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S U M M A R Y
Magnetic measurements as a function of temperature and time are commonly used to re-
construct the volume distribution of superparamagnetic (SP) particles. Knowledge of the
temperature dependence of the magnetic moments and the anisotropy energies is necessary
for a correct interpretation of the measurements. Temperature dependences are usually de-
rived from bulk magnetic properties. The magnetic properties of small particles, however, are
strongly influenced by surface effects related to low-temperature oxidation, reduced coordina-
tion of surface spins and interactions with surrounding molecules. These effects are difficult to
quantify, especially in rocks and sediments. To address this problem, a method for reconstruct-
ing the magnetic properties of weakly interacting assemblages of SP particles is presented.
The method is based on the inversion of magnetic susceptibility measurements performed for
a range of temperatures at different frequencies. The redundancy of the measurements is used
to obtain estimates of the abovementioned temperature dependences, the effective interaction
field and the pre-exponential factor in Néel–Brown relaxation theory without using any a
priori assumptions on the magnetic properties of the particles. The inversion method was
successfully tested on numerical samples representing typical susceptibility measurements of
natural and artificial samples. Susceptibility inversion results can provide new insights in the
magnetic properties of fine particles relevant in palaeo- and environmental magnetism.

Key words: Environmental magnetism; Rock and mineral magnetism.

1 I N T RO D U C T I O N

Single domain (SD) iron minerals with a distribution of blocking
temperatures below and above room temperature occur in a variety
of rocks and sediments of interest for palaeo- and environmental
magnetism studies. Ultrafine iron oxides and sulphides are an ac-
tive component of the iron cycle and therefore reflect palaeoen-
vironmental conditions (Thompson & Oldfield 1986; Cornell
& Schwertmann 2003; Evans & Heller 2003). This mineral frac-
tion is also important for understanding post-depositional processes
(Tarduno 1995; Schwartz et al. 1997) and pedogenesis. Most atten-
tion has been devoted to ultrafine magnetite (Fe3O4) or maghemite
(γ -Fe2O3), which has been recognized as the main source of suscep-
tibility enhancement in soils and palaeosols (Evans & Heller 1994;
Maher 1998). Although magnetic particles with blocking temper-
atures <400 K do not carry a useful palaeomagnetic signal, they
provide a good analogue of stable SD remanence carriers in the
study of alteration processes. For example, low-temperature oxida-
tion of magnetite is a diffusion-limited process that can be scaled to
laboratory time using 10 nm magnetite particles (Tang et al. 2003).

Antiferromagnetic (af) minerals such as haematite (Fe2O3),
goethite (FeOOH) and ferrihydrite (Fe5HO8·4H2O) are generally

much more abundant than magnetite in sediments, with typical con-
centrations of 1–10 weight per cent (Cornell & Schwertmann 2003;
van der Zee et al. 2003). Because of the lower saturation magnetiza-
tion of af iron oxides (0.5–2 per cent of magnetites, depending also
on grain size) and one order of magnitude higher coercivities, the
contribution of af and ferrimagnetic nanoparticles to the magnetic
susceptibility can be equally important. The quantification of iron
oxides and oxyhydroxides provides an insight into the iron biogeo-
chemical cycle (Kappler & Straub 2005), whereby non-destructive
magnetic measurements can be adopted for this purpose (Banerjee
2006). However, because of the inherent difficulty in characterizing
samples containing SP minerals with a broad distribution of com-
positions and blocking temperatures, there is a lack of quantitative
studies on their occurrence and properties in rocks and sediments.

This paper is the first of two that will address the quantitative
magnetic characterization of SP minerals using susceptibility mea-
surements as a function of temperature and frequency. Various meth-
ods have been developed to reconstruct the grain size distribution
(GSD) or the energy barrier distribution (EBD) of magnetic parti-
cles. All methods are based on measuring the effect of temperature
and/or time on a remanent or an induced magnetization. For ex-
ample, the joint distribution of grain sizes and microcoercivities
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can be calculated from alternating field demagnetizations of partial
thermoremanences (Dunlop & West 1969) and direct field demag-
netization curves of isothermal remanent magnetizations acquired
at different temperatures (Jackson et al. 2006). One of the first
successful applications of these techniques was the reconstruction
of the GSD of acicular magnetite in tuff samples from the Yucca
Mountain (Worm & Jackson 1999; Jackson et al. 2006).

On the other hand, measurements of the induced magnetization
in a weak direct or alternating field as a function of temperature
are widely used to calculate the average energy barrier of super-
paramagnetic (SP) particles (Dormann et al. 1997). The first step
toward the inversion of susceptibility measurements using a poly-
nomial representation of the volume distribution can be dated back
to Stephenson (1971). A complete reconstruction of the volume
distribution from magnetic susceptibility measurements was first
reported in Jonsson et al. (1997) for a diluted maghemite ferrofluid.
The volume distribution reconstruction was based on Néel’s theory
of superparamagnetism with the assumption of isolated uniaxial
particles with temperature independent magnetic properties, iden-
tical microcoercivities and a broad distribution of energy barriers.
Later, Shcherbakov & Fabian (2005) proposed a suitable correc-
tion for analysing susceptibility measurements of weakly interact-
ing Stoner–Wohlfarth (SW) particles with known temperature de-
pendences of saturation magnetization and microcoercivity. Their
correction proved to be effective when analysing Tiva Canyon tuff
samples and concentrated ferrofluid suspensions.

The analysis of susceptibility measurements has two intrinsic ad-
vantages over other magnetic characterization methods. First, the
out-of-phase susceptibility is relatively insensitive to temperature-
dependent phenomena that are not related to thermally activated
switching of magnetic moments. This property can be used to char-
acterize samples containing mixtures of particles with different
domain states, as they often occur in nature, whereby the signal
produced by non-SP particles is efficiently suppressed. Some limi-
tations occur with large amounts of multidomain particles, since a
small out-of-phase susceptibility component is produced by elec-
tron hopping and/or tunnelling in stoichiometric magnetite below
the Verwey temperature (Balanda et al. 2005), and by vacancy-
mediated relaxation near room temperature in low-Ti magnetite
(Walz et al. 2003). Since these phenomena are observed in large
crystals that can be removed from sediments by magnetic extrac-
tion, quantitative investigation of SP minerals in natural samples
based on susceptibility measurements is possible. The second ad-
vantage of susceptibility measurements is that of providing data
sets that are redundant with respect to the EBD. This redundancy
offers the possibility of testing the validity of current magnetic re-
laxation models, as well as providing additional information on the
temperature dependence of the intrinsic magnetic properties of SP
particles.

All of grain-size reconstruction methods require knowledge of
the temperature dependence of the magnetic moment m and the
microcoercivity H K of the particles or an equivalent parameter
combination. The simplest case relevant to rocks and sediments is
represented by elongated magnetite particles, where the SW model
predicts both m and H K to be proportional to the saturation magneti-
zation (Stoner & Wohlfarth 1948). The temperature dependences of
m and H K are then given by Ms ∝ (1−T/Tc)γ , where Tc is the Curie
temperature and γ an appropriate exponent (Dunlop & Özdemir
1997). Accordingly, temperature dependences can be neglected in
interpreting measurements below room temperature for all minerals
having a large Tc. A generalization of this conclusion, based on the
SW model, can be misleading. Several processes are responsible for

important changes of the magnetic properties at low temperatures
in small particles. For example, SP magnetite is small enough to
undergo low-temperature oxidation at room temperature (Tang et al.
2003). Low-temperature oxidation is a diffusion-controlled process
that produces a cation-deficient surface layer with spin glass-like
properties. This layer becomes magnetic at low temperature and
might be exchange-coupled with the particle’s core (e.g. Kodama
et al. 1996). The magnetism of small ferrimagnetic nanoparticles
is also affected by a surface layer of disordered spins (e.g. Labaye
et al. 2002; Lu et al. 2007; Shendruk et al. 2007). The surface spins
seem also to become pinned if magnetic nanoparticles are coated
with organic molecules (Berkowitz et al. 1975), a process that can
naturally occur in sediments. All these effects can introduce signif-
icant differences between the magnetic properties of fine particles
and bulk materials, including strong temperature dependences of
some magnetic properties. Whereas surface anisotropy and inter-
actions with coating molecules are expected to be important only
in very small particles having a relatively high number of surface
spins, low temperature oxidation effects are important also in much
larger particles of interest in palaeointensity studies.

The magnetism of af nanoparticles is controlled by the incom-
plete compensation between atomic spins of the A and B sublattices
(Néel 1961). Incomplete compensation might arise from random
defects and/or or from the surface of the particles. In both cases, the
uncompensated spins produce a residual grain-size-dependent mag-
netic moment mp that can be several times larger than the ordinary
moment related to the saturation magnetization of the bulk mate-
rial. The uncompensated moment mp is equivalent to that of a SP
ferromagnetic particle; therefore, this phenomenon is often called
superantiferromagnetism. The temperature dependence of mp and
the related microcoercivity is poorly understood. The few data avail-
able suggest that superantiferromagnetism is far more complicated
than superparamagnetism (Seehra & Punnoose 2001).

