a crystal in a
single vortex state. The difficulties in visualizing micro-magnetic data with many vec-
tors is apparent in the figure in that the high density of magnetic moments tends to ob-
scure features of interest. We use two techniques in order to bring out structures in spin
alignment. Firstly we color images by the anisotropic deviation of moment (ADM), de-
noted by © which is a quantity derived from the directional component of the magne-
tocrystalline anisotropy energy:

O=:-1-(nf+mu+n3)), (10)

N | =

with —1/3 < © < 0; where © = 0 corresponds to 7} aligned along a crystallographic
hard axis (in magnetite) and © = —1/3 corresponds to 1) aligned along a crystallographic
easy axis. ADM is therefore the angle between a given magnetization vector and the near-
est easy axis defined by the magneto-crystalline energy.
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Additionally we can summarize the magnetization structure using helicity, which
is given by

H=17-(Vxi), (11)

i.e. the curl of the magnetization projected on to itself. Intuitively, high helicity corre-
sponds to regions where the magnetization direction is changing rapidly, such as domain
walls and regions surrounding the vortex cores. By selecting particular helicity values,

it is possible to visualize an isosurface that highlights rapidly varying magnetization struc-
tures with the particle.

The images presented in Figure 4 highlight how ADM (Equation 10) and helicity
(Equation 11) values are used throughout this study. Figures 4a and 4b show ADM val-
ues through the (111) and (110)-planes respectively, whereas Figure 4c¢ shows a cylin-
drical isosurface of constant helicity surrounding the vortex core. It should be noted how
in ADM space the high helicity sheath around the vortex core is associated with three
red dots in the anisotropy plane images (Figures 4a & 4b). These features occur because
the vectors that correspond to the vortex core sheath trace out a cone with a base in the
(111) plane (Figure 4c). Because this cone encompasses the three hard axes for magnetite,
the magnetization vectors pass near to these hard axes resulting in three regions with
vectors at high angles to the easy axes (high ADM), giving rise to the three red dots (see
also Witt, Fabian, and Bleil (2005)).

(a) (b)
[1OA(%A\[610] [100]4L>[010]
(c)

20 nm
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0.0 -0.07 -0.14 -0.21 -0.28  -0.33

Figure 4. Anisotropy and helicity images for a 100 nm cub-octahedron. (a) and (b) show
anisotropy slices in the (111) and (110)-planes respectively. The intersection between the
anisotropy planes and the helicity surface from Figure 3b is shown as a white outline in (a)

and (b). Dark red spots in (a) and (b) correspond to the helicity isosurface of the vortex core
(Witt et al., 2005). (c) illustrates how the vectors along the isosurface line (the white line) rotate
through a cone (inset) producing the the high ADM spots.
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Figure 5. Subset of spherical and cub-octahedral models from the atlas shown in supple-
mental Figures S3 and S4. Helicity is shown in the (111)-plane. The top row shows examples

of solutions of ADM starting with the 30 nm solution, which is then used to seed to subsequent
sizes, etc. The middle row shows the helicity isosurfaces (associated with the increasing sequence)
and the bottom row again shows the ADM solutions, beginning with the largest model from the
top row as the starting point and decreasing grain size in increments back down to 30 nm. ADM

color bar same as in Figure 4.



3.2 Effect of increasing grain size

We consider the effect on domain state of growth of a crystal. In Figure 5 we show
a subset of the results from the simulations for spherical grains for the purposes of dis-
cussion. The complete atlas of results for spherical and cub-octahedra are shown in Fig-
ure S3 and S4 respectively. In the case of both spherical and cub-octahedral models the
initial state is a uniform magnetization in the [111] direction, illustrated by the uniform
dark blue color in both spheres and cubes in Figure 5. As grain size increases, the do-
main state for cub-octahedra develops first into a flower state (as shown by faint lighter
blue patches in Figures 5 and S4) for the 150 nm (ESVD) crystal. By 200 nm, the cub-
octahedra has a well defined SV state as illustrated by the characteristic three red dots
in the ADM color maps and the helicity isosurface oriented in the [111] direction. Once
the SV state is established in the cub-octahedra, the SV core is aligned along the [111]
direction until at least 400 nm. By 500 nm, however, the rounded, cylindrical shape of
the helicity isosurface begins to resemble a structure reminiscent of a twisted-triangular
prism (TTP).

