
Chapter 1

The Physics of Magnetism

Suggested Supplemental Reading
For background:
pp 1-4: Butler (1992)
Chapters on magnetism from your favorite college physics book for review.
To learn more:
Chapter 1: Jiles (1992)
Chaper 1: Cullity (1972)
In this lecture we will review the basic physical principles behind magnetism. We will be

using primarily the Système International (SI) units that are based on meters-kilograms-seconds.
There are other sytems of units that are important in magnetism and the most prevalent of these
(electromagnetic units of the cgs system) will be covered later in the lecture.

1.1 What is a magnetic field?

Magnetic fields, like gravitational fields, cannot be seen or touched. We can feel the pull of the
Earth’s gravitational field on ourselves and the objects around us, but we do not experience mag-
netic fields in such a direct way. We know of the existence of magnetic fields by their effect on
objects such as magnetized pieces of metal, naturally magnetic rocks such as lodestone, or tempo-
rary magnets such as copper coils that carry an electrical current. If we place a magnetized needle
on a cork in a bucket of water, it will slowly align itself with the local magnetic field. Turning on
the current in a copper wire can make a nearby compass needle jump. Observations like these led
to the development of the concept of magnetic fields.

Electric currents make magnetic fields, so we can define what is meant by a “magnetic field” in
terms of the electric current that generates it. Figure 1.1a is a picture of what happens when we
pierce a flat sheet with a wire carrying a current i. When iron filings are sprinkled on the sheet,
the filings line up with the magnetic field produced by the current in the wire. A circle tangential
to the field is shown in Figure 1.1b, which illustrates the right-handrule (see inset to Figure 1.1b).
If your right thumb points in the direction of (positive) current flow (the direction opposite the
flow of the electrons), your fingers will curl in the direction of the magnetic field.

The magnetic field H points at right angles to both the direction of current flow and to the
radial unit vector r in Figure 1.1b. The magnitude of H is proportional to the strength of the
current i. In the simple case illustrated in Figure 1.1b the magnitude of H is given by Ampère’s
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Figure 1.1: a) Distribution of iron filings on a flat sheet pierced by a wire carrying a current i. b)
Relationship of magnetic field to current for straight wire. [Iron filings picture from Jiles (1992).]

law:

H =
i

2πr
.

So, now we know the units of H: Am−1.
Ampère’s Law in its most general form is one of Maxwell’s equations of electromagnetism: In a

steady electrical field, ∇ × H = Jf , where Jf is the electric current density. In other words: The
curl (or circulation) of the magnetic field is equal to the current density. The origin of the term
“curl” for the cross product of the gradient operator with a vector field is suggested in Figure 1.1a
in which the iron filings seem to curl around the wire.

1.2 Magnetic moment

We have seen that an electrical current in a wire produces a magnetic field that curls around
the wire. If we bend the wire into a loop with an area πr2 that carries a current i, as shown in
Figure 1.2a, the current loop creates the magnetic field shown by pattern of the the iron filings.
This magnetic field is that same as the field that would be produced by a magnet with a magnetic
moment m shown in Figure 1.2b. This moment is created by the current i and also depends on
the area of the current loop (the bigger the loop, the bigger the moment), hence m = iπr2. The
moment created by a set of loops (as shown in Figure 1.2c is the sum of the n individual loops, i.e.:

m = niπr2. (1.1)

So, now we know the units of m: Am2.
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Figure 1.2: a) Iron filings show the magnetic field generated by current flowing in a loop. b) The
magnetic field of a current loop with current i and area πr2 is the same as one produced by a
magnet with moment m. c) The magnetic field of loops arranged as a solinoid is the sum of the
contribution of the individual loops. [Iron filings pictures from Jiles (1992).]

1.3 Magnetic flux

The magnetic field is a vector field because at any point the field has both direction and magnitude.
Consider the field of a bar magnet made visible by iron filings as shown in Figure 1.3. The direction
of the field at any point is given by the arrows while the strength depends on how close the field
lines are to one another. The magnetic field lines are known as “magnetic flux”. The density of
flux lines is one measure of the strength of the magnetic field: the magnetic induction B.
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B
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l

Figure 1.3: A magnetic moment m makes a vector field B made visible by the iron filings. If this
field moves with velocity v, it generates a voltage V in an electrical conductor of length l. [Iron
filings picture from Jiles (1992).]

