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Chapter 4

Magnetic anisotropy, magnetic
domains and superparamagnetism

Suggested Reading
For background:

Chapter 3 (pp. 41-55) Butler (1992)
General background in Statistical Mechanics (see, e.g.,

http://en.wikipedia.org/wiki/Statistical mechanics)
To learn more:

Chapter 2.8 & 5 Dunlop and Özdemir (1997)

4.1 Introduction

In Lecture 3 we learned that in some crystals electronic spins work in concert to create a spontaneous
magnetization that remains in the absence of an external field. The basis of paleomagnetism is that
these ferromagnetic particles carry the record of ancient magnetic fields. What allows the magnetic
moments to come into equilibrium with the geomagnetic field and then what fixes that equilibrium
magnetization into the rock so that we may measure it millions or even billions of years later? We
will begin to answer these questions over the next few lectures.

We will start with the second part of the question: what fixes magnetizations in particular
directions? The short answer is that certain directions within magnetic crystals are at lower energy
than others. To shift the magnetization from one “easy” direction to another requires energy. If
the barrier is high enough, the particle will stay magnetized in the same direction for very long
periods of time - say billions of years. In this lecture we will address what causes and some of the
consequences of these energy barriers.

4.2 The magnetic energy of particles

4.2.1 Magnetic moments and external fields

We know from experience that there are energies associated with magnetic fields. Just as a mass
has a potential energy when it is placed in the gravitational field of another mass, a magnetic
moment has an energy when it is placed in a magnetic field. We have seen this energy briefly in
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Figure 4.1: a) A magnetite octahedron. b) Internal crystal structure. Big red dots are the oxygen
anions. The blue dots are iron cations in octahedral coordination and the yellow dots are in
tetrahedral coordination. Fe3+ sits on the A sites and Fe2+ and Fe3+ sit on the B sites. c)
Magnetocrystalline anisotropy energy as a function of direction within a magnetite crystal. The
easiest direction to magnetize (the direction with the lowest energy) is along the body diagonal.
(Redrawn from Williams and Dunlop, 1995.) d) Numerical simulation of the magnetization of a
cube of magnetite as the applied field is brought down from saturation to zero, then changed sign
and increased again in the opposite direction along two directions in the crystal. The magnetization
when aligned with the body diagonal [111] direction (which is associated with the minimum energy
state - see c) - is harder to change than along one of the “hard” directions (e.g. [001]).
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Lectures 1 and Lecture 3 as the magnetostratic energy (m ·B). This energy has many names, but
here we will work with the volume normalized “magnetostatic interaction energy density” (Eb):

Eb = −M ·B. (4.1)

Eb is at a minimum when the magnetization M is aligned with the field B. It is this energy that
drives magnetic compass needles to seek the minimum energy state by aligning themselves with
the ambient magnetic field.

4.2.2 Exchange energy

We learned in Lecture 3 that some crystalline states are capable of ferromagnetic behavior because
of quantum mechanical considerations. Electrons in neighboring orbitals in certain crystals “know”
about each other’s spin states. In order to avoid sharing the same orbital with the same spin (hence
having the same quantum numbers - not allowed from Pauli’s exclusion principle), electronic spins
in such crystals act in a coordinated fashion. They will be either aligned parallel or antiparallel
according to the details of the interaction. This exchange energy density (Ee) is the source of
spontaneous magnetization and is given for a pair of spins by:

Ee = −2JeSi · Sj

where Je is the “exchange integral” and Si and Sj are spin vectors. Depending on the details of the
crystal structure (which determines the size and sign of the exchange integral), exchange energy is
at a minimum when electronic spins are aligned parallel or anti-parallel.

We define here a parameter that we will use later: the exchange constant A = JeS
2/a where a

is the interatomic spacing. A = 1.33 x 10−11 Jm−1 for magnetite, a common magnetic mineral.
The 3d electronic orbitals within magnetic crystals are, unlike the s orbitals, anisotropic (recall

Lecture 3). They “poke” in certain directions. Hence spins in some directions within crystals will
be easier to coordinate than in others. We can illustrate this using the example of magnetite shown
in Figure 4.1. Magnetite octahedra (Figure 4.1a), when viewed at the atomic level (Figure 4.1b)
are composed of one ferrous (Fe2+) cation, two ferric (Fe3+) cations and four O2− anions. Each
oxygen anion shares an electron with two neighboring cations in a covalent bond.