There is no flower state for the spherical geometries. Instead, the ADM color map
for the 110 nm spherical grain shows a sudden change in the domain structure to the sin-
gle vortex (SV), highlighted by the three spots in Figure 5. But these spots are asym-
metric about the [111] direction suggesting that the SV core is not aligned perfectly with
the magnetocrystalline axis. This asymmetry persists until the 400 nm model. The tran-
sition can be seen most clearly by observing the [111] orientated helicity isosurfaces which
show the core sheath rotating from [110] to [111]. As in the cub-octahral case, the spher-
ical helicity isosurfaces also show evidence of a TTP-like structure by 400 nm.

Examining the anisotropy energy surfaces for spheres in the 200 nm to 400 nm size
range, the 200 nm sphere shows four red spots in the ADM maps, with the top and bot-
tom most spots smeared, this is due to the fact that the [111] slice plane and the vor-
tex core are not aligned. As the vortex core rotates to the [111] direction, the three red
spots characteristic of a vortex core can be seen as expected. These spots appear to ‘tighten
up’, i.e. become smaller and closer, as size increases and the helicity isosurface begins
to resemble the TTP structure. The tightening up of the three red spots is also observed
in the cub-octahedral grains, but to a lesser extent, and again corresponds to the vor-
tex core transitioning from a cylinder to a TTP.

In spheres, the 500 nm to 1200 nm size range shows little development with increas-
ing grain size (Figure S3). Flattening of the side isosurface becomes more pronounced
and the red spots in the ADM color maps continue to tighten. By 700 nm, light blue spokes
of higher energy anisotropy regions can be observed eminating from the red spots out-
ward towards the grain surface. These regions separate successively larger dark blue re-
gions of low ADM. The clearest example is the 1200 nm sphere (Figure S3) which hints
towards a possible final domain structure with dark blue domains and lighter blue walls.
The clear implication is that as the grain size increases, regions of uniform magnetiza-
tion grow aligned with the easy magneto-crystalline axes and can be considered proto-
domains, while hard-aligned (e.g., [110]) regions between them are reduced. There is a
rapid rotation of the magnetization that is the initial formation of domain walls.

In cub-octahedra, the size range 500 nm to 1200 nm shows much more development
in the domain structure compared to the spheres. At the ends of the isosurfaces, fins along
the hard crystalline axis begin to emerge (700 nm), whereas the center of the isosurface
continues to becomes more triangular (observe the center three spots tightening). By 1200
nm, the fins are well developed and resemble a propeller structure, with the lobes ori-
ented at 45° to each other, this is most clearly seen in column VII of Figure S4. Again,
spokes can be observed emanating from the core spots to the grain edge in the 1200 nm
cub-octahedra, seen most clearly in the (1,1, 1) anisotropy slice. This is similar to what
is observed for spheres but the fanning out of the spokes representing the evolution of



domain walls is greater in cub-octahedra and the dark blue domains are smaller. Fur-
thermore, the corners show small regions of high anisotropy that are likely a result of
the grain geometry.

The transition from 1200 nm to 1500 nm is sudden in spheres. Both the ADM color
maps and the helicity isosurfaces show evidence of a complex multi-vortex domain struc-
ture in the 1500 nm model. The ADM images, in particular, show some evidence of dark
blue domains with magnetization vectors oriented along easy axes, especially in the cen-
ter, as well as possible closure domains developing near the surface.

For cub-octahedra, the transition to a multi-domain state is more gradual and the
domain structure hinted at in the 1200 nm particle continues to develop and become more
defined. This is particularly evident in the ADM images, where the gradual broadening
out of the light blue spokes become tighter. Furthermore, the development of structures
resembling closure domains become more distinct at the corners (column I and III of Fig-
ure S4). It is likely that this domain structure will continue to become more and more
refined as the size of the grain is increased. Unfortunately, due to the constraints of avail-
able computer resources and time, it was not possible to simulate larger grain sizes. How-
ever the transition from SV to MD structure is clear by the 2700 nm model (the largest
grain that was simulated), and we examine this in Section 3.4.

3.3 Effect of decreasing grain size and the hard aligned single vortex

The bottom row of Figure 5 shows the effect of decreasing grain size, summariz-
ing the more complete results in Figures S3 and S4. As the grain size reduces, there is
evidence that the complex structures found in larger grains persist to smaller grain sizes
for both the sphere and the cub-octahedra. In spheres, for example, the complex struc-
ture observed at 1500 nm persists until the size is reduced to 500 nm at which point there
is once more a sudden transition to a single vortex state, albeit a distorted one. The com-
plex structure observed in the 2700 nm cub-octahedron disappears more gradually un-
til it becomes a vortex structure at 700 nm, although the fins at the tube ends when view-
ing the isosurfaces are still visible.

