
Chapter 7

Magnetic hysteresis

Suggested Reading
For background:

Butler (1992), pp 48-54
To learn more:

O’Reilly (1984), pp 69-87

7.1 Introduction

In Lecture 4 we discussed the energies that control the state of magnetization within ferromag-
netic particles. Particles will tend to find a configuration of internal magnetization directions that
minimizes the energies (although meta-stable states with local energy minima or LEMs are a pos-
sibility). The longevity of a particular magnetization state has to do with the depth of the energy
well that the magnetization is in and the energy available for hopping over barriers. We discussed
a few basic configurations of the remanent magnetic state: uniform magnetization (single domain;
SD), flower (F), vortex (V), and multi-domain (MD) states. We also mentioned the case in which
thermal energy dominates: superparamagnetic (SP) particles.
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Figure 7.1: Sketch of a magnetic particle with easy axis as shown. In response to a magnetic field
H, applied at an angle φ to the easy axis, the particle moment m rotates away from the easy axis,
making an angle θ with the easy axis.

SP particles have sufficient thermal energy to easily overcome the various anisotropy energies;
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CHAPTER 7. MAGNETIC HYSTERESIS

they come into equilibrium with whatever external field they are in within minutes. Particles with
domain walls (multi-domain, or MD particles) also have low stability. It is relatively easy to move a
wall around within crystals so the domains grow and shrink depending on the external field unless
they are pinned in some way.

Quasi-uniformly magnetized (SD and F states) particles have a great deal of resistance to
changes in the external field because the magnetization vectors have to jump over high energy
barriers to change directions within the crystal. These particles require relatively high magnetic
fields to overcome the anisotropy energy and change their magnetizations. Finally, vortex state
particles are somewhere in between the extremes of uniformly magnetized particles and those with
domain walls.

The ease with which particles can be “coerced” into changing their magnetizations in response
to external fields can tell us much about the overall stability of the particles and perhaps also
something about their ability to carry a magnetic remanence over the long haul. The concepts
of long term stability, incorporated into the concept of relaxation time and the response of the
magnetic particles to external magnetic fields are therefore linked through the anisotropy energy
constant K (see Lecture 4). In this lecture we will discuss the behavior of magnetic particles in
response to external magnetic fields.
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Figure 7.2: Variation of the anisotropy energy Ea = Ku sin 2θ, the interaction energy Eh =
−MsB cos (φ − θ) and the total energy Et = Ea + Eh as a function of θ for the particle shown
in Figure 1. The θ associated with the minimum energy is indicated by Emin. a) B = 5 mT. b) B
= 30 mT.

7.2 The “flipping” field

Magnetic remanence is the magnetization in the absence of an external magnetic field. If we
imagine a particle with a single “easy” axis - a so-called “uniaxial” particle, the magnetization in
the absence of a magnetic field will be aligned along one of the directions parallel to the easy axis
and θ, the angle between the magnetic moment m and the easy axis is zero (see Figure 7.1a). But
if an external field is applied at an angle φ to the easy axis, there will be a competition between the
anisotropy energy (tending to keep the magnetization parallel to the easy axis) and the interaction
energy (tending to line the magnetization up with the external magnetic field). We showed in
Lecture 4 that the total magnetic energy density of such a particle is given by:

Et = Ku sin 2θ − MsB cos (φ − θ) (7.1)

[Note that this equation is in the form of energy density, so moment is normalized by volume: Ms.]
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7.2. THE “FLIPPING” FIELD

The magnetic moment of a uniaxial single domain grain will find the angle θ that is associated
with the minimum total energy (Emin; see Figure 7.2). For low external fields (e.g., 5 mT; Fig-
ure 7.2a), θ will be closer to the easy axis and for higher external fields (e.g., 30 mT; Figure 7.2b),
θ will be closer to the applied field direction (φ).