The temperature dependences of m and H K can be derived di-
rectly from measurements of hysteresis loops, provided that all mag-
netic moments are blocked, and saturation can be reached. Goethite
and fine-grained haematite, however, cannot be saturated in max-
imum fields typically attainable during hysteresis measurements
(Rochette et al. 2005). Furthermore, magnetic moments are pro-
gressively unblocked as the temperature is raised, and GSD must
be taken into account to interpret the measurements. Current meth-
ods for calculating the GSD require in turn m(T ) and H K(T ) to be
known, so that some a priori assumptions are needed to model SP
particles. The scope of this paper is to circumvent this problem by
providing a method to invert susceptibility measurements without
the need of a priori assumptions about the magnetic properties of
the particles. The method is a refinement of the analysis of suscepti-
bility data proposed by Svedlindh et al. (1997), which is integrated
by the correction introduced by Shcherbakov & Fabian (2005) for
weak magnetostatic interactions.

A brief outline of the paper is given to conclude this introduc-
tion. Sections 2 and 3 provide a review of current knowledge on
forward models of temperature- and frequency-dependent suscep-
tibility measurements. The forward model is extended to explicitly
account for the temperature dependence of the intrinsic magnetic
properties of the particles and for the effect of weak magnetostatic
interactions. Section 4 sets the theoretical background for the full
inversion of susceptibility measurements. A general method is then
implemented to invert susceptibility data acquired with widespread
measurement protocols. The inversion method is checked against
simulated measurements of realistic SP assemblages. Critical as-
sumptions underlying the forward susceptibility model are briefly
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discussed in Section 5, with particular emphasis on the validity of
the Néel–Brown relaxation theory and the applicability of the model
to heterogeneous particle mixtures. In a follow-up paper, the valid-
ity of the forward model will be discussed in detail, addressing the
problem of interacting particles characterized by mixed anisotropy
and low-damping relaxation modes. A list of recurring symbols
used in mathematical expression throughout this paper is given in
Table 1.

2 DY NA M I C L I N E A R S U S C E P T I B I L I T Y
O F S W PA RT I C L E S

The magnetization M of an ensemble of magnetic particles in a
small sinusoidal field H0 cos(ω t) of frequency f = ω/(2π ) is
given by the Fourier series

M(t) =
∞∑

k=0

H k
0

[
χ ′

k cos(kωt) − χ ′′
k sin(kωt)

]
, (1)

with coefficients χ ′
k and χ ′′

k (Garcı́a-Palacios 2000). If the sinusoidal
field is not biased by a constant field, the system has inversion
symmetry, and all even Fourier coefficients are zero. Furthermore,
χ = χ ′

1 − iχ ′′
1 is the linear dynamic susceptibility of the particles.

If H0 → 0 is a sufficiently small field, all terms with k > 1 can be
neglected: χ ′ = χ ′

1 and χ ′′ = χ ′′
1 are then called the in-phase and

the quadrature (or out-of-phase) susceptibilities.
Analytical or numerical expressions for the linear susceptibil-

ity are obtained from the solution of the Fokker–Plank equation
that describes the magnetic moment vector of a particle subjected
to thermal activations in a small field. A notable effort has been
undertaken to obtain both analytical and numerical solutions of the
Fokker–Plank equation for assemblages of non-interacting particles,
which are exhaustively described in a review by Garcı́a-Palacios
(2000). The first analytical solution of the problem for isolated SW
particles has been obtained by Néel (1949), using some approxima-
tions described in the next section. This solution has been adopted
since then in studies of superparamagnetic particles in rocks and
sediments (e.g. Mullins & Tite 1973; Shcherbakov & Fabian 2005).
Exact solutions of the Fokker–Plank equation are far more complex
than the original result of Néel (1949). An analytical expression for
the linear susceptibility has been obtained by Shliomis & Stepanov
(1993) and Raikher & Stepanov (1997). Their solution, hereafter
called the Shliomis–Stepanov–Raikher (SSR) model, is formally
similar to the result of Néel (1949), as it will be shown later.
The SSR model has been later verified by numerical solution of
the stochastic Landau–Lifshitz–Gilbert equation (Garcı́a-Palacios
& Lázaro 1998).

Magnetostatic interactions within SP particle assemblages rep-
resent a further complication, since they affect the linear dynamic
susceptibility in a complex, non-linear manner. An extensive review
of the interaction problem is given by Jönsson (2004). A simple first-
order correction of Néel’s solution for weakly interacting uniaxial
particles is described in Shcherbakov & Fabian (2005) and will
be adopted here to extend the SSR solution to the case of weak
interactions.

The SSR model and its adaptation to the case of weakly interact-
ing particles are described in the following paragraphs, providing
a forward problem solution for linear susceptibility calculations. A
slightly different notation than in the original literature will be used
here, so that a formal identity with the well-known Néel (1949) solu-
tion is maintained. Furthermore, unlike in the original literature, the

Table 1. List of important recurring symbols.

Symbol First defined in Description

b Section 3.1 Proportionality constant for χns

β Section 2.1 Boltzmann factor
β0 Section 2.1 Blocking condition
C Section 2.3 Volume concentration of particles
Cp Eq.30 Paramagnetic constant
χ Section 2 Magnetic susceptibility (complex number)
χ ′ Section 2 Real (or in-phase) component of χ

χ̂ ′ Section 4.3 χ ′ reconstructed from χ ′′
χ ′′ Section 2 Imaginary (or quadrature) component of χ

χ f Eq.18 Frequency dependence of χ ′
χSD Section 2.1 Single domain susceptibility (SW)
χns Section 2.1 Non-switching susceptibility
χ ′

sw Section 2.1 Switching susceptibility (in-phase)
χ0 Section 2.2 SD susceptibility in the SSR model
δχ ′ Section 4.3 χ̂ ′ − χ ′
〈δχ ′2〉 Eq.34 Quadratic mean of δχ ′
�χ ′

sw,i Section 4.3 χ ′
sw(ri ) − χ ′

sw(r )
E Section 2.1 Energy barrier at temperature T
E0 Section 3.2 Energy barrier at reference temperature T0

ε Section 3.2 Temperature dependence of E
ε̂ Section 4.2 Reconstructed ε

ε̃ Section 4.2 ε̂, stabilized against divergence at T → 0
f Section 2 Frequency of the measuring field

 Section 4.4 〈δq2〉〈δχ ′2〉
G Section 3.4 Energy barrier distribution (EBD)
Ĝ Eq.35 Reconstructed energy barrier distribution
hi Section 2.3 Hi/HK

Hi Section 2.3 Mean interaction field
HK Section 2.1 Microcoercivity
h0 Section 3.2 hi at reference temperature T0

ĥ0 Section 4.4 Estimated h0

η Section 2.2 Correction factor for χns

ηr Eq.3 Damping constant
J Section 2.3 Correction function for weak interactions
k Section 3.2 Temperature dependence of HK

K Eq.9 Kernel function
K̃ Eq.10 Approximation of K
κ Eq.20 Temperature dependence of χns

λ Section 3.5 Ratio of logarithmic frequencies
m, m Section 2.1 Magnetic moment (vector and module)
M Eq.1 Magnetization
Ms Section 2.1 Saturation magnetization
Mrs Section 3.1 Saturation remanence
μ Section 2.1 Temperature dependence of m
μs Section 2.3 Saturation magnetization of a particle
p Section 5.1 Stretching exponent
q Eq.14 Scaling function for χ ′′
Q Section 4.2 Polynomial approximation of Q
〈δq2〉 Eq.29 Mean quadratic differences between q( f j )
r Section 3.2 Temperature dependence of m/HK

r̂ Section 4.3 Reconstructed r
ρ Section 4.3 Relative error of the reconstructed r
s eq.25 Temperature scaling function
T Section 2.1 Absolute temperature
T ∗ Section 4.2 Scaled temperature
T0 Section 3.2 Reference temperature
τ0 Eq.3 Pre-exponential factor
τ̂0 Section 4.4 Estimated τ0

τ ′
0 Section 5.1 τ0 equivalent in a stretched Néel–Arrhenius law

V Section 2.1 Volume of a particle
w Section 3.4 2πτ0 f
ω Section 2 2π f
ζ Section 4.3 Damping factor
ξ Eq.5 Correction factor for χsw

ξb Section 3.4 ξ (β0)
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Figure 1. (a) Real (χ ′) and imaginary (χ ′′) components of the linear magnetic susceptibility as a function of β, according to Néel’s model (dashed lines) and the
SSR model (solid lines). The parameters used for calculations are τ0 = 10−10s and f = 1 Hz. The arrow indicates the blocking condition β0 = − ln(τ0ω). (b)
Correction factors used to formulate the SSR model using the Néel formalism. (c) Differences �χ ′ and �χ ′′ between the real and the imaginary components
of the susceptibility calculated using τ0 in (3) and the same expression for τ0 where β was replaced by β0. (d) Real (Re) and Imaginary (Im) components of the
kernel function (9) (solid lines) and the approximation (10) used for wide energy barrier distributions (dashed lines). The arrow indicates the Dirac δ-function
extending to infinity.

dependence of the model parameters on the absolute temperature T
is treated explicitly.