In Lecture 3 it was mentioned that in some crystals, spins are aligned anti-parallel, yet there is
still a net magnetization, a phenomenon known as “ferrimagnetism”. This can arise from the fact
that not all cations have the same number of unpaired spins. Magnetite, with its ferrous (4 mb) and
ferric (5 mb) states is a good example. There are three iron cations in a magnetite crystal giving
a total of 14 mb to play with. This is HUGE. Magnetite is very magnetic, but not that magnetic!
From Figure 4.1b we see that the ferric ions are all sitting on the tetrahedral (A) lattice sites and
there are equal numbers of ferrous and ferric ions sitting on the octahedral (B) lattice sites. The
unpaired spins of the cations in the A and B lattice sites are aligned anti-parallel to one another
because of super exchange (Lecture 3) so we have 9 mb on the B sites minus 4 mb on the A sites
for a total of 5 mb per unit cell of magnetite.

4.2.3 Magnetocrystalline anisotropy energy

The energy of moments aligned along different directions in magnetite is shown in Figure 4.1c.
The bulges are in directions that have the highest energy ([001, 010, 100]). The lowest energy

Tauxe, 2007 4- 3 Lectures in Paleomagnetism



CHAPTER 4. MAGNETIC ANISOTROPY, MAGNETIC DOMAINS AND
SUPERPARAMAGNETISM

is along the body diagonal ([111] direction). The energy surface shown in Figure 4.1c represents
the magnetocrystalline anisotropy energy, Ea. In a cubic crystal with direction cosines α1, α2, α3

(the cosines of the angles between the direction and the crystallographic axes [100, 010, 001]; see
appendix to Lecture 1), the energy density is given by:

Ea = K1(α2
1α

2
2 + α2

2α
2
3 + α2

3α
2
1) + K2α

2
1α

2
2α

2
3 (4.2)

where K1 and K2 are empirically determined magnetocrystalline anisotropy constants. In the case of
(room temperature) magnetite, K1 is -1.35 x 104 Jm−3. If you work through the magnetocrystalline
equation, you will find Ea is zero parallel to the [100] axis, K1/4 parallel to the [110] and K1/3 +
K2/27 parallel to the [111] direction (the body diagonal). So when K1 is negative, the [111] direction
has the minimum energy. This is the reason that there is a dimple in the energy surface along that
direction in Figure 4.1c.
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Figure 4.2: Variation of K1 and K2 of magnetite as a function of temperature. Redrawn from
Dunlop and Özdemir (1997).

As a consequence of the magnetocrystalline anisotropy energy, once the magnetization is aligned
with an easy direction, work must be done to change it. In order to switch from one easy axis to
another (e.g. from one direction along the body diagonal to the opposite), the magnetization has
to traverse a path over an energy barrier which is the difference between the energy in the easy
direction and that in the intervening hard direction. In the case of magnetite at room temperature,
we have this energy barrier as E[111]-E[110] or to first order K1/3 − K1/4 = K1/12.

In Figure 4.1d we show the results of numerical simulations of the magnetization of a cube of
magnetite as an applied field is brought from saturation to zero, then changed in sign and increased
in the opposite direction. We show the results from two directions in the crystal. The magnetization
aligned with the body diagonal [111] (associated with the minimum energy state - see Figure 4.1c)
is harder to change than along one of the “hard” directions (e.g. [001]).
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A useful parameter in characterizing the stability of a particular particle or assemblage of
particles is the field that is required to drive the magnetizations out of the easy directions, over an
energy barrier and into another easy direction. This field is called the flipping field, the coercive
field or the coercivity (Bc or Hc depending on units), something we will consider in more detail in
later lectures.