When a magnetic field that is large enough to overcome the anisotropy energy is applied in a
direction opposite to the magnetization vector, the moment will jump over the energy barrier and
stay in the opposite direction when the field is switched off. The field necessary to accomplish this
feat is called the flipping field (Bf ) (also sometimes the “switching field”). Stoner and Wohlfarth
(1948) showed that the flipping field can be found from the condition that dEt/dθ = 0 and
d2Et/dθ2 = 0. We will call this the “flipping condition”. The necessary equations can be found by
differentiating Equation 7.1:

dE

dθ
= 2Ku sin θ cos θ − MsB sin (φ − θ), (7.2)

and again

d2E

dθ2
= 2Ku cos (2θ) + MsB cos (φ − θ). (7.3)

Solving these two equations for B and using trigonometric trickery we get:
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(7.4)

where t = tan
1
3 φ. Here we have the derivation for the so-called “intrinsic coercivity” (Bk) when the

dominant magnetic anisotropy constant is Ku and φ is zero, Bk = 2Ku
Ms

(introduced as “coercivity”
in Lecture 4).

Using the parameters for magnetite (Ku = 1.4 x 104 Jm−3 and Ms = 4.8 x 105 Am−1) we get
Bf = 58 mT. We plot the behavior of Equations 7.1 - 7.3 in Figure 7.3. We see that the minimum
in Et occurs at an angle of θ = 180◦ and that the first and second derivatives satisfy the flipping
criterion by having a common zero crossing. There is no other field for which this is true (see, e.g.,
the case of a 30 mT field in Figure 7.3c,d).

We show the flipping field Bf versus φ in Figure 7.4. For φ parallel to the easy axis (zero), Bf

is 62 mT as we found before. Bf drops steadily as the angle between the field and the easy axis
increases, until an angle of 45◦ when Bf starts to increase again. Bf is undefined when φ = 90◦,
so when the field is applied at right angles to the easy axis, there is no field sufficient to flip the
moment.

When a single domain, uniaxial particle is subjected to an increasing magnetic field the mag-
netization is gradually drawn into the direction of the applied field. If the flipping condition is
not met, then the magnetization will return to the original direction when the magnetic field is
removed. If the flipping condition is met, then the magnetization undergoes an irreversible change
and will be in the opposite direction when the magnetic field is removed.
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Figure 7.3: a) Variation of the anisotropy energy Ea = Ku sin 2θ, the interaction energy Eh =
−MsB cos φ and the total energy Et = Ea + Eh as a function of θ for the particle shown in Figure
1. The field was applied with φ = 180◦ and was 62 mT in magnitude. The θ associated with the
minimum energy is indicated by Emin and is 180◦. b) Variation in first and second derivatives of
the energy equation. The flipping condition of both being zero simulaneously is met. c) Same a)
but the field was only 30 mT. d) Same as b but the flipping condition is not met.
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Figure 7.4: The flipping field Bf required to irreversibly switch the magnetization vector from one
easy direction to the other in a single domain particle dominated by uniaxial anisotropy.
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7.3. HYSTERESIS LOOPS

a) b)

c) d)

Figure 7.5: Making a hysteresis loop with an alternating gradient force magnetometer. A sample is
hung between two small electromagnets that generate an oscillating field. These are set between the
poles of a large electromagnet which generates a DC field in the direction of the blue arrow (labelled
“large field”). The DC field induces a magnetic moment in the sample (shown as the inset) which
vibrates with the oscillating field. The vibration is transmitted through the sample holder. The
amplitude of the vibration is proportional to the induced magnetization. This is plotted against
the applied large field in the hysteresis loop (upper right of figure). As the large field reduces, so
does the induced field. b) After passing through zero, the DC field changes sign (shown by the blue
arrow, bottom left of figure. At some field (the coercive field), the induced moment also changes
sign (hysteresis loop upper right of figure). c) After reaching some maximum field, the DC field
again changes sign and the magnetization begins its ascending loop (upper right diagram). d) As
the DC field approachs its maximum, the hysteresis loop begins to close. [From animations by
Genevieve Tauxe; see http://magician.ucsd.edu/Lab tour/movs/agfm.mov.]

