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Chapter 11

Fisher statistics for paleomagnetic

directions

Suggested Reading

Background:
Chapters 1-5: Taylor (1982)
Chapter 6: Butler (1992)
To learn more:
Chapters 2-5: Fisher et al. (1987)

11.1 Introduction

In the previous few lectures we learned about routine paleomagnetic sampling and laboratory
procedures. Once paleomagnetic directions have been obtained after stepwise demagnetization,
principal component analysis, etc., one may wish to interpret them in terms of ancient geomagnetic
field directions. To do this, there must be some way of calculating mean vectors and of quantifying
the confidence intervals. But before we can understand the statistics of vectors we need some idea
about statistics in general.

11.2 Statistics of scalars

The starting point for most statistical discussions is the so-called “normal” distribution, or “Gaus-
sian” distribution. Let’s say that we made 1000 measurements of some parameter, say bed thick-
ness in a particular sedimentary formation in centimeters. We plot these in histogram form in
Figure 11.1a.

A normal distribution can be characterized by two parameters, the mean (µ) and the variance
σ2. How to estimate the parameters of the underlying distribution is the art of statistics. We all
know that the arithmetic mean of a batch of data x̄ drawn from a normal distribution is calculated
by:

x̄ =
1

N

N
∑

i=1

xi.
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CHAPTER 11. FISHER STATISTICS FOR PALEOMAGNETIC DIRECTIONS

The mean estimated from the data shown in Figure 11.1 is 10.09. If we had measured an infinite
number of bed thicknesses, we would have gotten the bell curve shown in the figure and calculated
a mean of 10.

The “spread” in the data is characterized by the variance σ2. Variance for normal distributions
can be estimated by the parameter s2:

s2 =
1

N − 1

N
∑

i=1

(xi − x̄)2.
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Figure 11.1: a) Histogram of 1000 measurements of bed thickness in some sedimentary formation.
Also shown is the smooth curve of a normal distribution with a mean of 10 and a standard deviation
of 3. b) Histogram of the means from 100 repeated sets of 1000 measurements from the same
sedimentary formation. The distribution of the means is much tighter. c) Histogram of the variances
(s2) from the same set of experiments as in b). The distribution of variances is not bell shaped; it
is χ2.

In order to get the units right on the uncertainty in the mean (cm - not cm2), we have to take
the square root of s2. The parameter s gives an estimate of the standard deviation σ and is the
bounds around the mean that includes 63% of the values. The 95% confidence bounds are given by
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1.96s (this is what a “2-σ error” is), and should include 95% of the means. The bell curve shown
in Figure 11.1 has a σ (standard deviation) of 3, while the s is 2.97.

If you repeat the bed measuring experiment a few times, you will never get exactly the same
measurements in the different trials. The mean and standard deviations measured for each trial
then are “sample” means and standard deviations. If you plotted up all those sample means, you
would get another normal distribution whose mean should be pretty close to the true mean, but
with a much more narrow standard deviation. In Figure 11.1b we plot a histogram of means from
100 such trials of 1000 measurements each drawn from the same distribution of µ = 10, σ = 3. In
general, we expect the standard deviation of the means (or “standard error of the mean” sm) to
be related to s by

sm =
s

√
Ntrials

What if we were to plot up a histogram of the estimated variances as in Figure 11.1c? Are these
also normally distributed? The answer is no, because variance is a squared parameter relative
to the original units. In fact, the distribution of variance estimates from normal distibutions is
expected to be “chi-squared” (χ2). The width of the χ2 distribution is also governed by how many
measurements were made. The so-called “number of degrees of freedon” ν is given by the number
of measurements made minus the number of measurements required to make the estimate, so ν
for our case is N − 1. Therefore we expect the variance estimates to follow a χ2 distribution with
N − 1 degrees of freedom of χ2

ν .

We often wish to consider ratios of variances (for example to decide if the data are more scattered
in one data set relative to another). In order to do this, we must know what ratio would be expected
from data sets drawn from the same distributions. Ratios of such variances follow a so-called F
distribution with ν1 and ν2 degrees of freedom for the two data sets. This is denoted F [ν1, ν2].
Thus if the ratio f , given by:

f =
s2
1

s2
2

is greater than the 5% critical value of F [ν1, ν2] (check in the F-table in the Appendix), the hy-
pothesis that the two variances are the same can be rejected at the 95% level of confidence.