Cubic symmetry (as in the case of magnetite) is just one of many types of crystal symmetries.
One other very important form is the uniaxial symmetry which can arise from crystal shape or
structure. The energy density for uniaxial magnetic anisotropy is:

Ea = Ku1sin
2θ + Ku2 sin 4θ + ... (4.3)

In this equation, when the “uniaxial anisotropy constant”, Ku, is negative, the magnetization is
constrained to lie perpendicular to the axis of symmetry. When Ku > 0, the magnetization lies
parallel to it.

An example of a mineral dominated by uniaxial symmetry is hematite. The magnetization of
hematite is quite complicated, as we shall learn later, but one source is magnetization lies in the
“spin-canting” (see Lecture 3) within the basal plane of a hexagonal crystal. Within the basal
plane, the anisotropy constant is very low and the magnetization wanders fairly freely. However,
the anisotropy energy away from the basal plane is high, so the magnetization is constrained to lie
within the basal plane.

Because electronic interactions depend heavily on inter atomic spacing, magnetocrystalline
anisotropy constants are a strong function of temperature (see Figure 4.2). In magnetite, K1

changes sign at a temperature known as the “isotropic point”. At the isotropic point, there is no
large magnetocrystalline anisotropy. The large energy barriers that act to keep the magnetizations
parallel to the body diagonal are gone and the spins can wander more freely through the crystal.
Below the isotropic point, the energy barriers rise again, but with a different topology in which the
crystal axes are the energy minima and the body diagonals are the high energy states.
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Figure 4.3: Magnetization curve for magnetite as a function of temperature. The specimen was
placed in a very large field, cooled to near absolute zero, then warmed up. The magnetization was
measured as it warmed. goes through the Verwey transition, a fraction of the magnetization is
lost. Data downloaded from “w5000” in the “Rock magnetic Bestiary” collection at the Institute
for Rock Magnetism (http://www.irm.umn.edu/bestiary/).

At room temperature, electrons hop freely between the ferrous and ferric ions on the B lattice
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sites, so there is no order. Below about 120 K, there is an ordered arrangement of the ferrous
and ferric ions. Because of the difference in size between the two, the lattice of the unit cell
becomes slightly distorted and becomes monoclinic instead of cubic. This transition is known
as the Verwey transition. Although the isotropic point (measured magnetically) and the Verwey
transition (measured electrically) are separated in temperature by about 15o, they are related
phenomena (the ordering and electron hopping cause the change in K1).

The change in magnetocrystalline anisotropy at low temperature can have a profound effect on
the magnetization. In Figure 4.3 we show a typical (de)magnetization curve for magnetite taken
from the “Rock magnetic bestiary” web site maintained at the Institute for Rock Magnetism:
http://www.geo.umn.edu/orgs/irm/bestiary. There is a loss of magnetization at around 100 K.
This loss is the basis for “low-temperature demagnetization” (LTD). However, some portion of
the magnetization is always recovered after low temperature cycling (called the low temperature
memory), so the general utility of LTD is somewhat limited.

4.2.4 Magnetostriction - stress anisotropy

Because the exchange energy depends strongly on the details of the physical interaction between
orbitals in neighboring atoms with respect to one another, changing the positions of these atoms
will affect that interaction. Put another way, straining a crystal will alter its magnetic behavior.
Similarly, changes in the magnetization can change the shape of the crystal by altering the shapes
of the orbitals. This is the phenomenon of magnetostriction. The magnetic energy caused by the
application of stress to a crystal be approximated by:

Eσ = −3
2
λ̄σ sin 2θ

where λ̄ is an experimentally derived constant, σ is the stress, and θ is the angle of the stress with
with respect to the c crystallographic axis. λ̄ for magnetite is about 40 x 10−6. Note the similarity
in form of magnetostriction and uniaxial anisotropy giving rise to a single “easy axis” within the
crystal.