7.3 Hysteresis loops

Now let us consider what happens to single particles when subjected to applied fields in the cycle
known as the “hysteresis loop”. Measurements of magnetic moment m as a function of applied
field B are made on a variety of instruments, such as a vibrating sample magnetometer (VSM) or
alternating gradient force magnetometer (AGFM; see Figure 7.5). In the AGFM, a sample is placed
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CHAPTER 7. MAGNETIC HYSTERESIS

on a thin stalk between pole pieces of a large magnet. There is a probe mounted behind the sample
that measures the applied magnetic field. There are small coils on the pole pieces that modulate
the gradient of the applied magnetic field (hence alternating gradient force). The sample vibrates
in response to changing magnetic fields and the amplitude of the vibration is proportional to the
moment in the axis of the applied field direction. The vibration of the sample stalk is measured
and calibrated in terms of magnetic moment. The magnetometer is only sensitive to the induced
component of m parallel to the applied field Ho, which is m|| = m cos φ (because the off axis terms
are squared and very small, hence can be neglected.) In the hysteresis experiment, therefore, the
moment parallel to the field m|| is measured as a function of applied field B.
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Figure 7.6: Moment measured for the particle (φ = 0◦) with applied field starting at 0 mT and
increasing in the opposite directions along track #1. When the flipping field Bf is reached, the
moment switches to the other direction along track #2. The field then switches sign and decreases
along track #3 to zero, then increases again to the flipping field. The moment flips and the the
field increases along track #4.

A typical hysteresis experiment is shown in Figure 7.5. It takes a few minutes to complete such
a loop. But understanding what the loops mean can take much more time and is the subject of the
rest of the lecture.

7.3.1 Uniaxial anisotropy

Imagine a single domain particle with uniaxial anisotropy. Because the particle is single domain,
the magnetization is at saturation and, in the absence of an applied field is constrained to lie along
the easy axis. Now suppose we apply a magnetic field in the opposite direction (see track # 1 in
Figure 7.6). When B reaches Bf in magnitude, the magnetization flips to the opposite direction
(track #2 in Figure 7.6) and will not change regardless of how high the field goes. The field then is
decreased to zero and then increased along track #3 in Figure 7.6 until Bf is reached again. The
magnetization then flips back to the original direction (track #4 in Figure 7.6).

Applying fields at arbitrary angles to the easy axis results in loops of various shapes (see
Figure 7.7a). As φ approaches 90◦, the loops become thinner. Remember that the flipping fields
for φ = 22◦ and φ = 70◦ are similar (see Figure 7.4) and are lower than that from φ = 0◦, but the
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Figure 7.7: a) The component of magnetization parallel to +Bmax versus B for field applied with
various angles φ. b) Sum of 10,000 individual curves similar to those shown in a) for φ drawn
from a uniform distribution on a sphere. The saturation remanence Mr, bulk coercive field Bc

and coercivity of remanence B′′′
cr are indicated. If the measurements are made on a demagnetized

specimen, increasing the field from zero, the initial slope is the low-field susceptibility. If the field
returns to zero after some flipping fields have been exceeded, there is a net isothermal remanence
(IRM). c) Ascending loop subtracted from the descending loop to make a ∆M curve. The field at
which ∆M is 50% of the original is another measure of Bcr (labelled B′′

cr. [Redrawn from Tauxe et
al., 1996.]

flipping field for φ = 90◦ is infinite, so that “loop” is closed and completely reversible.
In rocks with an assemblage of randomly oriented particles with uniaxial anisotropy, we would

measure the sum of all the millions of tiny individual loops. A specimen from such a rock would
yield a loop similar to that shown in Figure 7.7b. If the field is first applied to a demagnetized
specimen, the initial slope is the (low field) magnetic susceptibility (χlf ) first introduced in Lecture
1. From the treatment in Section 7.2 it is possible to derive the equation χlf = µoM

2
s /3Ku for this

initial (ferromagnetic) susceptibility (see O’Reilly 1984).
If the field is increased beyond the flipping field of some of the magnetic grains and returned

to zero, the net remanence is called an isothermal remanence (IRM). If the field is increased to
+Bmax, all the magnetizations are drawn into the field direction and the net magnetization is equal
to the sum of all the individual magnetizations and is the saturation magnetization Ms. When the
field is reduced to zero, the moments relax back to their individual easy axes, many of which are
at a high angle to the direction of the saturating field and cancel each other out. A loop that does
not achieve a saturating field (red in Figure 7.7 is called a “minor hysteresis loop”, while one that
does is called the “outer loop.”

The net remanence after saturation is termed the saturation remanent magnetization Mr (and
sometimes the saturation isothermal remanence sIRM). For a random assemblage of single domain
uniaxial particles, Mr/Ms = 0.5. The field necessary to reduce the net moment to zero is defined
as the coercive field Bc.