Magnetic flux density (i.e., magnetic induction) can therefore be quantified when a conductor
moves through it. Magnetic induction can be thought of as something that creates a potential
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difference with voltage V in a conductor of length l when the conductor moves relative to the
magnetic induction B with velocity v (see Figure 1.3): V = vlB. From this we can derive the units
of magnetic induction: the tesla (T). One tesla is the magnetic induction that generates a potential
of one volt in a conductor of length 1 meter when moving 1 meter per second. Ergo, 1 T = 1 V · s
· m−2.

Another way of looking at this is that if magnetic induction (B) is the flux density, this must be
the flux Φ per unit area. So an increment of flux dΦ is the field B times the increment of area dA.
The area here is the length of the wire l times its displacement ds in time dt. The instantaneous
velocity is dv = ds/dt so or dΦ = BdA and the rate of change of flux is:

dΦ
dt

= (
ds

dt
)Bl = vBl = V. (1.2)

Equation 1.2 is known as Faraday’s law and in its most general form is the fourth of Maxwell’s
equations. We see from this equation that the units of magnetic flux must be a volt-second which is
unit in its own right, the weber (Wb). The weber is defined as the amount of magnetic flux which,
when passed through a one-turn coil of a conductor carrying a current of one ampere, produces an
electric potential of one volt. This definition suggests a means to measure the strength of magnetic
induction and is the basis of the “fluxgate” magnetometer.

1.4 Magnetic energy

A magnetic moment m has a magnetostatic energy (Em) associated with it. This is the energy
that tends to align compass needles with the magnetic field (see Figure 1.4. This energy is given by
m ·B or mB cos θ where m and B are the magnitudes of m and B, respectively. Magnetic energy
has of joules.

1.5 Magnetization and magnetic susceptibility

Magnetization M is a moment per unit volume (units of Am−1) or per unit mass (Am2kg−1). Sub-
atomic charges such as protons and electrons can be thought of as tracing out tiny circuits and
behaving as tiny magnetic moments. They respond to external magnetic fields and give rise to an
induced magnetization. The relationship between the magnetization induced in a material MI and
the external field H is defined as:

MI = χbH. (1.3)

The parameter χb is known as the bulk magnetic susceptibility of the material; it can be a com-
plicated function of orientation, temperature, state of stress, time scale of observation and applied
field but is often treated as a scalar.

Certain materials can produce magnetic fields in the absence of external magnetic fields (i.e.,
they are permanent magnets). As we shall see later in the course, these so-called “spontaneous”
magnetic moments are also the result of spins of electrons which, in some crystals, act in a co-
ordinated fashion, thereby producing a net magnetic field. The resulting magnetization can be
fixed by various mechanisms and can preserve records of ancient magnetic fields. This remanent
magnetization forms the basis of the field of paleomagnetism and will be discussed at length in the
rest of this class.
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Figure 1.4: A magnetic moment m of for example a compass needle, will tend to align itself with
a magnetic field B. The aligning energy is the magnetostatic energy which is greatest when the
angle between the two vectors θ is at a maximum.

1.6 Relationship of B and H

From the foregoing discussion, we see that B and H are closely related. In paleomagnetic practice,
both B and H are referred to as the “magnetic field”. Strictly speaking, B is the induction and H
is the field, but the distinction is often blurred. The relationship between B and H is given by:

B = µo(H + M). (1.4)

where µo is a parameter known as “the permeability of free space”. In the SI system, µo has
dimensions of henries per meter and is given by µo = 4π × 10−7H · m−1.

1.7 A brief tour of magnetic units in the cgs system

So far, we have derived magnetic units in terms of the Système International (SI). In practice, you
will notice that in many laboratories and in the literature people frequently use what are known as
cgs units, based on centimeters, grams and seconds. You may wonder why any fuss would be made
over using meters as opposed to centimeters because the conversion is trivial. With magnetic units,
however, the conversion is far from trivial and has been the source of confusion and many errors.
So, in the interest of clearing things up, we will briefly outline the cgs approach to magnetic units.