4.2.5 Magnetostatic - or shape anisotropy

There is one more important source of magnetic anisotropy: shape. To understand how crystal
shape controls magnetic energy, we need to understand the concept of the internal “demagnetizing
field” of a magnetized body. In Figure 4.4a we show the magnetic vectors within a ferromagnetic
crystal. These produce a magnetic field external to the crystal that is proportional to the magnetic
moment (see Lecture 1). This external field is identical to a field produced by a set of “free poles”
distributed over the surface of the crystal (Figure 4.4b). The surface poles don’t just produce the
external field, they also produce an internal field shown in Figure 4.4c. The internal field is known
as the demagnetizing field Hd. Hd is proportional to the magnetization of the body and is sensitive
to the shape. For the simple ellipsoid shown in Figure 4.4, the demagnetizing field is given by:

Hd = −NM

where N is a demagnetizing factor determined by the shape. For a sphere, the surface poles are
distributed over the surface such that there are none at the “equator” and most at the “pole” (see
Figure 4.4d). By using tricks of potential field theory in which we can pretend that the external
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Figure 4.4: a) Internal magnetizations within a ferromagnetic crystal. b) Generation of an identical
external field from a series of surface monopoles. c) The internal “demagnetizing” field resulting
from the surface poles. [Redrawn from O’Reilly, 1984]. d) Surface poles on a sphere. e) Surface
poles on an ellipse, with the magnetization parallel to the elongation. f) Surface poles with the
magnetization perpendicular to the axis of elongation.

field of a uniformly magnetized body is identical to that of a central dipole moment of magnitude
m = vM (where v is volume). At the equator of the sphere as elsewhere, Hd = −NM. But the
external field at the equator equal to the demagnetizing field just inside the body because the field
is continuous across the body. The equatorial (tangential ) field at the equator (remembering from
Lecture 1) is given by

He = − m

4πr3
.

Using the fact that that magnetization (in units of Am−1) is the moment (in units of Am2) per
unit volume (in units of m3) and the volume of a sphere is 4

3πr3, we have:

m =
4
3
πr3M,

so substituting and solving for Hd we get Hd = −1
3M , hence N = 1

3 .
Different directions within a non-spherical crystal will have different distributions of free poles

(see Figures 4.4e,f). In fact the surface density of free poles is given by σm = M · r̂. Because the
surface pole density depends on direction, so too will N . In the case of an ellipsoid magnetized
parallel to the elongation axis a (Figure 4.4e), the free poles are farther apart than across the
grain, hence, intuitively, the demagnetizing field, which depends on 1/r2, must be less than in the
case of a sphere. Thus, Na <1

3 . Similarly, if the ellipsoid is magnetized along b (Figure 4.4e),
the demagnetizing field is stronger or Nb > 1

3 . In an ellipsoid there are three axes a, b, c, and
Na+Nb+Nc = 1 (in SI; in cgs units the sum is 4π). This plus the fact that Na = 1

3 [1− 2
5(2− b

a − c
a)]

allows us to determine Na,b,c for any ellipsoid.
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Getting back to the anisotropy energy, that arising from the external field of the particle is
called magnetostatic self energy (sometimes called “self energy”) whose energy density equation is:

Ems =
1
2
µoNaM

2 +
1
2
µo(Nc − Na)M2 sin 2θ (4.4)

where Nc and Na are the demagnetizing coefficients along the short and long axes respectively. This
expression can be derived by “building” a magnetic particle and considering the potential energy
gained by each volume dv as it is brought in (−µoMdv ·Hd) and integrating. The 1

2 appears in order
to avoid counting each volume element twice and the v dissappears because all the energies we have
been discussing are energy densities - the energy per unit volume. Note that the magnetostatic
energy has a uniaxial form with the constant of uniaxial anisotropy - Ku = 1

2∆NµoM
2.