11.3 Statistics of vectors

We turn now to the trickier problem of sets of measured vectors. We will consider the case in which
all vectors are assumed to have a length of one, i.e., these are unit vectors. Unit vectors are just
“directions”.

Consider the various sets of directions plotted as equal area projections (see Lecture 2) in
Figure 11.2. These are all measurements of a single, vertical direction, but with varying degrees
of precision. It would be handy to be able to calculate a mean direction for the data sets and to
quantify the precision of the measurements.

The average inclination, calculated as the arithmetic mean of the inclinations, will obviously
not be vertical. We will see, however, that the vector mean of the directions of each data set is
actually nearly vertical as it should be. In the following, we will demonstrate the proper way to
calculate mean directions and confidence regions for directional data that are distributed in the
manner shown in Figure 11.2. We will also briefly describe several useful statistical tests that are
popular in the paleomagnetic literature.
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Figure 11.2: Four hypothetical data sets with decreasing scatter: a) is nearly uniformly distributed
on the sphere, whereas d) is fairly well clustered. All data sets were drawn from Fisher distributions
with vertical true directions.

Paleomagnetic directional data are subject to a number of factors that lead to scatter. These
include:

1. uncertainty in the measurement caused by instrument noise or sample alignment errors,

2. uncertainties in sample orientation,

3. uncertainty in the orientation of the sampled rock unit,

4. variations among samples in the degree of removal of a secondary component,

5. uncertainty caused by the process of magnetization,

6. secular variation of the Earth’s magnetic field, and

7. lightning strikes.
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Some of these sources of scatter (e.g., items 1, 2 and perhaps 6 above) lead to a symmetric
distribution about a mean direction. Other sources of scatter contribute to distributions that
are wider in one direction than another. For example, in the extreme case, item four leads to a
girdle distribution whereby directions are smeared along a great circle. In order to calculate mean
directions with confidence limits, paleomagnetists rely heavily on the special statistics known as
Fisher statistics (Fisher, 1953), which were developed for assessing dispersion of unit vectors on
a sphere. In most instances, paleomagnetists assume a Fisher distribution for their data because
the statistical treatment allows calculation of confidence intervals, comparison of mean directions,
comparison of scatter, etc.

11.4 Parameter estimation

The Fisher probability density function (Fisher, 1953) is given by:

F =
κ

4π sinhκ
exp (κ cos α), (11.1)

where α is the angle between the unit vector and the true direction and κ is a precision parameter
such that as κ → ∞, dispersion goes to zero.

Because the intensity of the magnetization has little to do with the validity of the measurement
(except for very weak magnetizations), it is customary to assign unit length to all directions.
The mean direction is calculated by first converting the individual directions (Di, Ii) to cartesian
coordinates (x1, x2, x3) by the methods given in Lecture 2. The length of the resultant vector, R,
is given by:

R2 = (
∑

i

x1i)
2 + (

∑

i

x2i)
2 + (

∑

i

x3i)
2, (11.2)

and the cartesian coordinates of the mean direction are given by:

x̄1 =
1

R
(
∑

i

x1i); x̄2 =
1

R
(
∑

i

x2i); x̄3 =
1

R
(
∑

i

x3i). (11.3)

The cartesian coordinates can, of course, be converted back to geomagnetic elements (D̄, Ī) by the
familiar method described in Lecture 2.

The precision parameter for the Fisher distribution, κ, is estimated by

κ ' k =
N − 1

N − R
(11.4)

(where N is the number of data points). Using this estimate of κ, we estimate the circle of 95%
confidence (p = 0.05) about the mean, α95, by:

α95 = cos−1[1 −
N − R

R
[(

1

p
)

1
(N−1) − 1]]. (11.5)

In the classic paleomagnetic literature, α95 was further approximated by:

α′

95 '
140
√

kN
,
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which is reliable for k larger than about 25 (see Tauxe et al., 1991).