The derivation of magnetic units in cgs is entirely different from SI. The approach we will take
here (see Cullity, 1972) starts with the concept of a magnetic pole with strength p. By analogy
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to Coulomb’s law, the force between two poles p1, p2 instead of with current loops as we did for SI
units. Coulomb’s Law states that the force between two charges (q1, q2) is:

F12 = k
q1q2
r2

(1.5)

where r is the distance between the two charges. In cgs units, the proportionality constant k is
simply unity, whereas in SI units it is 1

4πε0
where ε0 = 107

4πc2 and c is the speed of light in a vacuum
(hence ε0 = 8.859 · 10−12 AsV−1m−1). [You can see why many people really prefer cgs but we are
not allowed to publish in cgs in AGU journals so we just must grin and bear it!]

For magnetic units, we use pole strength p1, p1 in units of “electrostatic units” or esu, so
Equation 1.5 becomes

F =
p1p2

r2

Force in cgs is in units of dynes (dyn) so,

F = 1dyn =
1g cm
s2

=
1 esu2

cm2

so 1 unit of pole strength is rather awkwardly 1 gm1/2 cm3/2 s−1. Of course there are no isolated
magnetic poles in nature, only dipoles, but the concept of a unit of pole strength lies at the heart
of cgs magnetic units.

A magnetic pole, as an isolated electric charge, will create a magnetic induction µoH in the
space around it. One unit of field strength (defined as one “oersted” or Oe) is the unit of field
strength that exerts a force of one dyne on a unit of pole strength. The relationship between force,
pole and field is written as:

F = pµoH.

So, a pole with one pole strength, placed in a one Oe field is acted on by a force of one dyne. This
is the same force that it would experience if placed one centimeter away from another pole with
one pole strength. Hence, the field of this monopole must be one oersted at one centimeter away,
and fall off as 1/r2.

Returning to the lines of force idea developed for magnetic fields earlier, let us define the
oersted to be 1 line of force per square centimeter. Imagine a sphere with a radius r surrounding
the magnetic monopole. The surface area of such a sphere is 4πr2. The sphere is a unit sphere
(r = 1), the field strength at the surface is 1 Oe, then there must be 4π lines of force passing
through it.

Proceeding to the notion of magnetic moment, from a cgs point of view, we start with a magnet
of length l with two poles of strength p at each end. Placing the magnet in a field µoH, we find
that it experiences a torque Γ proportional to p, l,H such that

Γ = pl × µoH. (1.6)

Recalling our earlier discussion of magnetic moment, you will realize that pl is simply the magnetic
moment m. The units of torque are energy, which are ergs in cgs, so the units of magnetic moment
are ergs/oersted. We therefore define the “electromagnetic unit” (emu) as being one erg/oersted.
[Some use emu to refer to the magnetization (volume normalized moment, see above), but this is
incorrect.]
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You will have noticed the use of the parameter µ0 in the above treatment - a parameter missing
in Cullity (1972) and in many books and articles using the cgs units. The reason for this is that
µ0 is unity in cgs units and simply converts from oersteds (H) and gauss (B) which are therefore
used interchangeably. It was inserted in this derivation to remind us that there IS a difference and
that the difference becomes very important when we convert to SI because µ0 is not unity, but 4π
x 10−7! For conversion between commonly used cgs and SI paramters, please refer to Table 1. 1.

Table 1.1: Conversion between SI and cgs units.
Parameter SI unit cgs unit Conversion
Magnetic moment (m) Am2 emu 1 A m2 = 103 emu
Magnetization (M) Am−1 emu cm−3 1 Am−1 = 10−3 emu cm−3