For a prolate ellipsoid Nc = Nb and a/c = 1.5, Na−Nc =∼ 0.16. The magnetization of magnetite
is 4.8 x 105Am−1, so Ku � 2.7 x 104 Jm−3. This is somewhat larger than the absolute value of K1

for magnetocrystalline anisotropy in magnetite (K1= -1.35 x 104 Jm−3), so the magnetization for
even slightly elongate grains will be dominated by uniaxial anistropy controlled by shape. Minerals
with low saturation magnetizations (like hematite) will not be prone to shape dominated magnetic
anisotropy, however.
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Figure 4.5: Possible non-uniform magnetization configurations that reduce self energy for magnetite
with increasing particle widths. The net remanent magnetization reduces with increasingly non-
uniform spin configurations. [Data from Tauxe et al., 2002.]
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a) b) c) d)

Figure 4.6: A variety of domain structures of a given particle. a) Uniformly magnetized (single
domain). b) Two domains. c) Four domains in a lamellar pattern. d) Essentially two domains with
two closure domains.

4.3 Magnetic domains

4.3.1 Some theory

So far we have been discussing hypothetical magnetic particles that are uniformly magnetized. In
Figure 4.4a we noted that there is an energy associated with the field generated by a magnetic
particle. This self energy density is given in the simple case when Hd is antiparallel to the internal
magnetization by:

Eself = −1
2
µoM ·Hd =

1
2
µoNM2 (4.5)

Particles with strong magnetizations (like magnetite) have self energies that quickly become
quite large. We have been learning about several mechanisms that tend to align magnetic spins. In
fact in very small particles, the spins are essentially lined up. The particle is uniformly magnetized
and is called single domain (SD). In larger particles (although still pretty small) the self energy
exceeds the other exchange and magnetocrystalline energies and crystals have non-uniform states
of magnetization.

There are many strategies possible for magnetic particles to reduce self energy. Numerical
models (called micromagnetic models) can find internal magnetization configurations that minimize
the energies discussed in the preceding sections. Micromagnetic simulations for magnetite particles
(e.g. Schabes and Bertram, 1988) allow us to peer into the state of magnetization inside magnetic
particles. These simulations give a picture of increasing complexity from so-called “flower” to
“vortex” states (Figure 4.5) remanent states.

As particles grow even larger, they break into regions of uniform magnetization called mag-
netic domains separated by narrow zones of rapidly changing spin directions called domain walls.
Magnetic domains can take many forms. We illustrate a few in Figure 4.6. The uniform case
(single domain) is shown in Figure 4.6a. The external field is very large because the free poles are
far apart (at opposite ends of the particle). When the particle organizes itself into two domains
(Figure 4.6b), the external field is reduced by about a factor of two. In the case of four lamellar
domains (Figure 4.6c), the external field is quite small. The introduction of closure domains as in
Figure 4.6d reduces the external field to nothing.
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As you might already suspect, domain walls are not “free”. If, as in Figure 4.7a, the spins
simply switch from one orientation to the other abruptly, the exchange energy cost would be very
high. One way to get around this to spread the change over several hundred atoms, as sketched
in Figure 4.7b. The wall width δ is wider and the exchange energy price is much less. However,
there are now spins in unfavorable directions from a magnetocrystalline point of view (they are in
“hard” direction). Exchange energy therefore favors wider domain walls while magnetocrystalline
anisotropy favors thin walls. With some work (see e.g., Dunlop and Özdemir, 1997, pp. 117-118), it
is possible to come up with the following analytical expressions for wall width (δw) and wall energy
density (Ew):

δw = π(
A

K
)

1
2

, Ew = 2π(AK)
1
2 (4.6)

where A is the exchange constant from before and K is the magnetic anisotropy constant (e.g., Ku

or K1). Plugging in values for magnetite given previously we get δw = 0.28 µm and Ew = 2.3 x
10−3Jm−2.

a)

W

W

b)

Figure 4.7: Examples of possible domain walls. a) There is a 180◦ switch from one atom to the
next. The domain wall is very thin, but the exchange price is very high. b) There is a more
gradual switch from one direction to the other [note: each arrow represents several 10’s of unit
cells]. The exchange energy price is lower, but there are more spins in unfavorable directions from
a magnetocrystalline point of view.

In Figure 4.8 we plot the self energy and the wall energy from Ew for spheres of magnetite. We
see that the wall energy in particles with radii of a few tenths of a micron is much less than the
self energy, yet the width of the walls is also a few tenths of a micron. So the smallest wall is really
more like the vortex state and it is only for particles closer to one micron in size that true domains
separated by discrete walls are formed.