The vortex state finally collapses into a flower state by about 70 nm for both cub-
octahedra and spheres, the final state for both being uniform structures along the hard
directions (red) [001] for spheres and [001] for cub-octahedra.

The collapse of the vortex into a hard aligned direction is an important result that
we wish to highlight, and is consistent with observations from numerical micromagnetic
studies derived from completely random inital states (Nagy et al., 2019, 2017; Valdez-
Grijalva et al., 2018). These studies found that grains within a so-called ‘unstable-zone’
(~85 to ~100 nm in magnetite) have domain structures predominantly aligned towards
a hard axis. We see that as the size is decreased, the single vortex domain structure must
transition through the unstable-zone where it becomes trapped as the core begins to un-
wind. The solution is caught in some weakly metastable state, and energy minimization
is unable to overcome some, possibly very small, energy barriers. It is likely that ther-
mal fluctuations would cause these states to be ephemeral.

3.4 The 2700 nm Grain

The images shown in Figure 6 are large versions of the anisotropy energy slices for
the 2700 nm cub-octahedral grain shown in Figure 5. In order to examine these slices
in more detail we approximate the angles between adjacent domains and the widths of
domain walls. The structures that appear to be closure domains in Figure 6 are not in-
cluded as it is believed that those structures are not yet completely formed, as indicated
by a light blue colouring in their centers.

—10—
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Figure 6. Anisotropy energy values for the the 2700 nm equivalent spherical radius cub-
octahedra in two planes. The model is believed to be entering the multidomain state and shows
evidence of complex domain structure, with domains (in dark blue lying along the easy axes)
separated by domain walls (lighter blue lines). The numbers in each figure denote the walls in
(Table 3) and angle through which each domain rotate (Table 2).

In Figure 6 we highlight what we interpret to be domains, numbering the Bloch-
like body domain walls that separate these domains (1-6). Figure 7 shows the magne-
tization along a line through a domain wall for the (111)-plane; the magnetization ro-
tates through an angle of 71.5° in the domain wall.It can be seen that there is signifi-
cant amount of rotation through the plane as would be expected in a Bloch wall.

In order to estimate wall widths, locations were chosen which minimize possible
wall distortion form the grain surface or vortex core. For the chosen locations (shown
as white lines on Figure 6), the angle of rotation is taken along the line and results in
the sigmoid graph as illustrated in Figure 8. The linear part of the graph corresponds
to the region in which the magnetization vectors are rotating the most rapidly, and there-
fore define the width of the domain wall. By fitting a line along the linear region of the
sigmoid and projecting to the maximum/minimum angles we can estimate the wall width
to be at least 100 nm (Lilley, 1950; Hubert & Schéfer, 1998) in size.

It is expected that the magnetization within domains would be directed along one
of the easy directions, therefore, the angles between domains should be one of 70.5°, 109.5°
or 180° as these are the only angles available between vectors directed along the diag-
onals of a cube. Table 2 shows the angles between the domains indicated in Figures 6a
and 6b. As can be seen from the Table 2, all domains observed are 70.5° walls. The er-
rors in domain wall angle in both (110) and (111)-planes are small in both cases.

Dunlop and Ozdemir (2001) gave estimates for the expected width of the domain

walls according to
1
. ANzZ
Ow = Tsin (g) (?> , (12)

where J,, is the domain wall width and ¢ is the angle through which the magnetization

of the domain wall rotates. Using the data in Table 1, we get an estimate for the domain

wall width of 164 nm for a wall rotating through 70.5°. In Table 3 we compare this value

to domain wall widths estimated from the models (Figures 7 and 8). As can be seen there
is some variance, which could be partly due to estimatations of domain width being prone

—11-
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Figure 7. Bloch-like walls in the (111)-plane. The white line on the right indicates the region
in which the magnetization is evaluated. The inset image shows the magnetization along this line
with respect to the plane, made transparent so that the rotation of vectors through the plane

is apparent. It can be seen that there is significant rotation through the plane, along with some

degree of rotation within the plane as the magnetization swings from one easy axis to another.

Domains | (1,1,1) | (1,1,0,)
| Angle | Error (%) | Angle | Error (%)
1&2 69 1.6 67 5.1
2& 3 70 1.3 72 2.2
3&4 69 2.6 68 4.1
4&5 69 1.6 67 5.1
5&6 69 1.5 72 2.3
1&6 69 1.4 67 4.4

Table 2. Estimated domain angles in the {1,1,0} and {1,1,1} planes across domain walls cor-
responding to the lines in Figure 6. The domain walls are defined by the two domains which they
connect. The error value is the relative error of the measured angle with respect to the expected

angle of 70.5°.