Magnetic Field (H) Am−1 Oersted (oe) 1 Am−1 = 4π x 10−3 oe
Magnetic Induction (B) T Gauss (G) 1 T = 104 G
Permeability
of free space (µ0) Hm−1 1 4π x 10−7 Hm−1 = 1
Susceptibility (χ)

total (mH ) m3 emu oe−1 1 m3 = 106

4π emu oe−1

by volume (MH ) - emu cm−3 oe−1 1 S.I. = 1
4π emu cm−3 oe−1

by mass (mm · 1
H) m3kg −1 emu g−1 oe−1 1 m3kg−1 = 103

4π emu g−1 oe−1

1 H = kg m2A−2s−2, 1 emu = 1 G cm3, B = µo(H +M), 1 T = kg A−1 s−2

1.8 The magnetic potential

An isolated electrical charge produces electrical fields that begin at the source (the charge) and
spread (diverge) outward (see Figure 1.5a). Because there is no return flux to an oppositely charged
“sink”, there is a net flux out of the dashed box shown in the figure. The “divergence” of the
electrical field is defined as ∇ · E which quantifies the net flux (see supplement to Chapter 1 for
more). In the case of the field around an electric charge, the divergence is non-zero.

Magnetic fields are different from electrical fields in that there is no equivalent to an isolated
electrical charge; there are only pairs of “opposite charges”, or magnetic dipoles. Therefore, any
line of flux starting at one magnetic pole, returns to its sister pole and there is no net flux out of
the box shown in Figure 1.5b; the magnetic field has no divergence (Figure 1.5b). This property
of magnetic fields is another of Maxwell’s equations: ∇ · B = 0.

We have already seen that the curl of the magnetic field (∇×H) depends on the current density
which is not always zero. Therefore, magnetic fields cannot generally be represented as the gradient
of a scalar field. However, in the special case away from electric currents, the magnetic field can
be written as the gradient of a scalar field that is known as the magnetic potential ψm, i.e.,

H = −∇ψm.

The presence of a magnetic moment m creates a magnetic field which is the gradient of a scalar
field. We also know that the divergence of the magnetic field is zero, hence ∇2ψm = 0. This is
LaPlace’s equation which is the starting point for spherical harmonic analysis discussed briefly in
Lecture 2.
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Figure 1.5: a) An electric charge produces a field that diverges out from the source. There is a net
flux out of the dashed box, quantified by the divergence (∇ · E), which is is proportional to the
magnitude of the sources inside the box. b) there are no isolated magnetic charges, only dipoles.
Within any space (e.g., the dashed box) any flux line that comes in, goes out. The divergence of
such a field is zero, i.e., ∇ · B = 0.

The magnetic potential ψm is a function the vector r with radial distance r and angle θ from
the moment. Given a dipole moment m, the solution to LaPlace’s equation for the simple case of
a magnetic field produced by m is:

ψm =
m · r
4πr3

=
m cos θ
4πr2

. (1.7)

The radial and tangential components of H at P (Figure 1.6) are:

Hr = −∂ψm

∂r
=

1
4π

2m cos θ
r3

,

and
Hθ = −1

r

∂Vm

∂θ
=
m sin θ
4πr3

,

respectively.

1.9 The geodynamo

Maxwell’s equations tell us that electric and changing magnetic fields are closely linked and can
effect each other. Moving an electrical conductor through a magnetic field will cause electrons
to flow, generating an electrical current. This is the principal of electric motors. In Figure 1.7
we see a design for a machine that will turn mechanical energy into magnetic field energy. The
rotating disk is made of metal. As the disk turns in the presence of an initial magnetic field, the
electrons scurry at right angles to the field, generating an electric potential (Figure 1.7b). The
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Figure 1.6: Field H produced at point P by a magnetic moment m. Hr and Hθ are the radial and
tangential fields respectively.

brush connection allows a current to flow through the wire wound into a coil, in turn generating
a magnetic field. If the rotating disk is spun in the right direction, the magnetic field will be in
the same sense as the initial field, amplifying the effect and generating a much larger magnetic
field. More complicated setups using two disks whose fields interact with one another generate
chaotic magnetic behavior that can switch polarities even if the mechanical motion remains steady.
While a very poor analogue for the Earth’s magnetic field, it demonstrates that moving electrical
conductors can generate a magnetic field. In the Earth of course the moving electrical conductor
is the molten iron outer core.

-
-

-

-

-

b)a) c)

Figure 1.7: The Faraday disk dynamo. a) An initial field is produced by the electromagnet (thin
arrows). The red disk is a conducting plate. b) When the conducting plate is rotated, electric
charge moves perpendicular to the magnetic field setting up an electric potential between the inner
conducting rod and the outer rim of the plate. c) When the conducting plate is connected to a coil
wound such that a current produces a magnetic field in the same direction as the initial field, the
magnetic field is enhanced. (Figure drawn with help from Philip Staudigel).
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Appendix

In this appendix we will review the basic math concepts necessary to understand the chapter on
magnetism. We will start with basic vector math and then review useful operators grad, div and
curl.