It is possible to predict the number of domains (nd) in a given particle of magnetite. Assuming
lamellar domains within cubes of magnetite, Dunlop and Özdemir (1997) derived the following
equation:

nd = Z · b

a
a

1
2 (4.7)

where Z is a constant incorporating magnetostriction and wall energy and a and b are particle
length and width as before. For magnetite, Z �1.1 x 103. We would expect to find 11 domains in
a 100 µm equant grain of magnetite, for example.
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Figure 4.8: Comparison of “self” energy versus the energy of the domain wall in magnetite spheres
as a function of particle size.
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Figure 4.9: Number of domains in magnetite particles versus grain size. Solid curve: predicted
values from theory (see text). Dots: data compiled by Özdemir and Dunlop (1997).

4.3.2 Some experiments

How can we test the theoretical predictions of domain theory? Do domains really exist? Are they
the size and shape we expect? Are there as many as we would expect? In order to address these
questions we require a way of “seeing” magnetic domains. Bitter (1931) devised a way for doing
just that. Magnetic domain walls are regions with large stray fields (as opposed to domains in
which the spins are usually parallel to the sides of the crystals to minimize stray fields). In the
“Bitter technique” magnetic colloid material is drawn to the regions of high field gradients on highly
polished sections allowing the domain walls to be observed.

We show an example of a photomicrograph taken from the interior of a large grain of magnetite
(Dunlop and Özdemir, 1997) in Figure 4.10. It appears that if great care is taken, domain walls of
about the right size, shape and orientation can be found.

Özdemir and Dunlop (1997) compiled what they considered to be the “best” data on number
of domains nd observed in carefully sized magnetite grains. We replot their data compilation in
Figure 4.9. Also shown is the prediction from Equation 4.7. There appear to be “too many”
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domains for small grain sizes and “too few” for large grain sizes. In a seminal paper, Halgedahl and
Fuller (1980) argued that there were far fewer domains than predicted for titanomagnetite, which
they explained as arising from the fact that the energy to nucleate a domain wall from nothing had
not been taken into account in the theory.

a)

b) c)

Figure 4.10: a) Theoretical predictions of possible domain structures for magnetite. b) Bitter
patterns from an oriented polished section of magnetite. c) Interpretation of the magnetization.
[Figures from Dunlop and Ozdemir (1997)].

4.4 Thermal energy

We have gone some way to answering the questions posed at the beginning of the lecture. We see
now that it is the anisotropy energy which opposes changes in the magnetic direction, that preseres
the magnetization for posterity. We also asked the question of what allows the magnetization to
come into equilibrium with the applied magnetic field in the first place; this question requires a
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little more work to answer. The key to this question is to find some mechanism which allows the
moments to “jump over” magnetic anisotropy energy barriers. One such mechanism is thermal
energy ET , which is given by:

ET = kT

where kT is thermal energy (see Lecture 3).
We know from statistical mechanics that the probability of finding a grain with a given thermal

energy is P = exp (−ET /kT ). So we may have to wait some time t for a particle to work itself up
to having sufficient energy to flip over the energy barrier.
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Figure 4.11: Relaxation time as a function of grain size in nanometers.

Imagine a block of material containing a random assemblage of magnetic particles that are for
simplicity uniformly magnetized and dominated by uniaxial anisotropy. Suppose that this block
has some initial magnetization Mo and is placed in an environment with no ambient magnetic field.
Anisotropy energy will tend to keep each tiny magnetic moment in its original direction and the
magnetization will not change over time. At some temperature, certain grains will have sufficient
energy to overcome the anisotropy energy and flip their moments to the other easy axis. As the
energy surface is spherical, with no dimples or protruberances, there is no preferred direction and,
over time, the magnetic moments will become random. Therefore, the magnetization as a function
of time in this simple scenario will decay to zero. The equation governing this decay is:

M(t) = Mo exp (
−t

τ
) (4.8)

where t is time and τ is an empirical constant called the relaxation time. Relaxation time is the
time required for the remanence to decay to 1/e of Mo. This equation is the essence of what is
called “Néel theory” (see, e.g., Néel, 1955).