Another useful parameter (introduced by Irving, 1964) is the so-called circular standard de-

viation (CSD), also sometimes called the angular standard deviation), which is approximated
by:

CSD '
81
√

k
,

which is the circle containing ∼66% of the data.

If directions are converted to VGPs as outlined in Lecture 2, the transformation distorts a
rotationally symmetric set of data into an elliptical distribution. The associated α95 may no longer
be appropriate. Cox and Doell (1960) suggested the following for 95% confidence regions in VGPs.
Ironically, it is more likely that the VGPs are spherically symmetric implying that most sets of
directions are not!

dm = α95
cos λ

cos Ī

dp =
1

2
α95(1 + 3 sin 2λ), (11.6)

where dm is the uncertainty in the paleomeridian (longitude), dp is the uncertainty in the paleop-
arallel (latitude), and λ is the site paleolatitude.

Two examples of Fisher distributions, one with a large degree of scatter (κ=5) and one that
is relatively tightly clustered (κ=50) are shown in Figure 11.3. Also shown are the Fisher mean
directions and α95s for each data set.

Figure 11.3: Two Fisher distributions: a) κ = 5, b) κ = 50. Mean directions are shown as asterisks,
and α95s as ellipses.

The Fisher distribution allows us to ask a number of questions about paleomagnetic data sets,
such as:

1. Is a given set of directions random? This is the question that we ask when we perform a
conglomerate test (Lecture 9).
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2. Is the mean direction of a given (Fisherian) data set different from some known direction?
This question comes up when we compare a given data set with, for example, the directions
of the present or GAD field.

3. Are two (Fisherian) data sets different from each other? For example, are the normal direc-
tions and the antipodes of the reversed directions the same for a given data set?

4. If a given site has some samples that allow only the calculation of a best-fit plane and not a
directed line, what is the site mean direction that combines the best-fit lines and planes (see
Lecture 9)?

In the following discussion, we will briefly summarize ways of addressing these issues using
Fisher techniques.

Figure 11.4: Values of Ro calculated by Equation 11.7 (line) and exactly (dots) for 95% level of
confidence. Exact data are from Watson (1956).

11.5 Watson’s test for randomness

Watson [1956] demonstrated how to test a given directional data set for randomness. His test relies
on the calculation of R given by Equation 11.2. Because R is the length of the resultant vector,
randomly directed vectors will have small values of R, while, for less scattered directions, R will
approach N . Watson (1956) defined a parameter Ro that can be used for testing the randomness
of a given data set. If the value of R exceeds Ro, the null hypothesis of total randomness can be
rejected at a specified level of confidence. If R is less than Ro, randomness cannot be rejected.
Watson calculated the value of Ro for a range of N for the 95% and 99% confidence levels. Watson
(1956) also showed how to estimate Ro by:

Ro =
√

7.815 · N/3. (11.7)
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Figure 11.5: a) Equal area projections of declinations and inclinations of two hypothetical data
sets. b) Fisher means and circles of confidence from the data sets in a).

We plot Ro versus N in Figure 11.4 using both the exact method (dots) and the estimation given
by Equation 11.7. The estimation works well for N > 10, but is somewhat biased for smaller data
sets. The critical values of R for 5 < N < 20 from Watson (1956) are listed for convenience in
Table D2.

The test for randomness is particularly useful for determining if, for example, the directions
from a given site are randomly oriented (the data for the site should therefore be thrown out). Also,
one can determine if directions from conglomerate clasts are randomly oriented in the conglomerate
test (see Lecture 9).

11.6 Comparing known and estimated directions

The calculation of confidence regions for paleomagnetic data is largely motivated by a need to
compare estimated directions with either a known direction (for example, the present field) or
another estimated direction (for example, that expected for a particular paleopole, the present field
or a GAD field). Comparison of a paleomagnetic data set with a given direction is straightforward
using Fisher statistics. If the known test direction lies outside the confidence interval computed
for the estimated direction, then the estimated and known directions are different at the specified
confidence level.

11.7 Comparing two estimated directions

The case in which we are comparing two Fisher distributions can also be relatively straight forward.
If the two confidence circles do not overlap, the two directions are different at the specified level
of certainty. When one confidence region includes the mean of the other set of directions, the
difference in directions is not significant.

