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Chapter 3

Induced and Remanent Magnetism

Suggested Reading
For background:

pages 21-26 of Butler (1992) ?
For a review of basic quantum mechanics, see:

http://www.chemistry.ohio-state.edu/betha/qm/index.html, or
http://chemed.chem.purdue.edu/genchem/topicreview/bp/ch6/quantum.html

For some nice visualizations, see http:
//winter.group.shef.ac.uk/orbitron/AOs/1s/index.html

General background in Statistical Mechanics (see, e.g.,
http://en.wikipedia.org/wiki/Statistical mechanics)

To learn more:
Chapter 3.1 of O’Reilly (1984) ?
Chapter 2.1 to 2.7 in Dunlop and Özdemir (1997) ?

3.1 Introduction

In the last lecture we learned something of the present geomagnetic field. In order to study its
past behavior, we are forced to use accidental records such as those left in rocks, sediments or
archeological materials. But how are these materials magnetized and how are the magnetizations
related to the magnetic field? This topic is the subject of the next few lectures.

Scientists in the late 19th century considered that it might be possible to exploit the magnetic
record retained in rocks in order to study the geomagnetic field in the past. Early work in rock
magnetism provided the theoretical and experimental basis for presuming that rocks might retain
a record of past geomagnetic fields. There are several books and articles that describe the subject
in detail (see e.g., the suggested readings). We present here a brief overview of theories on how
rocks become and stay magnetized. We will begin with magnetism at the atomic level caused by
electronic orbits and spins. Then we will see how electronic spins working in concert give rise to
permanently magnetized substances (like magnetic minerals).
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CHAPTER 3. INDUCED AND REMANENT MAGNETISM

3.2 Magnetism at the atomic level

We learned in the first lecture, magnetic fields are generated by electric currents. At the atomic
level, the electric currents are the motions of the electrons. From here on we quickly get deep in the
weeds of quantum mechanics. In this lecture we will cover the bare minimum necessary to grasp
the essentials of rock magnetism.

In Lecture 1 we took the classical approach and suggested that the orbit of an electron about the
nucleus could be considered a tiny electric current with a correspondingly tiny magnetic moment.
But quantum physics tells us that this planetary view of the atom cannot be. An electron zipping
around a nucleus would generate radio waves hence lose energy. It would eventually have to crash
into the nucleus, which apparently doesn’t happen.
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Figure 3.1: Stationary waves that “fit” between 0 and 360◦.

In quantum mechanics, the electronic motion is stabilized by the fact that electrons can only
have certain energy states; they are quantized. The energy of a given electron is described by
something called Schrödinger’s wave equation. The function Ψ(r, θ, φ)2 gives the probability of
finding and electron at some point. [Remember from Lecture 2 that r, θ, φ are the three spherical
coordinates.] Wave equations tend to evolve through time, but there are special functions that
are “stationary”; think of standing waves. For example, in Figure 3.1 there are certain functions
that “fit” between 0 and 360◦, so as you go around the circle in θ, the function is always the
same, no matter how many times around you go. There might be one or more waves (labelled
n = 1, n = 2, n = 3), but they are stationary. In quantum mechanics, electronic wave functions
depend on three special “quantum” numbers (n, l,m):

Ψr,θ,φ = Rn,l(r)Yl,m(φ, θ) (3.1)

where and R and Y are increasingly wavy functions, r is the effective radius in atomic units and n
is the so-called “principal” quantum number. The number l, (0 → n− 1) relates to orbital angular
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3.2. MAGNETISM AT THE ATOMIC LEVEL

momentum L:

L =
√

l(l + 1)h̄,

where h̄ is the “reduced” Planck’s constant (or h
2π where h = 6.63 x 10−34 Js). The number m

is the magnetic quantum number which runs from l backwards to −l. The lowest energy of these
wave equations is with n = 1 (l and m are both 0) and the two functions are:

R1,0 = 2Z
3
2 e−ρ/2,

Y0,0 = (
1
4π

)
1
2 (3.2)

where Z is the atomic number and ρ is 2Zr/n. The probability density for an electron at a radius
of r is sketched in Figure 3.2. This wave equation has no dependency on θ or φ and is a spherical
shell. All the l,m = 0 shells are spherical and are often referred to as the 1s, 2s, 3s shells, where
the numbers are the energy levels n. Shells with l = 1 are referred to as “p” shells and l = 2 are
the “d” shells examples of which are shown in Figure 3.3.