The coercivity of remanence Bcr is defined as the magnetic field required to irreversibliy flip half
the magnetic moments (so the net remanence after application of −Bcr to a saturation remanence
is 0). Bcr is always greater than or equal to Bc and the ratio Bcr/Bc for our random assemblage of
uniaxial SD particles is 1.09 (Wohlfarth, 1958). In Lecture 5 we introduced two ways of estimating
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CHAPTER 7. MAGNETIC HYSTERESIS

Bcr. Here we introduce two more ways. One is to use a so-called ∆M curve (Jackson et al. 1990).
The ascending loop is subtracted from the descending loop. When all the moments are flipped
into the new field, the ascending and descending loops join together and ∆M is 0. The field at
which half the moments are flipped (the definition of coercivity of remanence), ∆M is at 50% of its
initial value is here termed B′′

cr (see Figure 7.7c). The other way of estimating Bcr is illustrated in
Figure 7.7b. If one were to switch off the field at the point labeled B′′′

cr , the magnetization would
follow the dashed line and intersect the origin. For single domain grains, the dashed curve is parallel
to the lower curve. So if one only measured the outer loop, one could estimate the coercivity of
remanence by simply tracing the curve parallel to the lower curve (dashed line) from the origin
to the point of intersection with the upper curve (circled in Figure 7.7)b. This parameter is here
called B′′′

cr. This estimate is only valid for single domain grains.

7.3.2 Cubic anisotropy

In the case of equant grains of magnetite for which magnetocrystalline anisotropy dominates, there
are four easy axes, instead of two as in the uniaxial case. The maximum angle φ between an easy
axis and an applied field direction is 55◦. Hence there is no individual loop that goes through the
origin (see Figure 7.8). A random assemblage of particles with cubic anisotropy will therefore have
a much higher saturation remanence. In fact, the theoretical ratio of Mr/Ms for such an assemblage
is 0.87, as opposed to 0.5 for the uniaxial case (Joffe and Heuberger, 1974).
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Figure 7.8: Heavy lines: theoretical behavior of cubic grans of magnetite. Dashed lines are the
reponses along particular direcions. light grey lines: hysteresis response for single particles with
various orientations with respect to the applied field. [Redrawn from Tauxe et al., 2002.]
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7.3. HYSTERESIS LOOPS

7.3.3 SP particles

In superparamagnetic (SP) particles, Et is balanced by thermal energy kT . This behavior can be
modelled using statistical mechanics in a manner similar to that derived for paramagnetic grains
in Lecture 3 and summarized in the Appendix. In fact,

M

Ms
= N(coth γ − 1

γ
). (7.5)

where γ = MsBv
kT and N is the number of particles of volume v.
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Figure 7.9: a) The contribution of SP particles with saturation magnetization Ms and cubic edge
lendth d. γ = BMsd

3/kT . There is no hysteresis. b) The field at which the magnetization reaches
90% of the maximum B90 is when Msd

3/kT � 10. (Figure redrawn from Tauxe et al., 1996.) c)
Typical loop for a population of MD grains. (Data from gabbro from Troodos Ophiolite - courtesy
of J.S. Gee).

Our end result, (Equation 7.5), is the familiar Langevin function from our discussion of para-
magnetic behavior (Lecture 3); hence the term “superparamagnetic” for such particles.

The contribution of SP particles for which the Langevin function is valid with given Ms and d
is shown in Figure 7.9a. The field at which the population reaches 90% saturation B90 occurs at
γ ∼ 10. Assuming particles of magnetite (Ms = 4.8 x 105 A/m) and room temperature (T = 300◦K),
B90 can be evaluated as a function of d (see Figure 7.9b). Because of its inverse cubic dependence
on d, B90 rises sharply with decreasing d and is hundreds of tesla for particles a few nanometers in
size, approaching paramagnetic values. The maximum size for SP behavior is rather controversial
at the moment, but Tauxe et al. (1996) argue that it is ∼ 20 nm.

For low magnetic fields, the Langevin function can be approximated as ∼ 1/3. So we have:

M

Ms
=

1
3

MsBv

kT
.