The situtation becomes a little more tricky when the data sets are as shown in Figure 11.5a.
The Fisher statistics for the two data sets are:
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i symbol D̄ Ī N R k α95

1 spades 43.3 47.1 20 17.9077 9.1 11.5
2 hearts 20.9 45.3 20 19.0908 20.9 7.3

As shown in the equal area projection in Figure 11.5b, the two α95s overlap, but neither includes
the mean of the other. This sort of “grey zone” case has been addressed by many workers. A
particularly useful parameter (Vw) was proposed by Watson (1983; see Appendix for details).

Vw was posed as a test statistic that increases with increasing difference between the mean
directions of the two data sets. Thus, the null hypothesis that two data sets have a common mean
direction can be rejected if Vw exceeds some critical value which can be determined through what is
called Monte Carlo simulation. The technique gets its name from famous gambling locale because
we use randomly drawn samples (“cards”) from specified distributions (“decks”) to see what can
be expected from chance. What we want to know is the probabilty that two data sets (hands of
cards?) drawn from the same underlying distribution would have a given Vw statistic just from
chance.

We proceed as follows:

1. Calculate the Vw statistic for the data sets. [The Vw for the two data sets shown in Figure 11.5a
is 8.5.]

2. In order to determine the critical value for Vw, we draw two Fisher distributed data sets with
dispersions of k1 and k2 and N1, N2, but having a common direction. You can try this “by
hand”, with the program fisher from the pmag distribution of programs (downloadable at
sorcerer.ucsd.edu/software).

3. The calculate Vw for these simulated data sets.

4. Repeat the simulation some large number of times (say 1000). This defines the distribution
of Vws that you would get from chance by “sampling” a distributions with the same direction.

5. Sort the Vws in order of increasing size. The critical value of Vw at the 95% level of confidence
is the 950th simulated Vw.

The Vws simulated for two distributions with the same κ and N as our example data sets but
drawn from distributions with the same mean are plotted in a histogram in Figure 11.6 with the
bounds containing the lowermost 95% of the 1000 simulations shown as a dashed line. The value
of 8.5, calculated for the data set is shown as a heavy vertical line and is clearly larger than 95%
of the simulated populations which gives a critical value of 6.2. This simulation therefore supports
the suggestion that the two data sets do not have a common mean at the 95% level of confidence.

This test can be applied to the two polarities in a given data collection to see if the they are
antipodal. In this case, one would take the antipodes of one of the data sets before calculating Vw.
This test is a Fisherian form of the reversals test.

11.8 Combining vectors and great circles

Consider the demagnetization data shown in Figure 11.7 for demagnetization data of various speci-
mens from a certain site. The data from sample tst1a seem to reach some well defined direction and
hover there. A mean direction for the last few demagnetization steps can be calculated using Fisher
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Figure 11.6: Distribution of Vw for simulated Fisher distributions with the same N and κ as the
two shown in Figure 11.5. The dashed line includes the smalleds 95% of the Vws calculated for the
simulations. The heavy vertical line is the Vw calculated for the two data sets. According to this
test, the two data sets do not have a common mean.

statistics. We can calculate a best-fit line from the data for sample tst1b (Figure 11.7b) using the
principal component method of Kirschvink [1980] as outlined in Lecture 9. The data from tst1c

track along a great circle path and can be used to calculate the pole to the best-fit plane calculated
as in Lecture 9. McFadden and McElhinny (1988) described a method for estimating the mean
direction and the α95 from sites that mix planes (great circles on an equal area projection) and
directed lines (see Appendix). The key to their method is to find the direction within each plane
that gives the tightest grouping of directions. Then “regular” fisher statistics can be applied.

11.9 Inclination only data

A different problem arises when only the inclination data are available as in the case of unoriented
drill cores. Cores can be drilled and arrive at the surface in short, unoriented pieces. Specimens
taken from such core material will be oriented with respect to the vertical, but the declination data
are unknown. It is often desirable to estimate the true Fisher inclination of data set having only
inclination data, but how to do this is not obvious. Consider the data in Figure 11.8. The true
Fisher mean declination and inclination are shown by the asterisk. If we had only the inclination
data and calculated a gaussian mean (< I >), the estimate would be too shallow as pointed out
earlier.