2.1 Néel’s solution for non-interacting SW particles

The susceptibility of randomly oriented, non-interacting SW parti-
cles was calculated by Néel (1949) by solving the kinetic equation,
which describes the time dependence of the magnetic moment of
a uniaxial particle in a small field. He assumed that the motion of
the magnetic moment vector can be ascribed to two distinct mech-
anisms: (1) the instantaneous rotation of the moment toward the
applied field and (2) thermally activated transitions of the mag-
netic moment between equilibrium states. The first mechanism is
responsible for what will be called here the non-switching suscep-
tibility χns. The single-domain susceptibility χSD = 2Ms/(3HK)
of randomly oriented SW particles with saturation magnetization
M s and microcoercivity H K coincides with χns when T = 0. In a
uniaxial particle, the second mechanism refers to switching of the
magnetic moment between the two equilibrium orientations paral-
lel to the easy axis. The contribution of moment switching to the
linear susceptibility is called here switching susceptibility χsw and
is obviously zero if the magnetic particles are in a blocked state.
The total linear susceptibility χ = χns + χsw at any temperature is

the sum of the two contributions. Néel’s solution can be written as

χ (T, f ) = χSD

[
β

1 + iτ0ωeβ
+ 1

]
, (2)

where τ0 is the pre-exponential factor of the Néel–Brown relax-
ation model, and the Boltzmann factor β = E/(kBT ) is defined
as the ratio of the particle’s energy barrier E in zero field and
the thermal energy k BT . The energy barrier of a SW particle is
E = μ0m HK/2 = KV , where m is the magnetic moment, H K

is the so-called microcoercivity, V is the volume and K is the
anisotropy constant. A relatively sharp transition from a blocked
state, characterized by χ = χSD, to an unblocked state of the par-
ticles occurs at β0 = −ln(τ0ω), with 15 ≤ β0 ≤ 22 for the usual
range of measuring frequencies ( f = 1 Hz–1 kHz). The transi-
tion is marked by a maximum of the real and imaginary part of χ

(Fig. 1a).
The pre-exponential factor of the Néel–Brown relaxation model

is a complicated function of H K and β. The following expression
valid for large energy barriers β ≥ 5 in a zero field can be obtained
from a solution reported in Dormann et al. (1996):

τ0 ≈ 1

2μ0γ0 HK

√
π

β

[
ηrμ + 1

ηrμ

]
, (3)

where γ0 = 8.794 × 1010 T−1 s−1 is the electronic gyromagnetic
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ratio, ηr is a dimensionless damping constant between 0.01 and 1
and μ = m(T )/m(0) is the temperature dependence of the magnetic
moment (see Appendix A1). Usually the variation of τ0 with tem-
perature is neglected, as it is expected to be small compared with
the effect of the exponential term eβ in the Néel–Brown relaxation
formalism. The validity of this assumption for susceptibility models
can be tested by replacing β in (3), with the constant value β0 ≈ 20
corresponding to the blocking condition does not produce notable
differences in a plot of χ (β) obtained from (2) (Fig. 1c). As final
remark, it should be noted that the Néel–Brown relaxation model
is based on the assumption that the magnetization of the particle is
uniform. This has been verified experimentally on a single cobalt
nanoparticle (Wernsdorfer et al. 1997a), so that (3) can be assumed
to hold for sufficiently small particles.

2.2 The Shliomis–Stepanov–Raikher model

The most important simplification underlying Néel’s solution (2) is
based on the formal separation between non-switching and switch-
ing processes as described in Section 2.1. Moment switching is
assumed to occur between two equilibrium configurations where
the moment is parallel to the easy axis, whereby this is strictly true
only at T = 0. Similarly, the equilibrium orientation of the mag-
netic moment in a weak field, used to obtain χns, is calculated by
neglecting thermal perturbations. In a real system at T > 0, the
magnetic moment is continuously perturbed, giving raise to signif-
icant effects when the thermal energy k BT becomes comparable to
the energy barrier of the particle. The SSR model takes these effects
into account and provides a solution for the linear susceptibility of
isolated, uniaxial particles, which is valid over the entire range of
temperatures. Maintaining Néel’s formalism, the SSR solution for
the linear susceptibility of a random assemblage of non-interacting
SW particles can be written as

χ (T, f ) = χ0

[
βξ

1 + iτ0ωeβ
+ β(1 − ξ )

]
, (4)

where χ0 = χSD for SW particles, and

ξ (β) =
∫ 1

−1 z2eβz2
dz∫ 1

−1 eβz2 dz
= eβ

√
πβ erfi(

√
β)

, (5)

is a correction factor with erfi(z) = erf(iz)/i being the imaginary
error function (see Appendix A2 for a formal derivation from the
solution given by Garcı́a-Palacios 2000). The validity of (4) is lim-
ited to the so-called low-frequency case, where transverse relaxation
phenomena are negligible. This is usually the case for ω � 1 MHz,
well below frequencies required for resonance phenomena (Garcı́a-
Palacios 2000).

The SSR solution (4) is formally equivalent to eq. (2) if ξ (β)
is interpreted as a correction factor that accounts for thermal per-
turbations of the moment vector from equilibrium. Accordingly,
χsw and χns in Néel’s model are corrected by the factors ξ and
η = β(1 − ξ ), respectively (Fig. 1b). The function ξ (β) increases
monotonically with β from ξ (0) = 1/3, which represents the case
of a fully randomized moment vector, to ξ (∞) = 1. The latter
asymptotic solution corresponds to T = 0 and describes the case
of the magnetic moment being aligned with the easy axis of the
particle, as assumed by Néel (1949). The interpretation of η is less
straightforward, since η(β) is not monotonic. Again, the asymptotic
case η(∞) = 1 corresponds to Néel’s calculation of the equilib-
rium orientation of the magnetic moment in a weak field. As the
temperature increases from T = 0, η initially increases to a max-
imum value of 1.185 at β ≈ 4.38. The associated increase of χns

can be interpreted as the effect of a larger probability of finding the
magnetic moment vector to be aligned with the applied field due to
random fluctuations of the moment. As the temperature increases
further, the randomization effect of thermal fluctuations prevails,
and η(0) = 0 indicates a complete random state.

A comparison of Néel’s solution with the SSR model shows the
effect of the correction factors ξ and η, which is particularly evident
for the in-phase susceptibility of the particles in the unblocked state
β < β0 (Fig. 1a).

2.3 Correction for magnetostatic interactions

Let C be the volume concentration of interacting particles made of a
material with bulk saturation magnetization μs. A system of strongly
magnetic, non-touching particles, such as a ferrofluid, is dominated
by so-called dipolar interactions, where H i is approximated by the
sum of the dipolar fields produced by all magnetic moments. On
the other hand, if the particles are touching, exchange coupling
between spins at contact points can occur, giving raise to exchange
interactions (Mørup et al. 2007). Exchange interactions dominate in
pure powders of af nanoparticles, since the magnetization is much
smaller than in ferrimagnetic materials.

Interactions affect the energy barrier of the particles and break
the original uniaxial symmetry. This in turn modifies the relaxation
time, depending on the energy barrier and on its symmetry. The
dipolar interaction strength is usually expressed by the ratio between
the interaction energy μ0m Hi and the energy barrier μ0m HK/2
in a zero external field. This ratio is thus proportional to h i =
H i/H K. Numerical solutions of the Landau–Lifshitz equation for
interacting uniaxial particles show that χ depends on h i and on
the damping constant ηr in a complicated manner (Berkov & Gorn
2001; Jönsson 2004). Shcherbakov & Fabian (2005) provided an
analytical approximation for a fixed interaction field h i � 1 being
aligned with the easy axes of all particles, which is correct for the
high-damping case ηr � 1. In their solution, χsw is decreased by an
extent accounted by the correction factor sech2(2βhi).

Although numerical solutions reported in the literature corre-
spond to frequencies in the 10 MHz range, the analytical solution
of Shcherbakov & Fabian (2005) does not take into account the
natural distribution of orientations and amplitudes of H i, which
characterize a random system of particles. A generalization of
this solution for random interacting systems will be discussed in
a follow-up paper, where it will be shown that the correction factor
sech2(2βhi) should be replaced with an appropriate function of the
form J (2βhi). The term ‘weak interactions’ is used here to denote
interaction fields that do not significantly affect the anisotropy en-
ergy of the particles. Experiments on magnetite nanoparticles show
that the blocking temperature of dispersed particles and thus the
anisotropy energy, becomes independent of C when r/d > 6, where
r is the distance between the centres of the particles, and d is their
diameter (Bae et al. 2007). This limit corresponds to a volume con-
centration C ≈ (d/r )3 = 0.0046. Large sets of randomly placed
and randomly oriented moments generate an interaction field distri-
bution whose width depends on C . A typical distribution width of
0.002 μs is obtained for C ≈ 0.0046 (Egli 2006). Using this result
and μs = 480 kA m−1 and μ0 HK ≈ 80 mT for the equidimensional
magnetite particles studied in Bae et al. (2007), hi ≤ 0.015 is ob-
tained as a general upper limit for the validity range of the mean
field model of Shcherbakov & Fabian (2005).