If we substitute µoH for B and rearrange this equation, we can get the superparamagnetic suscep-
tibility χsp as:

M

H
=

µoMsv

3kT
. (7.6)

Remembering the equation for the blocking volume of a uniaxial crystal (Equation 5.8 in Lecture
5) as:

vb =
ln(Cτ)

Ku
,
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CHAPTER 7. MAGNETIC HYSTERESIS

we can substitute this volume into Equation 7.6 as the maximum volume of an SP grain, giving us:

χsp =
µoM

2
s ln(Cτ)
3Ku

. (7.7)

Comparing this expression with that derived for ferromagnetic susceptibility in Section 7.3.1, we
find that χsp is a factor of ln(Cτ) � 27 larger than the equivalent single domain particle.

7.3.4 Vortex remanence state

Magnetite particles whose remanence states are in a “vortex” structure (see Lecture 4) probably
flip using what has been called a “curling” mode. In order to flip its magnetic moment, the particle
forms vortices which can zip through the particle. The hysteresis behavior of these particles can be
modelled numerically (e.g. Tauxe et al., 2002). Examples of simulations of uniformly distributed
assemblages are shown in Figure 7.10.

In Figure 7.10a we show the results from equant particles with widths of about 90 nm. The thin
lines are individual loops for a given orientation of the applied field with respect to the crystallo-
graphic axes and the average loop is the heavy line. The loop from a uniform assemblage of such
particles has a remanence ratio (Mr/Ms) of 0.63 and a coercive field of 14 mT. The expected values
are 0.87 and 10 mT respectively for uniformly magnetized equant (CSD) particles of magnetite, so
this flower state assemblage has a magnetization that is “harder”. The lower Mr/Ms ratio stems
from the fact that the particles are not at saturation.

a)

M
/
M

s

B (mT)B (mT)B (mT)

c)b)

Figure 7.10: Simulated loops for assemblages of randomly oriented particles. a) Simulation of a 90
nm cubic particle. Thin lines are representative examples for various orientations of B with respect
to the crystallographic axes. Heavy line is the average loop for a random assemblage of particles.
b) Same as a) but for a 70x140 nm parallelopiped. c) Same as a) but for a 115 nm cube. [Figure
from Tauxe et al., 2002.]

In Figure 7.10b we show a similar set of curves for an assemblage of 70 nm particles with a/b
ratios of 2. The remanence ratio of this assemblage is 0.46 and the coercive field is ∼38 mT as
compared to 0.5 and 69 mT. These uniaxial, flower state particles therefore have lower coercive
fields than expected from a random assemblage of SD grains.

A third example of an assemblage of particles is shown in Figure 7.10c. This is for an assemblage
of 115 nm (vortex state) equant particles. The average loop has a squareness of 0.16 and coercive
field of 10 mT. Particles with characteristic vortex remanence states therfore have lower coercive
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fields than SD particles, but higher than particles with domain walls discussed in the next section.
They also have remanence ratios that are in between SD and MD particles.
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Figure 7.11: Interaction of a domain wall and a void. When the void is within a domain, free poles
create a magnetic field which creates a self energy (Lecture 4). When a domain wall intersects the
void, the self-energy is reduced. There are no exchange or magnetocrystalline anisotropy energy
terms within the void, so the wall energy is reduced.
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Figure 7.12: a) Schematic view of wall energy across a transect of a multi-domain grain. b)
Placement of domain walls in the demagnetized state. [Domain observations from Halgedahl and
Fuller, 1983.]
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CHAPTER 7. MAGNETIC HYSTERESIS

7.3.5 Particles with domain walls

Moving domain walls around is much easier than flipping the magnetization of an entire particle
coherently. The reason for this is the same as the reason that it is easier to move a rug by lifting
up a small wrinkle and pushing that through the rug, than to drag the whole rug by the same
amount. Because of the greater ease of changing magnetic moments in MD grains, they have lower
coercive fields and saturation remanence is also much lower than for uniformly magnetized particles
(see Figure 7.9c). For grains large enough to have many walls (say a few microns), we predict that
the grains would have no stability and the loop would be nearly indistinguishable from an SP
loop. Yet some large grains have rather large coercivities and remanence ratios. The principle
mechanism invoked to explain the unexpected stability of some grains is that wall energy is not
uniform through-out the grain; some places have substantially lower energies than others and walls
get “stuck” in these local energy minima (LEMs).