Pr
ob

ab
ili

ty

Distance from nucleus (in atomic units)

Electron density plot

0                     1                      2                      3                     4                     5

Figure 3.2: Plot of radial distribution and “dot-density” for the 1s electron shell.
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Figure 3.3: Examples of surfaces of equal energy of the first three shells (l = 1, 2, 3). Modified from
figures of Alan Crosby.
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CHAPTER 3. INDUCED AND REMANENT MAGNETISM

Returning to the tiny circuit idea, we create a magnetic moment m through the electronic
orbit. Classical physics (see Lecture 1) suggests that the magnitude of the moment generated by
an orbiting electron is the current i times the area of the current loop πr2 or m = iπr2. In quantum
mechanics, the angular momentum of the electron must be quantized. It is an integer multiple of
h̄ and the moment is given by:

m =
−qe

2µe
L

where µe is the mass of an electron (9.11 x 10−31 kg), qe= -1.6x 10−19C, and L is the angular
moment (

√
l(l + 1)h̄2). Setting l = 0, we find that the fundamental unit of magnetic moment of

electrons, termed the Bohr magneton (mb), is given by:

mb =
h̄qe

2µe
= 9.27 × 10−24 kg m2

s
· C
kg

= 9.27 × 10−24A m2.

So far we haven’t mentioned we have not mentioned the last quantum number, s. This is the
“spin” of the electon and has a value of ±1

2 . The spin also produces a magnetic moment which is
giving by 2smb, hence is numerically identical to that produced by the orbit.

Atoms have the same number of electrons as protons in order to preserve charge balance.
Hydrogen has but one lonely electron which in its lowest energy state sits in the 1s electronic shell.
Helium has a happy pair, so where does the second electron go? To fill in their electronic shells,
atoms follow three rules:

1. No two electrons may have the same set of quantum numbers. This is Pauli’s exclusion
principle. Because spin (s) can be ±1

2 , two electrons fit in one orbital. When a single electron
occupies a given orbital, it is called “unpaired” and has a magnetic moment of 1 mb.

2. Orbitals are filled in order of increasing energy. The energy state of a given orbital is depen-
dent on the context (whether the atom is bound to other atoms or not), but in general they
will be filled according to the scheme shown in Figure 3.4.

3. Electrons are added so that the spins remain as parallel as possible (Hund’s rule). The scheme
followed is shown in Figure 3.4. Notice that when filling the third energy level (n = 3), all
five d shells are filled up with one kind of spin (say, all up, or +1

2), before the electrons begin
to pair up. Also, because the energies of the shells change somewhat according to the context
they are in, the 4s shell will actually give up an electron to a d shell, before the d shells begin
to pair up. Hund’s rule gives the atoms with some d shell electrons (the so-called “transition
elements”, e.g., Cr, Mn, Fe, Co and Ni) the possibility of large magnetic moments.

Each unpaired spin has a moment of one Bohr magneton mb. The elements with the most
unpaired spins are the transition elements which are responsible for most of the paramagnetic
behavior observed in rocks. For example, in Figure 3.4 we see that Mn25 has a structure of:
(1s22s22p63s23p6)3d54s2, hence has 5 unpaired spins and a net moment of 5 mb. Fe26 has a structure
of (1s22s22p63s23p6)3d64s2 with a net moment of 4 mb, In minerals, the transition elements are in
a variety of oxidation states. Fe commonly occurs as Fe2+ and Fe3+. When losing electrons to form
ions, transition metals lose the 4s electrons first, so we have for example, Fe3+ with a structure of
(1s22s22p63s23p6)3d5, or 5 mb. Similarly Fe2+ has 4 mb and Ti4+ has no unpaired spins. Iron is
the main magnetic species in geological materials, but Mn2+ (5 mb) and Cr3+ (3 mb) occur in trace
amounts.
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Figure 3.4: The electronic structure of the elements from Na to Zn.

3.3 Induced magnetization

We have learned that there are two sources of magnetic moments in electronic motions: the or-
bits and the (unpaired) spins. These moments respond to external magnetic fields giving rise to
an induced magnetization, which was mentioned briefly in Lecture 1. We will consider first the
contribution of the electronic orbits.

3.3.1 Orbital contribution

An electron orbiting about the nucleus has an angular momentum of L (Figure 3.5). The angular
momentum has an associated magnetic moment which, in the presence of a magnetic field H
experiences a torque which nudges the angular moment to the side (∆L). This causes the angular
momentum vector to precess around the magnetic field direction, much like a spinning top precesses
around the direction of gravity. This is called Larmor precession. The changed angular moment
in turn results in a changed magnetic moment ∆m. The sense of the change in moment is always
to oppose the applied field. Therefore, the response of the magnetic moments of electronic orbitals
creates an induced magnetization MI that is observable outside the substance and is related to the
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CHAPTER 3. INDUCED AND REMANENT MAGNETISM
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Figure 3.5: Larmor precession. The orbit of the electron has an angular momentum L which creates
a magnetic moment. In the presence of a magnetic field H, the moment experiences a torque which
causes a change in angular momentum ∆L. The precession of the electronic orbit about H creates
an induced magnetic moment ∆m in a sense opposite to the applied field.

applied field by

MI = χdH.