The linear susceptibility of weakly interacting particles is calcu-
lated by applying the abovementioned correction to the SSR model,
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obtaining:

χ (T, f ) = χ0

[
βξ

1 + iτ0ωeβ
J (2βhi) + η

]
. (6)

In the following, eq. (6) is taken as the solution of the forward
model for the susceptibility of identical, randomly oriented, weakly
interacting SW particles.

3 T H E F O RWA R D M O D E L F O R
U N I A X I A L PA RT I C L E S

A further generalization of the linear susceptibility model is ob-
tained by considering a set of uniaxial particles characterized by
a distribution of energy barriers with identical temperature depen-
dences. The calculation of the magnetic susceptibility for such par-
ticles defines the forward problem discussed in this section.

3.1 Susceptibility of identical uniaxial particles

Consider a set of identical magnetic particles with uniaxial
anisotropy and randomly oriented easy axes. For the sake of calcu-
lating the magnetic susceptibility, the particles are fully described
by their magnetic moment m(V , T ) in zero field and the microcoer-
civity H K(V , T ), whereby both parameters depend on the particle’s
volume V and the absolute temperature T . The simplest model for m
and H K (Stoner & Wohlfarth 1948) is based on the assumption that
the magnetization is homogenous in the entire particle (Fig. 2a). In
this case, m(V, T ) = V μs(T ) and H K = H K(T ), with μs being the
saturation magnetization of the bulk material. Surface effects (e.g.
Labaye et al. 2002; Shendruk et al. 2007) and uncompensated spin
moments (Mørup et al. 2007) are two possible factors that produce
an inhomogeneous magnetization in ferri- and antiferromagnetic
nanoparticles, respectively (Figs 2b and c). In such cases, the SW
model might no longer be applicable.

The general case of uniaxial particles can be understood by con-
sidering the relationship between the non-switching and the switch-
ing field susceptibilities on one hand and the hysteresis loop of
the particle assemblage in a blocked state on the other (Fig. 3). At
T = 0, the non-switching susceptibility of non-interacting particles
coincides with the slope of the hysteresis loop at H = 0, since
irreversible processes take place only when |H | exceeds the small-
est switching field. On the other hand, magnetic moment switching
in uniaxial particles occurs between two equilibrium states, which
collectively define the saturation remanence M rs at T = 0. The
fixed shape of SW hysteresis loops (Fig. 3a) imposes the condition
χns/(ηχ0) = 1, as implicitly assumed in (6). This is not the case
for particles with a generic hysteresis loop, where M rs and the loop
slope at H = 0 are independent of each other (Fig. 3b), defining
values of b = χns/(ηχ0) that are �= 1. Accordingly, the SSR model
of eq. (6) can be adapted to such cases by writing

χ (T, f ) ≈ χ0

[
βξ

1 + iτ0ωeβ
J (2βhi) + bη

]
, (7)

with χ0 ∝ Mrs/HK. A rigorous approach to the problem would
require a new calculation of the correction terms η and ξ , based on
a detailed model of the moment reversal mechanism. Since this is
not generally possible, the same correction factors as in eq. (4) are
used. The error introduced by this approximation is expected to be
small over a wide range of temperature, because ξ and η are close
to unit for β > 5.

3.2 Temperature dependences in the SW model

The susceptibility of SW particles depends on the parameters E ,
χSD and h i, which are functions of the temperature T and the particle
volume V . In the following, it is assumed that the magnetic moment
m and the microcoercivity H K can be expressed as the product of
a function of V (volume dependence) and a function of T (temper-
ature dependence). The separation of the volume and temperature
dependences does not imply any loss of generality for the case of
identical particles, since they all have the same volume. However, it
might represents a restriction in case of samples containing particles
with different volumes (Figs 2d and e). Nevertheless, the separation
of volume and temperature dependences provides the most general
case that allows for a full inversion of susceptibility measurements.
The implications of this assumption will be discussed in Section 5.

Let now introduce the temperature dependences μ(T ) =
m(T )/m(T0) of m and k(T ) = H K(T )/H K(T 0) of H K, respec-
tively, with μ(T0) = k(T0) = 1 for a reference temperature T 0.
Then, E = E0ε(T ), with ε = μk being the temperature dependence
of E , and E 0 = E(T 0). Furthermore, χ0 ∝ r (T ), with r = μ/k de-
scribing the temperature dependence of the SD susceptibility. Using
the definitions of μ and ε, it is evident that r (T0) = ε(T0) = 1.

The temperature dependence of h i can be calculated from first-
principles considerations about the origin of the interaction field.
Ferrimagnetic particles are usually strongly magnetic, and the weak
interaction limit h i � 1 discussed in Section 2.3 already excludes
the case of contacting particles. The interaction field acting on one
particle is then given by the sum H d of all dipole fields produced by
the surrounding particles, with Hd ∝ m (Fig. 2f). The temperature
dependence of h i is then expressed by h i = h0r (T ), with h0 =
h i(T 0).

3.3 Temperature dependences in the general case

Knowledge of the temperature dependences of all parameters in
(7) relies on a detailed model describing the magnetization of a
thermally activated particle in a small field. The SW model predicts
χ0 to be proportional to m/H K. This is expected to hold also for the
general uniaxial case, provided that H K is defined so that the energy
barrier is E = μ0m0 HK/2, where m 0 is the magnetic moment in a
zero field.

The non-switching susceptibility χns is controlled by the depen-
dence of the magnetic energy on perturbations produced by a small
external field. If the magnetization is homogeneous, the magnetic
energy is expressed by the sum of two terms: the anisotropy energy,
which is proportional to H K, and the Zeeman energy, which is pro-
portional to the applied field H . Additional terms are required to
describe the magnetic energy of a non-homogeneous magnetization,
resulting in a more complicated temperature dependence of χns. A
general solution for χns can obviously not be formulated, however,
it is reasonable to expect a similarity with the SW model for all
cases where the magnetization is not excessively inhomogeneous.
Considering that χns is small compared with the bulk susceptibility
in the unblocked range (e.g. Fig. 1), a precise estimate of its tem-
perature dependence is not essential. Therefore, the best possible
approximation of the general uniaxial case is obtained by assuming
that both χns and χsw have identical temperature dependences given
by r ≈ μ/k.

Dipole interactions between antiferromagnetic particles are usu-
ally negligible, because of their weak magnetizations and high co-
ercivities. Therefore, magnetic interactions between such particles
arise practically from the exchange coupling between contact points
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Figure 2. Schematic summary of factors affecting the properties of SP and SD particles, grouped into magnetization homogeneity (a–c), temperature
dependence effects (d and e), magnetostatic interactions (f and g) and sample heterogeneity (h and i). (a) The magnetization of SW particles is homogeneous
in the entire volume of the particle. (b) Hedgehog-like spin structure in a ferromagnetic nanoparticle, produced by surface anisotropy. (c) The magnetic
moment of af nanoparticles is produced by uncompensated atomic spins (filled arrows), in this case due to the surface of the particle. Shading in (a)–(c)
is qualitatively proportional to the vertical component of the magnetization. (d) Two particles whose magnetic moments are different but have the same
temperature dependence. (e) Two particles whose temperature dependence of the magnetic moment is controlled by the volume. (f) and (g) Magnetostatic
interactions between particles are produced by a dipolar field associated with their magnetic moment (f) or by exchange coupling between contact points
(filled arrows) (g). (h) In a homogeneous sample, the position of each particle is completely random, and interactions occur between any kinds of particles.
(i) Heterogeneities occur when similar particles are grouped into clusters. In this example, small and large particles form distinct clusters and magnetostatic
interactions within the two groups of clusters may differ.

(Hansen et al. 2000; Fig. 2g). The temperature dependence of ex-
change coupling interactions is more complicated than for the dipo-
lar case. Fine antiferromagnetic particles have a magnetic moment
that arises from incomplete magnetic compensation between sub-
lattices. Néel (1961) hypothesized three possible cases that would
produce an uncompensated moment proportional to nα , where n is
the number of spins and α = 1/3, 1/2 and 2/3, respectively. The
case of α = 2/3 corresponds to a magnetic moment that is simply
proportional to the surface of the particle (Fig. 2c). One can rea-
sonably assume the number of contact points between any pair of
particles to be proportional to their surface. In case of few contact
points, the strength of the exchange coupling can be considered
proportional to their number. Therefore, H i is also proportional to

the surface of the particles, and Hi ∝ m is obtained, as for the
case of dipole interactions. This simple result is not valid for the
other two cases discussed by Néel (1961), since a similar reasoning
would give Hi ∝ m1/2 or Hi ∝ m3/4. For sake of simplicity, and
considering the uncertainties affecting a mean field treatment of in-
teractions, Hi ∝ m is used in the following to model the temperature
dependence of both dipolar and exchange interactions.