B
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       state

Saturated
   state

   Saturated
remanent state

-3 mT

+3 mT

a)

b)

c)

d)

e)
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Figure 7.13: Schematic view of the magnetization process in MD grain shown in previous figure. a)
Demagnetized state, b) in the presence of a saturating field, c) field lowered to +3 mT, d) remanent
state, e) backfield of -3 mT, f) resulting loop. Inset shows detail of domain walls moving by small
increments called Barkhausen jumps. (Domain wall observations from Halgedahl and Fuller, 1983;
schematic loop after O’Reilly, 1984.)

There are several possible causes of variability in wall energy within a magnetic grain, for
example, voids, lattice dislocations, stress, etc. The effect of voids is perhaps the easiest to visualize,
so we will consider voids as an example of why wall energy varies as a function of position within
the grain. We show a particle with lamellar domain structure and several voids in Figure 7.11.
When the void occurs within a uniformly magnetized domain (left of figure), the void sets up a
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Figure 7.14: Heavy green line: initial behavior of demagnetized specimen as applied field ramps
up from zero field to a saturating field. The initial slope is the initial or low-field susceptibility
χlf . After saturation is achieved the slope is the high-field susceptibility χhf which is the non-
ferromagnetic contribution, in this case the paramagnetic susceptibility (because χhf is positive.
The dashed blue line is the hysteresis loop after the paramagnetic slope has been subtracted. Satu-
ration magnetization Ms is the maximum value of magnetization after slope correction. Saturation
remanence Mr is the value of the magnetization remaining in zero applied field. Coercivity (Bc)
and coercivity of remanence Bcr are as in Figure 7.7

demagnetizing field as a result of the free poles on the surface of the void. There is therefore, a self-
energy associated with the void. When the void is traversed by a wall, the free pole area is reduced,
reducing the demagnetizing field and the associated self-energy. Therefore, the energy of the void is
reduced by having a wall bisect it. Furthermore, the energy of the wall is also reduced, because the
area of the wall in which magnetization vectors are tormented by exchange and magnetocrystalline
energies is reduced. The wall gets a “free” spot if it bisects a void. The wall energy Ew therefore
is lower as a result of the void.

In Figure 7.12, we show a sketch of a hypothetical transect of Ew across a particle. There are
four LEMs labelled a-d. Domain walls will distribute themselves through out the grain in order
to minimize the net magnetization of the grain and also to try to take advantage of LEMs in wall
energy.

Domain walls move in response to external magnetic fields (see Figure 7.13). Starting in the
demagnetized state (Figure 7.13a), we apply a magnetic field that increases to saturation (Fig-
ure 7.13b). As the field increases, the domain walls move in sudden jerks as each successive local
wall energy high is overcome. This process, known as Barkhausen jumps, leads to the stair-step
like increases in magnetization (shown in the inset of Figure 7.13). At saturation, all the walls
have been flushed out of the crystal and it is uniformly magnetized. When the field decreases
again, to say +3 mT (Figure 7.13c), domain walls begin to nucleate, but because the energy of
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CHAPTER 7. MAGNETIC HYSTERESIS

nucleation is larger than the energy of denucleation, the grain is not as effective in cancelling out
the net magnetization, hence there is a net saturation remanence (Figure 7.13d). The walls migrate
around as a magnetic field is applied in the opposite direction (Figure 7.13e) until there is no net
magnetization). The difference in nucleation and denucleation energies was called on by Halgedahl
and Fuller (1983) to explain the high stability observed in some large magnetic grains.

7.4 Magnetic susceptibility

Figure 7.7b showed the idealized case in which only ferromagnetic particles participated in the
hysteresis measurements; in fact the curve is entirely theoretical. In “real” specimens there can be
paramagnetic, diamagnetic AND ferromagnetic particles and the loop may well look like that shown
in Figure 7.14. The initial slope of a hysteresis experiment starting from a demagnetized state in
which the field is ramped from zero up to higher values is the low field magnetic susceptibility or
χlf (see Figure 7.14a). If the field is then turned off, the magnetization will return again to zero.
But as the field increases passed the lowest flipping field, the remanence will no longer be zero but
some isothermal remanence (see Lecture 5). Once all particle moments have flipped and saturation
magnetization has been achieved, the slope relating magnetization and applied field reflects only
the non-ferromagnetic (paramagnetic and/or diamagnetic) susceptibility, here called χhf . In order
to estimate the saturation magnetization and the saturation remanence, we must first subtract
the high field slope. So doing gives us the blue dashed line from which we may read the various
hysteresis parameters first defined in Figure 7.7b.