We learned in Lecture 1 that the proportionality between induced magnetization and the applied
field is known as the magnetic susceptibility. The ratio MI/H for the response of the electronic
orbitals is termed the diamagnetic susceptibility χd; it is negative, essentially temperature inde-
pendent and quite small. In the absence of unpaired electronic spins, diamagnetic susceptibility
dominates the magnetic response. Common diamagnetic substances include quartz (SiO2), calcite
(CaCO3) and water (H2O). The mass normalized susceptibility of quartz is -0.62 x 10−9 m3kg−1

to give you an idea of the magnitudes of these things.

3.3.2 Role of electronic spins

In most geological materials, the orbital contributions cancel out (they are “quenched”) and the
magnetization arises from the electronic spins. We mentioned that unpaired electronic spins behave
as magnetic dipoles with a moment of one Bohr magneton. In the absence of an applied field, or in
the absence of the ordering influence of neighboring spins which are known as exchange interactions,
the electronic spins are essentially randomly oriented. An applied field acts to align the spins which
creates a net magnetization equal to χpH. χp is the paramagnetic susceptibility.

A useful first order model for paramagnetism was worked out by P. Langevin in 1905. (Of course

Tauxe, 2007 3- 6 Lectures in Paleomagnetism



3.3. INDUCED MAGNETIZATION

in messy reality things are a bit more complicated, but Langevin theory will work well enough for
us at this stage.) Langevin theory is based on a few simple premises:

1. Each unpaired spin contributes a dipole moment.

2. In the absence of an applied field, the moments are essentially randomly oriented, i.e., all
directions are equally likely to occur.

3. An applied field acts to align the spins which creates a net moment.

4. There is competition between thermal energy kT (k is Boltzmann’s constant and T is tem-
perature in kelvin) and the magnetic energy Em. Recalling Lecture 1 we know that Em of a
magnetic moment m at an angle θ with an external magnetic field H is given by:

Em = −m · µoH = −mµoH cos θ. (3.3)

Magnetic energy is at a minimum when the magnetic moment is parallel to the magnetic field.
Using the principles of statistical mechanics, we find that the probability density of a given moment
having energy Em is:

P (E) ∝ exp (−Em/kT ). (3.4)

This probability leads directly to the relationship:

M

Ms
= [coth a − 1

a
] = L(a). (3.5)

M
/
M
s

TµomH/kT

a) b)

Figure 3.6: a) Paramagnetic magnetization (obtained from the Langevin function L(a) versus
a = µomH/kT . b) Paramagnetic magnetization as a function of temperature (Curie Law).

The function enclosed in square brackets is known as the Langevin function (L) which is derived
in the appendix. The magnetization, shown in Figure 3.6a, approaches saturation (in this case,
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CHAPTER 3. INDUCED AND REMANENT MAGNETISM

Ms) when mµoH is some 10-20 times kT . When kT >> mµoH,L(a) is approximately linear
with a slope of ∼ 1/3. At room temperature and fields up to many tesla, L(a) is approximately
µomH/3kT . If the moments m are unpaired spins (m = mb), then the maximum magnetization
possible (the saturation magnetization Ms is given by the number or moments N , their magnetude
(mb) normalized by the volume v or Ms = Nmb/v, so

M

Ms
� mbµo

3kT
H.

Please note that we have neglected all deviations from isotropy including quantum mechanical
effects as well as crystal shape, lattice defects, and state of stress. These complicate things a
little, but to first order the treatment followed here a good assumption. We can rewrite the above
equation as:

M

H
=

mbµo

3kT
· Ms =

Nm2
bµo

3kv
· 1
T

= χp. (3.6)

To first order, paramagnetic susceptibility χp is positive, larger than diamagnetism and inversely
proportional to temperature. This inverse T dependence (see Figure 3.6b) is known as Curie’s law
of paramagnetism. The paramagnetic susceptibility of, for example, biotite is 790 x 10−9 m3 kg−1,
or about three orders of magnitude larger than quartz (and of the opposite sign!).