3.4 Distribution of energy barriers

Consider now a large set of particles with a joint distribution
of volumes and microcoercivities. Since it is not possible to re-
construct the joint distribution of V and H K from susceptibility
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Figure 3. Schematic representation of the relation between the hysteresis
loop at 0 K and the susceptibility of non-interacting SD particles. The non-
switching susceptibility χns coincides with the slope of the loop at H =
0 (dashed lines). The switching susceptibility χsw is related to a change
of the remanent state of the sample (arrows) and is therefore proportional
to the saturation remanence M rs. (a) Randomly oriented Stoner–Wohlfarth
particles (M rs/M s = 0.5) and (b) particles characterized by M rs/M s < 0.5.
Compared with (a), χns in (b) is larger and χsw is smaller.

measurements alone, SP particles are at best characterized by
the distribution G(E 0) of energy barriers E 0 = E(T 0) at a ref-
erence temperature T 0. More precisely, G(E 0) dE 0 is defined
as the contribution to χ0(T0) in (7) from all particles with en-
ergy barriers within the interval [E 0, E 0 + dE 0 ]. In the fol-
lowing, G(E 0) is referred to as the energy barrier distribution
(EBD) of the particles. It is important to realize that G(E 0)
differs from the EBD definition used to analyse magnetiza-
tion curves, such as in Jackson et al. (2006). There, the EBD
represents a contribution to the magnetization, instead of χ0.
With both definitions of EBD, additional a priori assumptions
are needed to obtain the volume distribution, as explained in
Appendix A3.

Depending on how the particles are distributed in the sample’s
volume, the effective interaction field seen by one particle might be
statistically correlated with its properties, such as the volume. This
is, for example, the case for samples containing isolated clusters of
particles, where the particles in one cluster are different from those
in another cluster (Fig. 2i). This could represent a common situ-
ation in sediments, where the growth of authigenic iron minerals
is influenced by a heterogeneous distribution of chemical condi-
tions. However, since no information is generally available on such

details, it is assumed in the following that no correlation exists be-
tween the particle’s magnetic properties and their position in the
sample. An equivalent statement is that the distribution of particles
is totally random, and that the effective interaction field is a constant
parameter.

Given the assumptions discussed above, the susceptibility of a
large set of particles with EBD G(E 0) is calculated by weighted
integration of (7) over E 0:

χ (T, f ) = br (T )
∫ ∞

0
G(E0)η(β)dE0

+ r (T )
∫ ∞

0
G(E0)K (β, f )J (2βh0r )dE0, (8)

with ε = ε(T ), r = r (T ), β = E0ε/(kBT ), and the kernel function

K (β, f ) = β ξ (β)

1 + iτ0ωeβ
. (9)

Eqs (8) and (9) represent the forward model for calculating
χ (T, f ) from a known distribution G(E 0) of energy barriers. The
inverse problem consists in calculating the unknown G(E 0), r (T ),
ε(T ), b and h0 from χ (T, f ).

A first important simplification in the theoretical handling of the
forward model is obtained for the case of G(E 0) being a broad
distribution, where the sense of ‘broad’ is specified as follows.
Since E 0 is positive, the EBD is a positive distribution function
that is best considered on a logarithmic scale with G(log E 0) =
E 0G(E 0) ln 10. A measure unitless measure for the broadness of
the EBD is then given by the standard deviation of log E 0. In syn-
thetic samples, the lowest standard deviation, 0.2, is observed for
ferritin particles. Since the ferrihydrite core of full-loaded ferritin
is precisely constrained by the structure of the protein shell, one can
reasonably assume 0.2 to be a practical lower limit for the standard
deviation of log E 0. For comparison, standard deviation values of
≈0.4 are obtained from the EBD reconstruction of maghemite fer-
rofluids (Jonsson et al. 1997) and ≈0.5 for pedogenic particles in
Chinese palaeosols (Liu et al. 2005). If sd(logE0) ≥ 0.2, the kernel
function in (9) can be replaced by following approximation

K̃ (β) = βξ (β) H (−β − ln w) + i
π

2
ξb ln w δ(β + ln w), (10)

where H(x) is the Heaviside unit step function, δ(x) is the Dirac
δ-function, w = τ0ω is the dimensionless measurement frequency
and ξb = ξ (− ln w) ≈ 1. This expression for the kernel function
with ξ = 1 was used by Néel (1949) to describe SP particles with
a distribution of volumes and is therefore referred to as Néel’s ap-
proximation in the following. If Néel’s approximation is compared
with the exact solution in the case of a lognormal distribution of
energy barriers characterized by σ (log E0) = 0.2, one finds that the
difference between the two solutions is <1 per cent for χ ′′(T, f ) and
<0.2 per cent for χ ′(T, f ) (Fig. 4). Since larger errors are involved
in some assumptions underlying eq. (8), Néel’s approximation can
in practice replace the exact solution.

Using (8) and (10), the forward model simplifies to

χ ′′(T, f ) = −πξbr (T )

2ε(T )
kBT ln w G[−kBT ln w/ε(T )]

× J [2h0r (T ) ln w], (11)

for the out-of-phase susceptibility. Using the variable substitution
β = E0ε/(kBT ),

χ ′
sw(T, f ) = r (T )

kBT

ε(T )

∫ − ln w

0
G(βkBT/ε)β ξ (β) J (2βh0r ) dβ

(12)

is obtained for the in-phase switching susceptibility.
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Figure 4. Comparison between the susceptibility of non-interacting SW particles at five different frequencies calculated using the exact forward model
(eqs 8 and 9, solid lines), and Néel’s approximation (eqs 11 and 12, dashed lines). (a) and (b) Imaginary and real component, respectively, for identical,
randomly oriented particles characterized by E = 103 k B. Dashed arrows indicate Dirac’s d-function. (c) and (d) Imaginary and real component, respectively,
of randomly oriented SW particles characterized by a lognormal distribution of energy barriers (median: 103k B, dispersion parameter: 0.2). The difference
between Néel’s approximation (dashed lines) and the exact solution (solid lines) is plotted below. All cases have been calculated using τ0 = 10−10 s, h0 = 0,
r (T ) = ε(T ) = 1 and f =1,10,100 Hz.

3.5. Universal relations between susceptibility
measurements

Susceptibility measurements as a function of temperature and fre-
quency are redundant, since well-defined relations exist between
the in-phase and the quadrature component, as well as between
measurements performed at different frequencies. These relations
provide the key for the inversion of susceptibility measurements
and are therefore discussed extensively in the following.

Let χ (x ; y) represent susceptibility measurements performed for
a range of values x and a fixed parameter y. Then, χ (T ; f ) is a
measurement of the susceptibility as a function of temperature per-
formed at a fixed frequency f , and χ ( f ; T ) is a measurement of
the susceptibility as a function of frequency performed at a fixed
temperature T . If the parameters r (T ), ε(T ), b, h0 and τ0 are known,
any series of measurements of χ (T ; f ) or χ ( f ; T ) completely suf-
fice for reconstructing G(E 0), provided that the first argument of χ

extends over a range that is wide enough to include measurements
of each magnetic particle in the blocked as well as in the unblocked
state. Complete measurements of χ ( f ; T ) are hardly possible since
they require a range of frequencies that extends over >10 decades.
Moreover, the validity range of the SSR model limits the maximum
frequencies that can be used to <1 MHz. Therefore, measurements
of the type χ (T ; f ) are most used and will be considered in the fol-
lowing. In the remaining part of this section it will be show that any

curve χ (T ; f ) can be calculated from a measurement of χ ′′(T ; f0)
or χ ′(T ; f0) with a frequency f 0, knowing r (T ), ε(T ), h0, b
and τ0.

Eq. (11) can be solved with respect to G(E 0), obtaining

G(E0) = 2χ ′′(u; f )

πξbr (u)E0 J [2h0 r (u) ln w]
, (13)

where u is the solution of u/ε(u) = −E0/(kB ln w). Eqs (11) and
(13) can now be used to prove that the function

q(T ) = χ ′′(u; f )

r (u) ξ (− ln w) J [2h0r (u) ln w]
(14)

is independent of f if u is the solution of

u

ε(u)
= λ

T

ε(T )
, (15)

with λ = ln(2πτ0 f0)/ ln(2πτ0 f ) and an arbitrary chosen reference
frequency f 0 (see Appendix A4). The function q(T ) can be ob-
tained from any plot of the right-hand side of (14) by rescaling the
temperature axis according to (15). If ε is a constant, (15) simpli-
fies to u = λT , which underlies the well-known scaled plots of χ ′′

versus the scaled temperature T ln(2πτ0 f ) used to estimate τ0 (e.g.
Jonsson et al. 1997).