Several investigators have addressed the issue of inclination-only data. McFadden and Reid
(1982) developed a maximum likelihood estimate for the true inclination which works reasonably
well. Their approach is outlined in the Appendix.

By comparing inclinations estimated using the McFadden-Reid technique with those calculated
using the full vector data, it is clear that the method breaks down at high inclinations and high
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a) tst1a

c) tst1c

b) tst1b

d)

Figure 11.7: Examples of demagnetization data from a site whose mean is partially constrained by
a great circle. The samples a)tst1a, b)tst1b and c) tst1c which are sibling samples from the same
reversely magnetized site. The demagnetization data are plotted as orthogonal projections. The
directional data from tst1c do not define a single component, but describe a great circle as shown
in d). The sample tst1b allows calculation of a principal component whose direction is plotted as
a diamond in d). Specimen tst1a has data that do not converge to the origin. A mean direction
was calculated for this sample by standard Fisher statistics and is plotted as a triangle in d. The
best-fit great circle and two directed lines allow a mean (star) and associated α95 to be calculated
using the method of McFadden and McElhinny (1988).

scatter. It is also inappropriate for data sets that are not Fisher distributed!

11.10 Is a given data set Fisher distributed?

Clearly, the Fisher distribution allows powerful tests and this power lies behind the popularity of
paleomagnetism in solving geologic problems. The problem is that these tests require that the data
be Fisher distributed. How can we tell if a particular data set is Fisher distributed? What do we
do if the data are not Fisher distributed? These questions are addressed in the rest of the lecture.

Let us now consider how to determine whether a given data set is Fisher distributed. There are
actually many ways of doing this. There is a rather complete discussion of the problem in Fisher
et al. (1987) and if you really want a complete treatment try the supplemental reading list. The
quantile-quantile (Q-Q) method described by Fisher et al. (1987) is fairly intuitive and works well.
We outline it briefly in the following.
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Figure 11.8: Directions drawn from a Fisher distribution with a near vertical true mean direction.
The Fisher mean direction from the sample is shown by a asterisk. The Gaussian average inclination
(< I >) is shallower than the Fisher mean Ī.

Figure 11.9: Transformation of coordinates from a) geographic to b)“data” coordinates. The
direction of the principal eigenvector V1 is shown by the triangle in both plots.
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The idea behind the Q-Q method is to exploit the fact that declinations in a Fisher distribution,
when viewed along the mean, are spread around the clock evenly - there is a uniform distribution
of declinations. Also, the inclinations (or rather the co-inclinations) are clustered close to the mean
and the frequency dies off exponentially away from the mean direction.

Therefore, the first step in testing for Fisher-ness is to transpose the data such that the mean
is the center of the distribution. You can think of this as rotating your head around to peer
down the mean direction. On an equal area projection, the center of the diagram is the mean. In
order to do this transformation, we first calculate the orientation matrix T of the data and the
associated eigenvectors Vi and eigenvalues τi (Appendix to Lecture 9 - in case you haven’t read
it yet, do so NOW). Substituting the direction cosines relating the geographic coordinate system
X to the coordinate system defined by V, the eigenvectors, where X is the “old” and V is the
“new” set of axes, we can transform the coordinate system for a set of data from “geographic”
coordinates (Figure 11.9a) where the vertical axis is the center of the diagram, to the “data”
coordinate system, (Figure 11.9b) where the principal eigenvector (V1) lies at the center of the
diagram, after transformation into “data” coordinates.

Equation 11.1 for the Fisher distribution function suggests that declinations are symmetrically
distributed about the mean. In “data” coordinates, this means that the declinations are uniformly
distributed from 0 → 360◦. Furthermore, the probability P of finding a direction of α away from
the mean is exponential:

P = F sin α =
κ

4π sinh κ
exp (κ cos α) sin α. (11.8)

Figure 11.10: a) Declinations and b) co-inclinations (α) from Figure 11.9. Also shown are behaviors
expected for D and I from a Fisher distribution, i.e., declinations are uniformly distributed while
co-inclinations are exponentially distributed.