A Vectors

A1 Addition

X

y

B
Bx

By

AAx

Ay

β

α

∆

y

x
^

^

Figure A1: Vectors A and B, their components Ax,y, Bx,y and the angles between them and the
X axis, α and β. The angle between the two vectors is α -β = ∆. Unit vectors in the directions of
the axes are x̂ and ŷ respectively.

To add the two vectors (see Figure A1) A and B, we break each vector into components Ax,y

and Bx,y. For example, Ax = |A| cosα,Ay = |A| sinα where |A| is the length of the vector A. The
components of the resultant vector C are: Cx = Ax + Bx, Cy = Ay +By. These can be converted
back to polar coordinates of magnitude and angles if desired.

A2 Subtraction

To subtract two vectors, compute the components as in addition, but the components of the vector
difference C are: Cx = Ax −Bx, Cy = Ay −By.

A3 Multiplication

There are two ways to multiply vectors. The first is the dot product whereby A ·B = AxBx+AyBy.
This is a scalar and is actually the cosine of the angle between the two vectors if the A and B are
taken as unit vectors (assume a magnitude of unity in the component calculation.

The other way to perform vector multiplication is the cross product (see Figure A2), which
produces a vector orthogonal to both A and B and whose components are given by:
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θ
A

B
C

Figure A2: Illustration of cross product of vectors A and B separated by angle θ to get the
orthogonal vector C.

C = det

∣
∣
∣
∣
∣
∣

x̂ ŷ ẑ
Ax Ay Az

Bx By Bz

∣
∣
∣
∣
∣
∣

.

To calculate the determinant, we follow these rules:

Cx = AyBz −AzBy, Cy = AzBx −AxBz, Cz = AxBy −AyBx.

or

Ci = AjBk −AkBj i �= j �= k

A4 Change of coordinates

In paleomagnetism, we often have to change coordinate systems, from say sample coordinates to
geographic, or to correct for tilting of the geological units. The way to do this in a simple 2-D case
is illustrated in Figure A3. Given the vector shown in Figure A3a, that is oriented at an angle
α from the X1 axis. To change to a second set of axes X′

1,X
′
2, we first have to define a set of

coefficients called “direction cosines”. For example, the direction cosine a12 is the cosine of the
angle between the old X1 and the new X ′

2, α12. We can define four of these direction cosines to
fully describe the relationship between the two coordinate systems:

a11 = cosα11, a21 = cosα21,
a12 = cosα12, a22 = cosα22.

The first subscript always refers to the old system and the second refers to the new.
To find the new coordinates x′1, x′2 from the old, we just have:

x′1 = a11x1 + a12x2,
x′2 = a21x2 + a22x2.

In three dimensions we have:

x′1 = a11x1 + a12x2 + a13x3,
x′2 = a21x2 + a22x2 + a23x3,
x′3 = a31x2 + a32x2 + a33x3,

A short cut notation to this is: x′i = aijxj. This just means that for each axis i, just sum
through the j’s for all the dimensions.
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α
α11

α12

α21
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R

b)

Figure A3: Transformation of axes. a) Definition of vector in one set of coordinates, x1, x2. b)
Definition of angles relating old X axes to new X ′.

B Upside down triangles

B1 Gradient, ∇
We often wish to differentiate a function along three orthogonal axes. For example, imagine we
know the topography of a ski area (see Figure B1). For every location (in say, X and Y coordinates),
we know the height above sea level. This is a scalar function. Now imagine we want to build a ski
resort, so we need to know the direction of steepest descent and the slope (red arrows in Figure B1).

Figure B1: Illustration of the relationship between a vector field (direction and magnitude of
steepest slope at every point, e.g., red arrows) and the scalar field (height) of a ski slope.