We have considered the simplest case here in which χ can be treated as a scalar and is referred
to as the bulk magnetic susceptibility χb. In detail, magnetic susceptibility can be quite complicated.
The relationship between induced magnetization and applied field can be affected by crystal shape,
lattice structure, dislocation density, state of stress, etc., which give rise to possible anisotropy
of the susceptibility. Furthermore, there are only a finite number of electronic moments within a
given volume. When these are fully aligned, the magnetization reaches saturation. Thus, magnetic
susceptibility is both anisotropic and non-linear with applied field.

3.4 Remanent magnetization

Some substances give rise to a magnetic field in the absence of an applied field. This magnetiza-
tion is called remanent or spontaneous magnetization, and constitutes the phenomenon which is
loosely known as ferromagnetism (sensu lato). Magnetic remanence is caused by strong interactions
between neighboring spins that occur in certain crystals.

The so-called exchange energy is minimized when the spins are aligned parallel or anti-parallel
depending on the details of the crystal structure. Exchange energy is a consequence of the Pauli
exclusion principle (no two electrons can have the same set of quantum numbers). In the transition
elements, the 3d orbital is particularly susceptible to exchange interactions because of its shape
and the prevalence of unpaired spins, so remanence is characteristic of certain crystals containing
transition elements with unfilled 3d orbitals.

In oxides, oxygen can form a bridge between neighboring cations which are otherwise too far
apart for direct overlap of the 3d orbitals in a phenomenon known as superexchange. In Figure 3.7
the 2p electrons of the oxygen are shared with the neighboring 3d shells of the iron ions. Pauli’s
principle means that the shared electrons must be antiparallel to each of the electrons in the 3d
shells. The result is that the two cations are coupled. In the case shown in Figure 3.7 there is
an Fe2+ ion coupled antiparallel to an Fe3+ ion. For two ions with the same charge, the coupling
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3.4. REMANENT MAGNETIZATION

will be parallel. Exchange energies are huge, equivalent to applying a field of the order of 1000 T.
[The largest field available in the Scrips paleomagnetic laboratory is about 2.5 T, and that only
fleetingly.]

3d

3d

2p

Fe2+

Fe3+

O2-

Figure 3.7: Exchange energy associated with overlapping orbitals. Example of super-exchange
between the 3d orbitals of two iron cations through the 2p orbitals of the intervening oxygen anion.
The two electrons in the 2p shells are, by necessity antiparallel. These are shared by the 3d shells,
hence to two cations have anti-parallel spins.

As temperature increases, crystals expand and exchange becomes weaker. Above a temperature
characteristic of each crystal type (known as the Curie temperature Tc), cooperative spin behavior
disappears entirely and the material becomes paramagnetic.

While the phenomenon of ferromagnetism results from complicated interactions of neighboring
spins, it is useful to think of the ferromagnetic moment as resulting from a quasi-paramagnetic
response to a huge internal field. This imaginary field is termed here the Weiss molecular field Hw.
In Weiss theory, Hw is proportional to the magnetization of the substance, i.e.,

Hw = βM,

where β is the constant of proportionality. The total magnetic field that the substance experiences
is:

Htot = H + Hw = H + βM,

where H is the external field. By analogy to paramagnetism, we can substitute a = µomb(Htot)/kT )
for H in Langevin equation:

M

Ms
= L

(
µomb(H + βM)

kT

)
. (3.7)

For temperatures above the Curie temperature Tc (i.e. T −Tc > 0) there is by definition no internal
field, hence βM is zero. Substituting Nmb/v for Ms, and using the low-field approximation for
L(a), Equation 3.7 can be rearranged to get:
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CHAPTER 3. INDUCED AND REMANENT MAGNETISM

M

H
=

µoNm2
b

v3k(T − Tc)
≡ χf . (3.8)

Equation 3.8 is known as the Curie-Weiss law and governs ferromagnetic susceptibility above the
Curie temperature.

Figure 3.8: Behavior of magnetization versus temperature of a ferromagnetic substance.

Below the Curie temperature, we can neglect the external field H and get:

M

Ms
= L(

µombβM

kT
).

Substituting again for Ms and rearranging, we get:

M

Ms
= L(

Nm2
bβ

vkT
· M

Ms
) = L(

Tc

T
· M

Ms
), (3.9)

where Tc is the Curie temperature and is given by:

Tc =
Nm2

bβ

vk
.

Equation 3.9 can be solved graphically or numerically and is sketched in Figure 3.8. Below the
Curie temperature, exhange interactions are strong relative to the external field and the magneti-
zation is governed by Equation 3.9. Above the Curie temperature, it follows the Curie-Weiss law
(Equation 3.8).