—12—
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Figure 8. The graph shows the anisotropy energy plotted along the 1 & 6 sample line of Fig-
ure 6. The linear part of the sigmoid of best fit is used to estimate the wall width indicated by

the dotted vertical lines.

to small errors since identification of the linear region in Figure 8, was done manually.
Another factor could be that the domain structure observed is not yet fully developed
since further increases in size could result in thinner, more distinct domain walls. It should
be noted that the model in Dunlop and Ozdemir (2001) is only a one-dimensional model
that assumes that the magnetization only rotates in a single plane with § € [0, 180]).

The one-dimensional models also assume that the contribution from the magneto-static
interaction is negligible for the internal domain walls. Finally, the Dunlop and Ozdemir
(2001) estimate requires an assumption for the value of K, which may not be well con-
strained.

4 Discussion and conclusions

Our methodology provides the optimal conditions for gradual evolution of domain
states: the grain geometries have a high degree of symmetry and there are no thermal
fluctuations that would facilitate domain state switching across energy barriers. Domain
structures are therefore free to evolve until the energy between domain states entirely
disappears (within the numerical accuracy of the optimization). Despite this we see a
rapid change of domain state from SV to SD at ~70 nm for decreasing grain sizes in both
spherical and cubo-octahedral grain shapes, in agreement with previous micromagnetic
studies on magnetite (Fabian et al., 1996; Muxworthy & Williams, 2006a). This study
also shows that, in the absence of thermal fluctuations the SD state can persist up to
~200 nm (cub-octahedra) and ~110 nm (spheres). Such large SD states are not seen,
however, when the thermal energy of the grains is taken into account (Nagy et al., 2017).
Irrespective of the exact size at which the SD to SV transition occurs, which will inevitably

—13—



Wall no. | (1,1,1) | (1,1,0,)
| Length (nm) | Error (%) | Length(nm) | Error (%)

1 129 21 122 26
2 128 22 122 26
3 126 23 87 47
4 131 20 159 3
5 134 19 131 20
6 115 30 103 38

Table 3. Estimated domain widths in the (110) and (111)-planes along the lines indicated
in figure 6. The error value is the relative error of the measured wall width with respect to an

expected wall width of 164 nm.

be dependent on the exact grain morphology, the transition occurs abruptly, or at least
over a very narrow grain size range of ~10 nm.

This relatively abrupt change in domain state from SD to SV is again seen at the
SV to MD boundary for spherical grains, but more gradually for cub-octahedral grains.
Evolution of the vortex core occurs as extensions along the hard magnetocrystalline axis
as fins that develop into multi-core structures. These appear to be primitive Bloch-like
71° domain walls that separate uniform regions of magnetization (domains) aligned with
the easy axes. This sharp transition occurs in grains as small as 700 nm for deceasing
grain sizes in spheres, and somewhat more gradually from ~900 nm for cub-octahedra.
For increasing grain sizes, the SV state persists until ~1500 nm for increasing grain sizes
in both spheres and cub-octahedra. Again, as for the SD-SV transition, the SV-MD tran-
sition grain size will be modified by thermal fluctuations. The large CPU requirements
of modelling grain of theses sizes, however, means that no study has yet examined the
energy barrier that exists between SV and MD states in the same size grain. Neverthe-
less in terms of stability of paleomagnetic signals, we can estimate that SV domain states
in magnetite will exist form ~70 nm to at least ~1000 nm, thus providing a greatly en-
hanced size range of domain stability over that provided by the SD domain states. The
formation of partial or incomplete closure domain structures in the models for micron-
sized particles, i.e., 0.5-5 pm, may explain the complex surface domain structures ob-
served in magnetite grains in this size range (Halgedahl & Fuller, 1980; Geif} et al., 1996;
Muxworthy & Williams, 2006b).

The results that have been presented above are an important addition to the un-
derstanding of how multi-domain structures evolve. The picture that emerges is that com-
plex domain structures develop from a combination of fins in the helicity sheath enclos-
ing the vortex core along with boundary domains emerging from the surface. This is par-
ticularly striking when considering the cub-octahedral models. When comparing the largest
grain size (the 2700 nm cub-octahedron) against theoretical results, there is a good agree-
ment of estimated domain wall thickness with what is predicted by theory. Large body
domains aligned along the easy axes are clearly present and what appear to be the start
of closure domains are also seen. Comparing the angles between adjacent domains gives
good correspondence between what is expected and estimates of domain wall widths seem
to be on the same order of magnitude as calculated in Dunlop and Ozdemir (2001).
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