The definition of q(T ) can be used to calculate any χ ′′(T ; f )
from a measurement of χ ′′(T ; f0) at a given frequency f 0. If (13)
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is substituted into (12), following relation between χ ′
sw(T ; f ) and

χ ′′(T ; f ) is obtained:

χ ′
sw(T, f ) = 2

πξb

∫ −Inw

0
χ ′′(u, f )ξβ

r (T )

r (u)

J [2h0r (T )β]

J [2h0r (u)Inw]
dβ, (16)

with u being the solution of

u

ε(u)
= − T

ε(T )

β

ln w
. (17)

Eq. (16) is a version of the so-called Kramers-Krönig relation
between the real and the imaginary part of the complex susceptibil-
ity (Toll 1956; Garcı́a-Palacios 2000). Another important relation,
the so-called π/2-law, is obtained from the derivative of (16) with
respect to f :

χ f (T ) = ∂χ ′(T ; f )

∂ log f
= − 2

π
χ ′′(u, f ), (18)

where χ f is the frequency dependence of the in-phase susceptibility
(see Appendix A5). This expression is an approximation of the
general π/2-law (Shcherbakov & Fabian 2005), which holds for
the case where G(E 0) is a broad distribution in the sense discussed
in Section 3.4. Experimental evidence for a violation of this law
therefore indicates that either G(E 0) is a narrow distribution or
susceptibility was not measured in the linear range. For the sake
of completeness, it should be mentioned that the parameter χfd =
100 χ f /χ

′ is also called frequency dependence of susceptibility in
the literature and used as grain size indicator. The interpretation of
χfd in terms of grain distributions is discussed in Worm (1998).

Although (16) represents a compact expression to calculate
χ ′

sw(T ; f ) from χ ′′(T ; f ), it is of little practical use since it re-
quires solving the non-linear eq. (17) with respect to the integration
variable. Following explicit solution

χ ′
sw(T, f ) = −2 ln w

πξbT
,

∫ T

0
χ ′′(u, f )

r (T )ε(T )

r (u)ε(u)

[
1 − u

ε′(u)

ε(u)

]
ξ I du,

ξ = ξ

[
−uε(T )

T ε(u)
ln w

]
,

I =
J

[
2h0r (T ) uε(T )

T ε(u) ln w
]

J [2h0r (u) ln w]
, (19)

is obtained from (16) and –(17) using an appropriate variable sub-
stitution (see Appendix A6). Similarly, the non-switching suscepti-
bility is χns = bκ , where κ is the temperature dependence of χns,
given by

κ(T ) = 2r (T )

πξb

∫ ∞

0

χ ′′(u, f )

ur (u)

[
1 − u

ε′(u)

ε(u)

]
ηI du,

η = η

[
−uε(T )

T ε(u)
ln w

]
,

I = J −1[2h0r (u) ln w]. (20)

The main result of this section is a set of three equations (14,
19 and 20), which fully specifies the relations between χ ′(T ; f ),
χ ′′(T ; f ) and χ f (T ). This will be the starting point for the construc-
tion of a general method to invert χ (T ; f ) and obtain the unknown
parameters r (T ), ε(T ), h0 and G(E 0).

4 I N V E R S I O N O F S U S C E P T I B I L I T Y
M E A S U R E M E N T S

It has been shown in Section 3 that measurements of χ (T ; f ), at
different frequencies are redundant with respect to the reconstruc-

tion of the EBD. One can therefore ask if it is possible to use this
redundancy to actually calculate the parameters r (T ), ε(T ), h0 and
τ0, instead of using arbitrary assumptions. The answer to this ques-
tion is not trivial since it depends on whether the solutions of the
inverse problem for the different parameters are independent from
each other. This is the case only if any parameter combination pro-
duces a forward model that is different from that obtained from
other combinations. Alternatively, there could be a finite number of
parameter combinations sharing the same forward model χ (T ; f ):
in this case, the inverse problem has more than one solution. Both
cases require that the inverse problem is not underdetermined and
has a finite number of distinct solutions. The existence of discrete
inverse problem solutions is discussed in the following, before a
suitable inversion method is developed.

4.1 Existence of discrete solutions of the inverse problem

A strict proof for the universal existence of discrete solutions of the
inverse problem is difficult. A local proof for a given combination
of parameters can be obtained by showing that a small change
of any of these parameters affects χ (T ; f ) in a way that cannot
be mimicked by any combination of small changes of the other
parameters. Since G(E 0) does not appear explicitly in any of the
relations between measurements of χ (T ; f ) discussed in Section 3
(specifically eqs 14 and 19 and 20), it will not be involved in the
calculation of the other model parameters. Therefore, a proof of
linear independence is required only for r (T ), ε(T ), h0 and τ0.
The effect on χ (T ; f ) produced by infinitesimal changes δr (T ),
δε(T ), δh0 and δτ0 with respect to an initial choice of parameters
can be analysed by considering the difference �pχ in susceptibility
obtained by replacing one parameter p with p + δp. Since δp is
infinitesimal, the problem is linearized using �pχ = χp δp, where
χp is the partial derivative of χ with respect to p. Because of the
weak dependence of χ on τ0, χτ indicates the derivative with respect
to ln τ0. The four model parameters will then define four functions
χp δp that represent the effect of a small change of each parameter
on χ (T ; f ). The parameters are independent if it can be shown
that χp δp are linearly independent functions. This is the case if
the Wronskian determinant W of the functions χp( f ) fulfils the
condition

W (χε, χr , χh, χτ ) �= 0, (21)

for a range of temperatures and frequencies (see Appendix A7 and
Sansone 1991). The Wronskian determinant is indeed a positive
function of T and f similar in shape to χ ′′(T ; f ), and (21) is
therefore fulfilled in the range of temperatures where χ ′′(T ; f ) is
significantly above the noise level of the measurements (Fig. 5b).
Since (21) only requires δp not to be a function of the frequency,
it is in principle possible to solve the inverse problem for τ0 being
a function of the temperature. This would provide an interesting
possibility to check existing calculations of τ0. Unfortunately, it is
not possible to obtain such a result on real measurements, because
W contains derivatives of χ with respect to the frequency up to the
third order. Second and third-order derivatives with respect to f are
extremely small and well below the detection limit of measurements
performed over the usual ranges of frequencies extending over —
two to three decades. Since the calculation the model parameters
could eventually rely on such high-order derivatives, a different
proof for the independenc of χp δp is necessary, which is based
only on measurable quantities. A suitable proof has been found
only for the case where h0 and τ0 are constants and is explained in
the following.
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Figure 5. Numerical proof of the existence of discrete inverse problem solutions for an assemblage of SW particles characterized by r (T ) = ε(T ) = 1, h0 =
0.003, the energy barrier distribution plotted in (a) and τ0 = 10−10 s. (b) Comparison between the Wronskian determinant W and the imaginary susceptibility
component χ ′′ for f = 1 Hz. W 1/4 is plotted instead of W for units consistency with χ ′′. (c) Frequency dependence of the function A and (d) temperature
dependence of the real and imaginary component of the function B defined in (23).

If the functions χpδp are linearly dependent, the equation

χεδε + χrδr + χhδh0 + χτ δ ln τ0 = 0 (22)

has at least one solution with respect to δε(T ), δr (T ), δh0 and δτ0.
After some algebraic manipulations explained in Appendix A7, it
can be shown that a solution of (22) exists if

A( f ) = χ ′
hχ

′′
r − χ ′′

h χ ′

χ ′
τ χ

′′
r − χ ′′

τ χ ′
r

, B(T ) = χh, f χr − χhχr, f

χτ, f χr − χτχr, f
(23)

are constant with respect to the specified variable over the entire
range of measured temperatures and frequencies. This is impossible,
as shown with an example in Figs 5c and d, since (23) is over
determined with respect to the model parameters. Hence, changes
in χ (T ; f ) produced by δε(T ), δr (T ), δh0 and δ ln τ0 are linearly
independent.

Qualitative arguments for the independence of the model param-
eters are provided by the example of Fig. 6, where χ (T ; f ) was
calculated for a typical assemblage of SP grains with r = ε = 1
and h0 = 0, and successively perturbed by replacing each of these
parameters by a different function or value. It can be seen on this ex-
ample that each parameter has a different effect on χ (T ; f ). Changes
of ε(T ) affects the temperature dependences of both the real and
the imaginary part of χ (T ; f ), similarly to what can be obtained by
modifying the EBD (Figs 6a and b). However, the effects of ε(T )
and G(E 0) are not identical and can always be distinguished. On
the other hand, r (T ) mainly affects the temperature dependence of
χ ′(T ; f ) and much less that of χ ′′(T ; f ) (Fig 6c and d). Indeed, plots
of χ ′′(T ; f ) calculated using different models of r (T ) are brought to
a good overlap, simply by multiplying χ ′′(T ; f ) with an appropriate
constant. Magnetostatic interactions reduce the overall amplitude of

χ (T ; f ), whereby this effect is more pronounced for the imaginary
component (Figs 6e and f). Interactions also affects the frequency
dependence of the peak amplitude of χ ′′(T ; f ), and this effect is
considered a distinctive feature of interactions in relaxing systems
(Jönsson 2004). However, a similar effect is obtained if r depends
on the temperature, so that its interpretation in weakly interacting
particles depend both on r (T ) and h0.

Now that the existence of inverse problem solutions has been
demonstrated, a method allowing the effective calculation of the
model parameters is developed in the following. A possible inver-
sion approach is based on implementing model functions for r (T )
and ε(T ), whose shapes are controlled by a set of function param-
eters. Non-linear minimization methods could then be used to find
a combination of parameters that minimizes the difference between
forward model and measurements. This approach has been success-
fully used in coercivity analysis, where coercivity distributions are
modelled using probability density functions (Heslop et al. 2002;
Egli 2003). However, unlike coercivity distributions, temperature
dependences are controlled by a number of processes that cannot be
easily approached using model functions. Therefore, a different so-
lution of the inverse problem is developed here, which is not based
on pre-defined functions or any other arbitrary assumption on r (T )
and ε(T ).