Let us compare the data from Figure 11.9 to the expected distributions for a Fisher distribution
with κ = 20 (Figure 11.10). The data were generated using the program fisher which relies on the
method outlined by Fisher et al. (1987), that draws directions from a Fisher distribution with a
specified κ. We used a κ of 20, and it should come as no surprise that the data fit the expected
distribution rather well. But how well is “well” and how can we tell when a data set fails to be fit
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by a Fisher distribution?
We wish to test whether the declinations are uniformly distributed and whether the inclinations

are exponentially distributed as required by the Fisher distribution. Plots such as those shown in
Figure 11.10 are not as helpful for this purpose as a plot known as a Quantile-Quantile (Q-Q)
plot (see Fisher et al., 1987). In a Q-Q plot, the data are graphed against the value expected
from a particular distribution. Data compatible with the chosen distribution plot along a line. The
procedure for accomplishing this is given in the Appendix. In Figure 11.11a, we plot the declinations
from Figure 11.9 (in data coordinates) against the values calculated assuming a uniform distribution
and in Figure 11.11b, we plot the co-inclinations against those calculated using an exponential
distribution. As expected, the data plot along lines and neither of the test statistics Mu nor Me

(see Appendix) exceed the critical values.

Figure 11.11: a) Quantile-quantile plot of declinations (in data coordinates) from Figure 9 plotted
against an assumed uniform distribution. b) Same for inclinations plotted against an assumed
exponential distribution. The data are Fisher distributed.

Appendix

A Calculation of Watson’s Vw

1. Calculate Ri, and ki where i = 1, 2 for the two data sets with N1, N2 samples using Equa-
tions 11.2 and 11.4.

2. Calculate x̄ij (where j = 1, 3 for the three axes) using Equation 11.3.

3. Calculate X̄ij = Rix̄ij.

4. Find the weighted means for the two data sets:

X̂j =
2

∑

i

kjX̄ij
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5. Calculate the weighted overall resultant vector Rw by

Rw = (X̂2 + Ŷ 2 + Ẑ2)
1
2 ,

and the weighted sum Sw by,

Sw =
2

∑

i

kiRi.

6. Finally, Watson’s Vw is defined as

Vw = 2(Sw − Rw).

B Combining lines and planes

1. Calculate M directed lines (2 in our case) and N great circles (1 in our case) using principal
component analysis (see Lecture 9) or Fisher statistics.

2. Assume that the primary direction of magnetization for the samples with great circles lies
somewhere along the great circle path (i.e., within the plane).

3. Assume that the set of M directed lines and N unknown directions are drawn from a Fisher
distribution.

4. Iteratively search along the great circle paths for directions that maximize the resultant vector
R for the M + N directions.

5. Having found the set of N directions that lie along their respective great circles, estimate the
mean direction using Equation 11.3 and κ as:

k =
2M + N − 2

2(M + N − R)
,

The cone of 95% confidence about the mean is given by:

cos α95 = 1 −
N ′ − 1

kR
, [(

1

p
)1/(N ′

−1)
− 1],

where N ′ = M + N/2 and p = .02

C Inclination only calculation

We wish to estimate the co-inclination (α = 90 − I) of N Fisher distributed data (αi), the decli-
nations of which are unknown. We define the estimated value of α to be α̂. McFadden and Reid
showed that α̂ is the solution of:

N cos α̂ + ( sin 2α̂ − cos 2α̂)
∑

cos αi − 2 sin α̂ cos α̂
∑

αi = 0,

which can be solved numerically.
They further define two parameters S and C as:
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S =
∑

sin (α̂ − αi),

C =
∑

cos (α̂ − αi).

An unbiassed approximation for the Fisher parameter κ, k is given by:

k =
N − 1

2(N − C)
.

The unbiased estimate Î of the true inclination is:

Î = 90 − α̂ +
S

C
.

Finally, the α95 is estimated by:

cos α95 = 1 −
1

2
(
S

C
)2 −

f

2Ck
,

where f is the critical value taken from the F distribution (see Table A-1) with 1 and (N -1) degrees
of freedom.