7.5 First Order Reversal Curves

Hysteresis loops can yield a tremendous amount of information yet much of this is lost by simply
estimating the set of parameters Mr,Ms, Bcr, Bc, χi, χhf , etc.. Pike et al. (e.g., 1999) popularized
the method of Mayergoyz (1986) or using so-called First Order Reversal Curves or FORCs to
represent hysteresis data. In the FORC experiment, a sample is subjected to a saturating field, as
in most hysteresis experiments. The field is lowered to some field Ha, then increased again through
some value Hb to saturation (see Figure 7.15a). [It is unfortunate that the FORC terminology has
chosen to use Ha, yet routinely neglects the necessary µo to render these field values in tesla...]
The magnetization curve between Ha and Hb is a “FORC”. A series of FORCs (see Figure 7.15b)
are generated to the desired resolution.

To transform FORC data into some useful form, they are gridded as in the inset in Figure 7.15c.
In this example, we take a curve (in red) with its three neighbors on either side (in green), for a
smoothing factor of SF = 3. The data in the box are fit with a polynomial surface of the form:

a1 + a2Ha + a3H
2
a + a4Hb + a5H

2
b + a6HaHb

where the ai are fitted coefficients. The coefficient −a6(Ha,Hb) is contoured as in the Figure 7.15b
and is a good approximation for the second derivative of the polynomial surface at P (Figure 7.15b).
A FORC diagram is the contour plot rotated such that Hc = (Hb −Ha)/2 and Hu = (Ha + Hb)/2.
Please note that because Ha < Hb, data are only possible for positive Hc.
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7.5. FIRST ORDER REVERSAL CURVES
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Figure 7.15: a) Dashed line is the descending magnetization curve taken from a saturating field to
some field Ha. Red line is the first order reversal curve (FORC) from Ha returning to saturation.
At any field Hb > Ha there is a value for the magnetization M(Ha,Hb). b) A series of FORCs for
a single domain assemblage of particles. At any point “P” there are a set of related curves making
a 7x7 grid. A polynomial surface is fit to these data is estimated. c) A contour plot of the mixed
second derivative of the polynomial surface evaluated for points Ha,Hb. (Redrawn from Pike et
al., Phys. Earth Planet. Int., 126, 11-25. 2001). Note: all Hs are actually µoH.
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Figure 7.16: a) Hysteresis loop for a large, stressed gain of magnetite prior to annealing. b) FORC
diagram from same. (Redrawn from Pike et al., 2001).

Tauxe, 2007 7- 15 Lectures in Paleomagnetism



CHAPTER 7. MAGNETIC HYSTERESIS

Imagine we travel down the descending magnetization curve (dashed line in Figure 7.15a) to
a particular field µoHa less than the smallest flipping field in the assemblage. If the particles are
single domain, the behavior is reversible and the first FORC will travel back up the descending
curve. It is only when |µoHa| exceeds the flipping field of some of the particles that the FORC will
trace a new curve on the inside of the hysteresis loop. In the simple single domain, non-interacting,
uniaxial magnetite case, the FORC density in the quadrants where Ha and Hb are of the same sign
must be zero. Indeed, FORC densities will only be non-zero for the range of flipping fields because
these are the bounds of the flipping field distribution. So the diagram in Figure 7.15c is nearly that
of an ideal uniaxial SD distribution.

Consider now the case in which a particle has domain walls. Walls can move much more easily
than flipping the moment of an entire grain coherently. In fact, they begin to move in small jumps
(from LEM to LEM) as soon as the applied field changes. If a wall nucleates while the field is
decreasing and the field is then ramped back up, the magnetization curve will not be reversible,
even though the field never changed sign or approached the flipping field for coherent rotation.
The resulting FORC for such behavior would have much of the action in the region where Ha is
positive. When transformed to Hu and Hc, the diagram will have the highest densities for small
Hc but over a range of ±Hu as shown in Figure 7.16.