The value of τ depends on the competition between magnetic anisotropy energy and thermal
energy. It is a measure of the probability that a grain will have sufficient thermal energy to overcome
the anisotropy energy and switch its moment. Therefore in zero external field:

τ =
1
C

exp
[anisotropy energy]
[thermal energy]

=
1
C

exp
[Kv]
[kT ]

, (4.9)
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where C is a frequency factor with a value of something like 1010 s−1. The anisotropy energy is
given by the dominant anisotropy parameter K (either Ku,K1, or λ) times the grain volume v.
It is often convenient to use the relationship K = BcMs

2 , which will be derived as a homework
assignment.

Thus, the relaxation time is proportional to coercivity, and volume, and is inversely related to
temperature. Relaxation time τ varies rapidly with small changes in v and T . To see how this
works, we can take Ku for slightly elongate cuboids of magnetite (b/a = 0.8) and evaluate relaxation
time as a function of particle width (see Figure 4.11). There is a sharp transition between grains
with virtually no stability (τ) is on the order of seconds) and grains with stabilities of billions of
years.

Grains with τ � 102 − 103 seconds have sufficient thermal energy to overcome the anisotropy
energy frequently and are unstable on a laboratory time-scale. In zero field, these grain moments
will tend to rapidly become random and in an applied field, they tend to rapidly align with the field.
The net magnetization is related to the field by a Langevin function (see Lecture 3). Therefore,
this behavior is quite similar to paramagnetism, hence these grains are called superparamagnetic
(SP). Such grains can be distinguished from paramagnets, however, because the field required to
saturate the moments is typically much less than a tesla, whereas that for paramagnets can exceed
hundreds of tesla.
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Figure 4.12: Expected domain states for various sizes and shapes of parallelopipeds of magnetite
at room temperature. The parameters a and b are as in Figure 4.4. Calculations done using
assumptions and parameters described in the text.
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4.5. PUTTING IT ALL TOGETHER

4.5 Putting it all together

We are now in a position to pull together all the threads we have considered in this lecture and
make a plot of what sort of magnetic particles behave as superparamagnets, which should be single
domain and which should be multi-domain according to our simple theories. We can estimate the
superparamagnetic to single domain threshold for magnetite as a function of particle shape by
finding for the length (2a) that gives a relaxation time of 100 seconds as a function of width to
length ratio (b/a) for parallelopipeds of magnetite (heavy blue line in Figure 4.12). To do this,
we follow the logic of Butler and Banerjee (1975). In this diagram, we estimated relaxation time
using Equation 4.9, plugging in values of K as either the magnetocrystalline effective anisotropy
constant ( 1

12K1) or the shape anisotropy constant (1
2∆NµoM

2), whichever was less. We also show
the curve at which relaxation time is equal to 1 Gyr, reinforcing the point that very small changes
in crystal size and shape make profound differences in relaxation time. The figure also predicts the
boundary between the single domain field and the two domain field, when the energy of a domain
wall is less than the self energy of a particle that is uniformly magnetized. This can be done by
evaluating wall energy with Equation 4.6 for a wall along the length of a parallelopiped and area
(4ab) as compared to the self energy (1

2µoNaM
2v) for a given length and width to length ratio.

When the wall energy is less than the self energy, we are in the two domain field.
Figure 4.12 suggests that there is virtually no SD stability field for equant magnetite; particles

are either SP or MD (multi-domain). As the width to length decreases (the particle gets longer),
the stability field for SD magnetite expands. Of course micromagnetic modelling shows that there
are several transitional states between uniform magnetization (SD) and MD, i.e. the flower and
vortex remaent states (see Fabian et al., 1996), but Figure 4.12 has enormous predictive power
and the version of Butler and Banerjee (1975), (which is slightly different in detail) continues to be
used extensively.

Tauxe, 2007 4- 15 Lectures in Paleomagnetism