To convert the scalar field (height versus position) to a vector field (direction and magnitude of
greatest slope) mathematically, we would simply differentiate the topography function. Let’s say
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we had a very weird two dimensional, sinusoidal topography such that z = f(x) = sinx with z
the height and x is the distance from some marker. The slope in the x direction (x̂), then would
be x̂ d

dxf(x). If f(x, y, z) were a three dimentional topography then the gradient of the topography
function would be:

(x̂
∂

∂x
f + ŷ

∂

∂y
f + ẑ

∂

∂z
f)

For short hand, we define a “vector differential operator” to be a vector whose components are

∇ = (x̂
∂

∂x
, ŷ

∂

∂y
, ẑ

∂

∂z
).

This can also be written in polar coordinates:

∇ =
∂

∂r
,
∂

r∂θ
,

∂

r sin θ∂φ

Just as the direction and magnitude of maximum slope of the topography is a the gradient of
the scalar function of height, the magnetic field is the gradient of a scalar function of something
we will define as the magnetic potential. In Lecture 1, we said that the magnetic field H is the
gradient of a scalar potential field ψm, or

H = −∇ψm.

This means that for a simple dipolar field:

ψm =
m · r
4πr3

We can derive the radial component of the field as:

Hr =
∂ψm

∂r
=

1
4π

2m cos θ
r3

and the tangential component as:

Hθ =
−1
r

∂Vm

∂θ
=
m sin θ
4πr3

.

B2 Divergence

The divergence of a vector function (e.g. H) is written as:

∇ · H
The trick here is to treat ∇ as a vector and use the rules for dot products described in the section
A of this appendix. In cartesian coordinates, this is:

∇ · H = x̂
∂Hx

∂x
+ ŷ

∂Hy

∂y
+ ẑ

∂Hz

∂z
.

Like all dot products, the divergence of a vector function is a scalar.
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Figure B2: Example of a vector field with a non-zero divergence.

B3 Geometrical interpretation of divergence

The name divergence is well chosen because ∇ · H is a measure of how much the vector field
“spreads out” (diverges) from the point in question. In fact, what divergence quantifies is the
balance between vectors coming in to a particular region versus those that go out. The example
in Figure B2 depicts a vector function whereby the magnitude of the vector increases linearly with
distance away from the central point. An example of such a function would be v(r) = r. The
divergence of this function is:

∇ · v =
∂

∂r
r = 1

(a scalar). There are no arrows returning in to the dashed box, only vectors going out and the
non-zero divergence quantifies this net flux out of the box.

Now consider Figure B3, which depicts a vector function that is constant over space, i.e. v(r) =
k. The divergence of this function is:

∇ · v =
∂

∂r
k = 0.

The zero divergence means that for every vector leaving the box, there is an equal and opposite
vector coming in. Put another way, no net flux results in a zero divergence. The fact that the
divergence of the magnetic field is zero means that there are no point sources (monopoles), as
opposed to electrical fields that have divergence related to the presence of electrons or protons.

B4 Curl

The curl of the vector function B is defined as ∇× B. In cartesian coordinates we have
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Figure B3: Example of a vector field with zero divergence.
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Figure B4: Example of a vector field with non-zero curl.

∇×B = x̂(
∂

∂y
Bz − ∂

∂z
By) + ŷ(

∂

∂z
Bx − ∂

∂x
Bz) + ẑ(

∂

∂x
By − ∂

∂y
Bx).

Curl is a measure of how much the vector function “curls” around a given point. The function
describing the velocity of water in a whirlpool has a significant curl, while that of a smoothly
flowing stream does not.

Consider Figure B4 which depicts a vector function v = −yx̂+ xŷ. The curl of this function is:

∇× v = det

∣
∣
∣
∣
∣
∣

x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

−y x 0

∣
∣
∣
∣
∣
∣

.

or
x̂(

∂

∂y
0 − ∂

∂z
x) + ŷ(

∂

∂x
0 − ∂

∂z
(−y)) + ẑ(

∂

∂x
x− ∂

∂y
(−y))

= 0x̂+ 0ŷ + 2ẑ
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So there is a positive curl in this function and the curl is a vector in the ẑ direction.
The magnetic field has a non-zero curl in the presence of currents or changing electric fields. In

free space, away from currents (lightning!!), the magnetic field has zero curl.
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