7.5.1 Which FORC should you use?

FORC diagrams take hours to create while a single hysteresis loop takes minutes. In many cases
the the most interesting thing one learns from FORC diagrams is the degree to which there is
irreversible behavior when the field is reduced to zero then ramped back up to saturation (see
Figure 7.17). Such irreversible behavior in what Yu and Tauxe (2004) call the “Zero FORC”
or ZFORC can arise from particle interactions, domain wall jumps or from the formation and
destruction of vortex structures in the magnetic grains.

Fabian (2003) defined a parameter called “transient hysteresis” which is the area between the
ascending and descending loops of a ZFORC (shaded area in Figure 7.17). This is defined as:

TH =
Bs∑
0

[Mdescending − Mascending] · ∆B.

where ∆H is the field increment used in the hysteresis measurement. When normalized by Ms, TH
has units of B (tesla).

Transient hysteresis is thought to result from self demagnetization, for example shifting of
domain walls or the formation and destruction of vortex structures. An example of what might be
causing transient hysteresis at the macro scale is shown for micromagnetic modelling of a single
particle in Figure 7.17b (Yu and Tauxe, 2004). The ZFORC starts and ends at saturation. On
the descending loop, a vortex structure suddenly forms, at the point on the hysteresis loop labelled
a), sharply reducing the magnetization. The magnetization state just before the jump is shown as
snapshot labelled “descending branch”. The vortex remains along the ascending branch until much
higher fields (see snapshot labelled “ascending branch”). The irreversible behavior of millions
of particles with different sizes and shapes leads to the total transient hysteresis of the macro
specimen. In general, Tauxe and Yu (2004) showed that the larger the particle, the greater the
transient hysteresis, until truly multi-domain behavior essentially closed the loop, precluding the
observation of TH (or of a FORC diagram for that matter).
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7.6. A GLIMPSE AT PARTICLE INTERACTION
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Figure 7.17: a) Illustration of a Zero FORC (ZFORC) whereby the descending loop from satruation
is terminated at zero field and the field is then ramped back up to saturation. The transient
hysteresis (TH) of Fabian (2003) is the shaded area between the two curves. b) Micromagnetic
model of a ZFORC for a 100 nm cube of magnetite. Two snap shots of the internal magnetization
on the descending and ascending loops are shown in the insets. [Figure redrawn from Yu and
Tauxe, 2004.]

7.6 A glimpse at particle interaction

Much of the character of hysteresis loops is frequently attributed to interaction between particles,
something that is extremely difficult to model and up until recently impossible to observe. A new
technique for imaging of both the composition and the magnetization of particles on a nanoscale
(e.g., Harrison et al. 2002) allows a glimpse at the magnetization structure of tiny, interacting
particles. In Figure 7.18, we show an example of the mapping of iron and titanium (top panel) and
the magnetic structure inferred from “off-axis electron holography” from Harrison et al. (2002).
The figure shows both uniform magnetization and vortex structures within particles and super
vortex structures from magnetostratic interaction fields between particles.
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CHAPTER 7. MAGNETIC HYSTERESIS

Figure 7.18: Top panel: chemical maps with iron in blue and titanium in red. These define the
lamellar intergrowths of magnetite/ulvöspinel. Bottom panel: Associated magnetic microstructure.
The arrows show the direction of magnetization inferred from off axis electron holography. [Figure
from Harrison et al. 2002.]
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A. SUPERPARAMAGNETISM

Appendix

A Superparamagnetism

The derivation of superparamagnetism follows closely that of paramagnetism whereby the proba-
bility of finding a magnetization vector an angle α away from the direction of the applied field is
give by:

n(α)dα = 2πnoe
(MsBv cosα

kT
) sin αdα. (A1)

The total magnetization contributed by the N moments is:

M

Ms
=

∫ π

0
cos αn(α)dα. (A2)

Combining ( A1) and ( A2) we get

M

Ms
= N

∫ π
0 n(α) cos αdα∫ π

0 n(α)dα

= N

∫ π
o e(MsBv cos α)/kT cos α sin αdα∫ π

o e(MsBv cosα)/kT sin αdα
.

By substituting MsBv/kT = γ and cos α = x, we write

M

Ms
= N

∫ −1
1 eγxxdx∫ −1
1 eγxdx

= N(
eγ + e−γ

eγ − e−γ
− 1

γ
) (A3)

and finally
M

Ms
= N(coth γ − 1

γ
). (A4)

where γ = MsBv
kT and N is the number of particles of volume v.
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