The inversion procedure will be illustrated using the numerical
example shown in Fig. 7, which simulates susceptibility measure-
ments of a collection of randomly oriented, weakly interacting SW
particles with an arbitrary but realistic choice of the model pa-
rameters G(E 0), r (T ), ε(T ), h0 and τ0. The exact forward model
eqs (8) and (9) were used to calculate a list (Tk, χk j ) of simulated
out-of-phase and in-phase linear susceptibility measurements at
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Figure 6. Influence of r (T ), ε(T ) and h0 on the imaginary (left-hand plots) and real (right-hand plots) susceptibility components of randomly oriented SW
particles with energy barrier distribution given in Fig. 5a, calculated for f = 1, 10 and 100 Hz. The original model with r (T ) = ε(T ) = 1 and h0 = 0 is shown
by the dashed lines; solid lines correspond to the susceptibility obtained after replacing ε(T ) = 1 with ε∗(T ) (a and b), r (T ) = 1 with r∗(T ) (c and d) and
h0 = 0 with h0 = 0.02 (e and f). Arrows indicate the shift of the maximum in χ ′′(T, f ) with increasing frequency.

discrete temperatures Tk and frequencies fj, with χk j = χ (Tk ; f j )
and χk j = χ ′

k j − iχ ′′
k j .

4.2 Reconstruction of ε(T)

A graphic representation of q(T ) is obtained by plotting each out-
of-phase measurement (Tk, χ

′′
k j ) on modified coordinates given by

T ∗
k j = T 2

k /ukj ,

qkj = q j (T
∗

k j ) = χ ′′
k j

r (Tk) ξ (− ln w j ) J [2hir (Tk) ln w j ]
,

(24)

where ukj is the solution of (15) with T = Tk and f = fj. Assume for
now that r (T ), h0 and τ0 are known. It is then possible to find a func-
tion ε(T ) such that eqs (14) and (15), or the graphical counterpart
(24), are fulfilled for all measured frequencies and temperatures.
Once a correct solution of ε(T ) is found, the functions qj(T ) cal-
culated from measurements performed at different frequencies fj

are identical. This means that one can always find a set of scaled

temperatures T ∗
k j , such that the curves defined by the coordinates

(T ∗
k j , qkj ) overlap. A perfect overlap is expected if the parameters

r (T ), h0 and τ0 are chosen correctly and if the measurements are
free of errors. Once the T ∗

k j are determined experimentally, the co-
efficients ukj are calculated using the first equation in (24). Each of
the calculated ukj must satisfy (15), where the only unknown is the
function ε(T ).

Before solving (15) with respect to ε(T ), it is useful to note
that λ is a number close to unit for typical frequency ranges used
experimentally. For example, λ ≈ 0.92 if the frequencies differ by
one order of magnitude in the range between 0.1 Hz and 1 kHz.
Eq. (15) has the trivial solution u = T if λ = 1, and one can easily
see that u/T → 1 as λ → 1. Therefore, any solution of (15) for the
limit case of λ → 1 can be written as

u(T, f )

T
= 1 + (λ − 1) s(T ), (25)

where s(T ) is a temperature scaling function that does not depend
on f within a limited range of frequencies (see Appendix A8). If
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Figure 7. Numerical model of randomly oriented SW particles used throughout this paper to test the inversion of susceptibility measurements. (a) Temperature
dependences r (T ) and ε(T ) and (b) energy barrier distribution G(log E 0) used to simulate error-free measurements of the imaginary (c) and real (d) susceptibility
as a function of temperature for f = 1, 3, 10, 30 and 100 Hz. Other model parameters are τ0 = 10−10 s and h0 = 0.01.

the scaled temperatures T ∗
k j are known, s(T ) can be calculated at

discrete points using (24–25) to obtain

s(T ∗
k j ) = Tk

T ∗
k j

1

(λ j − 1)
. (26)

Considering again the limit case λ → 1, (25–26) are now used
to substitute u in (15) and obtain a differential equation in ε(T ) that
has the following solution:

ε(T ) ≈ T

T0
exp

[
−

∫ T

T0

du

us(u)

]
, (27)

with ε(T0) = 1 (see Appendix A8). Eq. (27) is affected by a lin-
earization error due to the assumption that λ → 1. This error can
be corrected through a recursive calculation of ε(T ) as explained in
the following.

The first recursion step consists in calculating the scaled tem-
peratures T ∗

k j . Different methods can be implemented for this pur-
pose. A method based on least-squares polynomial fits is shown in
Fig. 8. The range of measured temperatures is first divided into in-
tervals where the coordinates (Tk , qkj) can be piecewise fitted using
a second-order polynomial. A set of polynomials Qij(T ) that fit the
temperature dependence of qj in each temperature interval [Ti, T i+1]
is then obtained for each frequency fj. In each temperature inter-
val, characterized by the average temperature T̄i = (Ti + Ti+1)/2, a
positive number Si is found, such that the mean squared difference,∑

j

∑
Tk∈[Ti ,Ti+1]

{
Qi j [(λ j − 1) Si Tk] − Qi1(Tk)

}2
, (28)

between the polynomials with scaled temperatures (λ j − 1)Si Tk is
minimized. In eq. (28), f 1 is taken as a reference frequency, and
λ j = ln(2πτ0 f1)/ ln(2πτ0 f j ). Since Tk = (λ j − 1) SiT ∗

k j , the solu-
tions (T̄i , Si ) represent a first discretization s 0(Ti) of the temperature

scaling function s(T ), which is then used to solve (27) and obtain
a first estimate ε0(T ) of ε. Now ε is replaced by ε0(T ) in eq. (15),
which is then solved numerically with respect to u. The solution
u0(T , f ) is substituted into (25) and the resulting equation is in
turn solved with respect to s(T ). The solution s∗

0 (T ) differs slightly
from s 0(Ti) because of the linearization error �s0 = s∗

0 − s0. If �s0

is positive (negative), the error of ε0(T ) produces a temperature
scaling function s∗

0 (T ) that is too large (small). One can compen-
sate for this error by adjusting ε0(T ) so that �s0 is cancelled. This
leads to the next recursion step, where ε1(T ) is calculated using
s1 = s0 − �s0 instead of s 0. This approach provides a sequence
εn(T ) of successive estimates of ε(T ), based on the sequential so-
lution of (15), (25) and (27). The sequence εn eventually converges
to a final estimate ε̂(T ) that theoretically coincides with ε(T ) for
error-free measurements and a correct choice of the other model
parameters.

The method explained above has been tested using the numerical
example of Fig. 7. The reconstructed ε(T ) is in good agreement with
the original function used to calculate the forward model (Fig. 8c).
Nevertheless, despite the perfect overlap of the functions q j (T ∗

k j )
(Fig. 8d), there is a small difference between ε̂(T ) and ε(T ), espe-
cially as T → 0. The difference arises from the amplification of
numerical errors due to the fact that the limit of (27) for T → 0
diverges if s(T → 0) < 1 (see Appendix A8 for a detailed expla-
nation). Therefore, incorrect estimates of r (T ), h0 or τ0, as well
as large measurement errors, might result in a diverging ε̂(T ) for
T → 0.

A figure of merit for the reconstruction of ε(T ) is provided by the
mean quadratic difference 〈δq2〉 between the functions q j (T ∗

k j ) for
all measured frequencies. Since the T ∗

k j are all different, numerical
interpolations q̃ j of qj must be used to calculate 〈δq2〉, which is then
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Figure 8. Reconstruction of ε(T ) from measurements χ ′′
k j = χ ′′(Tk , f j ) of the imaginary susceptibility, obtained using exact values of r (T ) and h0. (a) The

first step consists in replacing χ ′′
k j by qkj obtained from (24). The amplitude of the scaled curves is now independent of f , unlike χ ′′(T, f ) in Fig. 7c. (b) The

measurement temperatures Tk are grouped into a number of intervals (dashed lines). In each interval, rescaled measurement temperatures T ∗
k are calculated

to obtain perfectly overlapping curves defined by the coordinates (T ∗
k , qkj ). The insert is an enlarged view of (T ∗

k , qkj ) within one temperature interval. (c)
Empirical estimates Sk of the scaling function used to calculate T ∗

k in each temperature interval (crosses indicating the estimated errors) are extrapolated to a
continuous scaling function s(T ) (solid line). The scaling function s(T ) is used to calculate an estimate ε̂(T ) (solid line) of ε(T ) (dashed line). (d) A perfect
overlap of the functions q(T , fj) calculated using ε̂(T ) shows that the reconstructed ε(T ) is compatible with the measurements.

given by

〈δq2〉 =
∑
k, j

[q̃ j (uk) − q1(Tk)]2, (29)

where uk is the solution of (15) for ε = ε̂(T ), f = fj and T =
Tk . Very small values of 〈δq2〉 are obtained from error-free mea-
surements and a correct guess of r (T ), h0 and τ0, as shown for
the synthetic example of Fig. 7. Small errors introduced by ap-
proximations of the forward model discussed in Section 3, and by
the piecewise fit of qj(Tk) using second-order polynomials prevent
〈δq2〉 from being exactly zero in the synthetic example. In prac-
tice, measurement errors and incorrect choices of the other model
parameters result in much larger values of 〈δq2〉.