D Quantile-Quantile plots

In order to do this, we proceed as follows (Figure D1):

1. Sort the variable of interest ζi into ascending order so that ζ1 is the smallest and ζN is the
largest.

2. If the data are represented by the underlying density function as in Figure D1a, then the ζi’s
divide the curve into (N + 1) areas, Ai, the average value of which is a = 1/(N + 1). If we
assume a form for the density function of ζi, we can calculate numbers zi, that divide the
theoretical distribution into areas ai each having an area a (see Figure D1b).

3. An approximate test for whether the data ζi are fit by a given distribution is to plot the pairs
of points (ζi, zi), as shown in Figure D1c. If the assumed distribution is appropriate, the data
will plot as a straight line.

4. The density function P is the distribution function F times the area, as mentioned before.
The zi are calculated as follows:

F (zi) = (i − 1
2 )/n,where i = 1, . . . , n, (D1)

so that:

zi = F−1((i − 1
2 )/n),where i = 1, . . . , n, (D2)

and where F−1 is the inverse function to F . If the data are uniformly distributed (and
constrained to lie between 0 and 1), then both F (x) and F−1(x) = x. For an exponential
distribution F (x) = 1 − e−x and F−1(x) = −ln(1 − x).
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c) 

a) 

b)

Figure D1: a) Illustration of how the sorted data ζi divide the density curve into areas Ai with an
average area of 1/(N + 1). b) The values of zi which divide the density function into equal areas
ai = 1/(N + 1). c) Q-Q plot of z and ζ.

5. Finally, we can calculate parameters Mu and Me which, when compared to critical values,
allow rejection of the hypotheses of uniform and exponential distributions, respectively. To
do this, we first calculate:

D+
N = maximum[

i

N
− F (x)], (D3)

and

D−

N = maximum[F (x) −
(i − 1)

N
]. (D4)

For a uniform distribution F (x) = x, so Mu is calculated by first calculating D+
N as the

maximum of [i/N − ζi] and D−

N as the maximum of [ζi − (i − 1)/N ]. Mu is D+
N + D−

N . A
value of Mu > 1.207 (see Fisher et al., 1987) can be grounds for rejecting the hypothesis
of uniformity at the 95% level of certainty. Similarly, D+

ND−

N can be calculated for the
inclination (using ζi = 90 − Ii) as the maximum of [i/N − (1 − e−ζi)] and maximum of
[(1−e−ζi)− (i−1)/N ] respectively. Me = D+

N +D−

N . Values larger than 1.094 allow rejection
of the exponential hypothesis. If either Mu or Me exceed the critical values, the hypothesis
of a Fisher distribution can be rejected.
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Table D1: F-Tables for ν degrees of freedom.
ν 1 2 3 4 5 6 7 8 9

1 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54
2 18.51 19 19.16 19.25 19.3 19.33 19.35 19.37 19.38
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.1
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68
8 5.32 4.46 4.07 3.84 3.69 3.58 3.5 3.44 3.39
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18
10 4.96 4.1 3.71 3.48 3.33 3.22 3.14 3.07 3.02
11 4.84 3.98 3.59 3.36 3.2 3.09 3.01 2.95 2.9
12 4.75 3.89 3.49 3.26 3.11 3 2.91 2.85 2.8
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71
14 4.6 3.74 3.34 3.11 2.96 2.85 2.76 2.7 2.65
15 4.54 3.68 3.29 3.06 2.9 2.79 2.71 2.64 2.59
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54
17 4.45 3.59 3.2 2.96 2.81 2.7 2.61 2.55 2.49
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46
19 4.38 3.52 3.13 2.9 2.74 2.63 2.54 2.48 2.42
20 4.35 3.49 3.1 2.87 2.71 2.6 2.51 2.45 2.39
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37
22 4.3 3.44 3.05 2.82 2.66 2.55 2.46 2.4 2.34
23 4.28 3.42 3.03 2.8 2.64 2.53 2.44 2.37 2.32
24 4.26 3.4 3.01 2.78 2.62 2.51 2.42 2.36 2.3
25 4.24 3.39 2.99 2.76 2.6 2.49 2.4 2.34 2.28
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25
28 4.2 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24
29 4.18 3.33 2.93 2.7 2.55 2.43 2.35 2.28 2.22
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12
60 4 3.15 2.76 2.53 2.37 2.25 2.17 2.1 2.04
120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96
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Table 1 - continued.
ν 10 12 15 24 30 40 60 120 Inf