We have treated ferromagnetism from a classical point of view and this is strictly incorrect as
it results primarily from quantum mechanical phenomena. The primary difference between the
classical derivation and the quantum mechanical one lies in the fact that in quantum mechanics,
only certain angles of the magnetic moments are allowed, not all as in Langevin theory. In the
end, the predictions of magnetization as a function of temperature are different in detail. The end
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3.4. REMANENT MAGNETIZATION

product of the quantum mechanical treatment (see Dunlop and Özdemir, 1997) is that the variation
of saturation magnetization as a function of temperature can be reasonably well approximated (near
the Curie Temperature, Tc) by:

Ms(T )
Ms(To)

= (
Tc − T

Tc
)γ (3.10)

where γ is 0.5 from simple molecular field theory. Dunlop and Özdemir (1997) quote a value of
around 0.43 for γ, but the data from commercial magnetite (Ward’s standard) give the results
shown in Figure 3.9 which are best fit with a value of γ of 0.3.
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Figure 3.9: Solid red line, data of J.S. Gee from Ward’s standard magnetite. Dashed blue line,
curve from Equation 3.8 with γ = 0.3.

3.4.1 Types of ferromagnetism

As we have seen, below the Curie temperature, certain crystals have a permanent (remanent)
magnetization resulting from the alignment of unpaired electronic spins over a large area within the
crystal. Spins may be either parallel or anti-parallel; the sense of spin alignment is controlled entirely
by crystal structure. The energy term associated with this phenomenon is the exchange energy.
There are three categories of spin alignment: ferromagnetism (sensu stricto), ferrimagnetism and
antiferromagnetism (see Figure 3.10).

In ferromagnetism (sensu stricto, Figure 3.10a), the exchange energy is minimized when all the
spins are parallel, as occurs in pure iron. When spins are perfectly antiparallel (antiferromagnetism,
Figure 3.10b), there is no net magnetic moment, as occurs in ilmenite. Occasionally, the antifer-
romagnetic spins are not perfectly aligned in an antiparallel orientation, but are canted by a few
degrees. This spin-canting (Figure 3.10c) gives rise to a weak net moment, as occurs in hematite.
Also, antiferromagnetic materials can have a net moment if spins are not perfectly compensated
owing to defects in the crystal structure, as occurs in fine-grained hematite. The uncompensated
spins result in a so-called defect moment (Figure 3.10d). We note in passing that the temperature
at which spins become disordered in antiferromagnetic substances is termed the Néel temperature.
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a)

b) c) d)

e)

Figure 3.10: Types of spin alignment in ferromagnetism (sensu lato): a) ferromagnetism (sensu
stricto), b) antiferromagnetism, c) spin-canted antiferromagnetism, d) defect anti-ferromagnetism,
e) ferrimagnetism.

In ferrimagnetism, spins are also aligned antiparallel, but the magnitudes of the moments in each
direction are unequal, resulting in a net moment (Figure 3.10e).
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A. DERIVATION OF THE LANGEVIN FUNCTION

Appendix

A Derivation of the Langevin function

Because we have made the assumption that there is no preferred alignment within the substance,
we can assume that the number of moments (n(θ)) between angles θ and θ + dθ with respect to H
is proportional to the solid angle sin θdθ and the probability density function, i.e.,

n(θ)dθ ∝ exp (
−Em

kT
) sin θdθ. (A1)

When we measure the induced magnetization, we really measure only the component of the
moment parallel to the applied field, or n(θ)m cos θ. The net magnetization of a population of
particles with volume v is therefore:

MI =
mb

v

∫ π

0
n(θ) cos θdθ. (A2)

By definition, n(θ) integrates to N , the total number of moments, or

N =
∫ π

0
n(θ)dθ. (A3)

The total saturation moment of a given population of N individual magnetic moments m is
Nm. The saturation value of magnetization Ms is thus Nm normalized by the volume v. Therefore,
the magnetization expressed as the fraction of saturation is:

M

Ms
=

∫ π
0 n(θ) cos θdθ∫ π

0 n(θ)dθ

=
∫ π
o e(mµoH cos θ)/kT cos θ sin θdθ∫ π

o e(mµoH cos θ)/kT sin θdθ
.

By substituting a = mµoH/kT and cos θ = x, we write

M

Ms
= N

∫ 1
−1 eaxxdx∫ 1
−1 eaxdx

= (
ea + e−a

ea − e−a
− 1

a
), (A4)

and finally
M

Ms
= [coth a − 1

a
] = L(a). (A5)
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