1 241.88 243.90 245.95 249.05 250.1 251.14 252.2 253.25 254.32
2 19.4 19.41 19.43 19.45 19.46 19.47 19.48 19.49 19.5
3 8.79 8.74 8.7 8.64 8.62 8.59 8.57 8.55 8.53
4 5.96 5.91 5.86 5.77 5.75 5.72 5.69 5.66 5.63
5 4.74 4.68 4.62 4.53 4.5 4.46 4.43 4.4 4.37
6 4.06 4 3.94 3.84 3.81 3.77 3.74 3.7 3.67
7 3.64 3.57 3.51 3.41 3.38 3.34 3.3 3.27 3.23
8 3.35 3.28 3.22 3.12 3.08 3.04 3.01 2.97 2.93
9 3.14 3.07 3.01 2.9 2.86 2.83 2.79 2.75 2.71
10 2.98 2.91 2.85 2.74 2.7 2.66 2.62 2.58 2.54
11 2.85 2.79 2.72 2.61 2.57 2.53 2.49 2.45 2.4
12 2.75 2.69 2.62 2.51 2.47 2.43 2.38 2.34 2.3
13 2.67 2.6 2.53 2.42 2.38 2.34 2.3 2.25 2.21
14 2.6 2.53 2.46 2.35 2.31 2.27 2.22 2.18 2.13
15 2.54 2.48 2.4 2.29 2.25 2.2 2.16 2.11 2.07
16 2.49 2.42 2.35 2.24 2.19 2.15 2.11 2.06 2.01
17 2.45 2.38 2.31 2.19 2.15 2.1 2.06 2.01 1.96
18 2.41 2.34 2.27 2.15 2.11 2.06 2.02 1.97 1.92
19 2.38 2.31 2.23 2.11 2.07 2.03 1.98 1.93 1.88
20 2.35 2.28 2.2 2.08 2.04 1.99 1.95 1.9 1.84
21 2.32 2.25 2.18 2.05 2.01 1.96 1.92 1.87 1.81
22 2.3 2.23 2.15 2.03 1.98 1.94 1.89 1.84 1.78
23 2.27 2.2 2.13 2.01 1.96 1.91 1.86 1.81 1.76
24 2.25 2.18 2.11 1.98 1.94 1.89 1.84 1.79 1.73
25 2.24 2.16 2.09 1.96 1.92 1.87 1.82 1.77 1.71
26 2.22 2.15 2.07 1.95 1.9 1.85 1.8 1.75 1.69
27 2.2 2.13 2.06 1.93 1.88 1.84 1.79 1.73 1.67
28 2.19 2.12 2.04 1.91 1.87 1.82 1.77 1.71 1.65
29 2.18 2.1 2.03 1.9 1.85 1.81 1.75 1.7 1.64
30 2.16 2.09 2.01 1.89 1.84 1.79 1.74 1.68 1.62
40 2.08 2 1.92 1.79 1.74 1.69 1.64 1.58 1.51
60 1.99 1.92 1.84 1.7 1.65 1.59 1.53 1.47 1.39
120 1.91 1.83 1.75 1.61 1.55 1.5 1.43 1.35 1.25
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Table D2: Critical values of Ro for a random distribution [Watson, 1956.]
N 95% 99% N 95% 99%

5 3.50 4.02 13 5.75 6.84
6 3.85 4.48 14 5.98 7.11
7 4.18 4.89 15 6.19 7.36
8 4.48 5.26 16 6.40 7.60
9 4.76 5.61 17 6.60 7.84

10 5.03 5.94 18 6.79 8.08
11 5.29 6.25 19 6.98 8.33
12 5.52 6.55 20 7.17 8.55
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