A possible problem in reconstructing ε(T ) is given by the nu-
merical instability of (27) if s(T ) does not tend to a number >1 as
T → 0. In this case, small measurement errors, as well as possible
intrinsic approximations of the SSR model, could become largely
amplified in the calculation of ε(T ) at very low temperatures. To
avoid dealing with instabilities of ε(T → 0) due to measurement
errors, a stabilized version ε̃(T ) of ε̂(T ) might be calculated by
imposing s(0) = 1. Since T 1 > 0 in real measurements, this can be
easily done by adding (T = 0, S0 = 1) to the solutions (T̄i , Si ) of
(28), and forcing the interpolated function s(T ) through the added
point.

4.3 Reconstruction of r(T)

As discussed in Section 4.1, the relation between the real and the
imaginary components of χ (T ; f ) is controlled mainly by r (T ).

Therefore, a correct guess of r (T ) can be tested by reconstruct-
ing χ ′(T ; f ) from χ ′′(T ; f ) using eq. (19), and comparing the re-
constructed in-phase susceptibility χ̂ ′(T ; f ) with measurements of
χ ′(T ; f ). In addition to ε(T ), r (T ), h0 and τ0, an estimate of b is
also needed for this purpose. Following model,

χ̂ ′(T, f ) = bκ(T ) + χ ′
sw(T, f ) + Cp

T
, (30)

describes the reconstructed in-phase susceptibility of samples con-
taining a mixture of SP particles and paramagnetic minerals with
a paramagnetic susceptibility C p/T . If paramagnetic minerals are
absent, as in many synthetic samples, C p = 0. The interpretation of
in-phase susceptibility measurements of rocks and sediments on the
left-hand side of (30) is possible only if pseudo-SD or multidomain
grains are absent. To ensure such condition, magnetic extraction
should be used to remove large grains, prior to the measurement.

Since χ ′
sw(T, f ) and κ(T ) are calculated using (19) and (20),

the right-hand side of (30) contains only two unknown parameters,
b and C p. Least-squares methods provide estimates of b and C p

that minimize the difference �χ ′ = χ̂ ′ − χ ′ between reconstructed
and measured in-phase susceptibility. The residual difference �χ ′

obtained after optimizing b and C p is mainly a function of r (T ).
In the following, a method is developed for estimating r (T )

through successive approximations ri(T ) of r (T ), with ri(T 0) =
1 and k = 0, 1, 2, . . . , whereby ε(T ), h0 and τ0 are assumed to be
known. Let the error of each approximation ri(T ) be specified by
the function ρi (T ), such that r = ri (1 + ρi ). If ri(T ) is close to the
exact solution, |ρi | � 1 and (19) can be linearized with respect to
ρ. A further simplification is obtained if |2h0r ln w| < 0.6, allowing
one to ignore the dependence of the cosh terms on r (T ). Since χ ′

sw
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Figure 9. Reconstruction of r (T ) using exact values of ε(T ) and h0. (a) Simulated measurements of the imaginary susceptibility component χ ′′(T, f ) at five
different frequencies, as specified in Fig. 7. (b) Using an initial function r 0(T ) = 1, the real component of the susceptibility is calculated from χ ′′(T, f ) (solid
lines). Simulated measurements of χ ′(T, f ) (dashed lines) are shown for comparison. The difference δχ ′ between measured and reconstructed susceptibility
(shown below) is then used to calculate the successive estimate r 1(T ) of r (T ). (c) The first 31 estimates of r (T ) (solid lines) obtained recursively as explained
in (b). The exact r (T ) is shown for comparison (dashed line). (d) χ ′(T, f ) reconstructed from χ ′′(T, f ) using r 31(T ) (solid lines) coincides precisely with the
simulated measurements (dashed lines). The small residual model misfit δχ ′ is shown below.

is practically zero for −lnw > 20, the simplification is valid for
h0 < 0.015/r . Since h i = h0r , this limit coincides with the valid-
ity range of the weak interaction model of Shcherbakov & Fabian
(2005) discussed in Section 2.3.

After some algebraic manipulations (see Appendix A9), the fol-
lowing linear differential equation in ρi (T ) is obtained from (19):

T χ ′
sw(T, f )

ri (T )ε(T )

∂ρi (T )

∂T
≈ − ∂

∂T

T�χ ′
sw,i (T, f )

ri (T )ε(T )
, (31)

where �χ ′
sw,i = χ ′

sw(ri ) − χ ′
sw(r ) is the difference between χ ′

sws
estimated using ri(T ) and r (T ), respectively. Since χ ′

sw(r ) is not
directly measurable, (30) is used to obtain the explicit expression
�χ ′

sw,i = χ̂ ′
i − χ ′ + bκρi , which is based on the fact that κ in

(20) is approximately proportional to r . The differential eq. (31)
is not easily integrable, because �χ ′

sw,i contains the unknown ρi .
Therefore, a further simplification is introduced by assuming χ ′

sw �
χns, so that �χ ′

sw,i ≈ χ̂ ′ − χ ′. This assumption is generally valid
throughout the range of unblocking temperatures of the particles
(Fig. 4). If �χ ′

sw,i ≈ χ̂ ′ − χ ′, (31) is easily integrated over T ,

obtaining

ρi (T ) ≈
∫ T

T0

ri (u)ε(u)

uχ ′(u)

∂

∂u

u[χ ′(u) − χ̂ ′(u, ri )]

ri (u)ε(u)
, (32)

with ρ0(T0) = 0 and χ̂ ′(T, ri ) defined in (30). This result is now
used to calculate a better estimate of r (T ), according to the following
recursion formula:

{bi , Cp,i } = {b, Cp}|
∑
Tk , f j

[
χ ′(Tk, f j ) − bnsκ(Tk, ri )

−χ ′
sw(Tk, f j , ri ) − Cp

Tk

]2
!= min

ri+1(T ) = ri (T ) + ζ ri (T )

×
∫ T

T o

ri (u)ε(u)

uχ ′(u)

∂

∂u

u[χ ′(u) − χ̂ ′(u, ri , bns,i, Cp,i )]

ri (u)ε(u)
du,

(33)

where 0 < ζ ≤ 1 is a damping factor used to stabilize the con-
vergence of ri(T ) toward an asymptotic value r̂ (T ). Numerical dif-
ferentiation and integration are used to calculate the second row of
(33).
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The recursive formula (33) is based on assumptions discussed
above, which might not be strictly valid in certain temperature
ranges. However, the only requirement for (33) is to yield a se-
ries of ri(T ) that converge to the exact solution. Convergence is
ensured if the approximated solution for ρi (T ) given in (32) has the
same sign as the exact solution of (31) for all measured tempera-
tures. This relaxed condition allows for a reconstruction of r (T ) for
typical sets of SP particles.

A reconstruction of r (T ) based on the numerical example of
Fig. 7 is shown in Fig. 9, whereby r 0(T ) = 1, and correct values
of ε(T ), h0 and τ0 have been chosen as starting parameters. The
in-phase susceptibility calculated from χ ′′(T ; f ) using the initial
model r 0(T ) is clearly at odds with the simulated measurements.
After 32 iterations based on (33) with ζ = 0.5, convergence to a final
estimate r̂ (T ) of r (T ) was obtained within <2 per cent over the entire
range of temperatures. The in-phase susceptibility calculated from
χ ′′(T ; f ) using r̂ (T ) is in excellent agreement with the simulated
measurements, with a maximum difference of 0.1 per cent between
χ ′ and χ̂ ′. Since the synthetic data are free of measurement errors,
the residual difference is related to approximations in numerical
integration and differentiation.

A figure of merit of r̂ (T ) is given by the standard deviation
of the squared differences between χ ′ and χ̂ ′ calculated for all
temperatures and frequencies:

〈δχ ′2〉 =
∑
k, j

[χ̂ ′(Tk, f j ) − χ ′(Tk, f j )]
2. (34)

A minimum of 〈δχ ′2〉 is obtained asymptotically after a number
of iterations. Extended testing of the algorithm on numerical and
real samples has shown that ζ = 0.5 and 20–60 iterations are
sufficient to minimize 〈δχ ′2〉 in most cases. Convergence is more
difficult when r (T ) or ε(T ) are strong functions of the temperature,
or if h0 approaches the upper validity range of the interaction model
used in this paper. Those cases could still be solved starting from
r 0(T ) = 1 and using ζ = 0.05–0.2 to avoid oscillatory instabilities.

In the ideal case of error-free measurements, 〈δχ ′2〉 → 0 is
obtained when correct estimates of ε(T ), h0 and τ0 are used. In
practice, however, 〈δχ ′2〉 does not decrease below a minimum value
〈δχ ′2〉min > 0. It is interesting to discuss 〈δχ ′2〉min obtained using
incorrect models of ε(T ), h0 or τ0, since this is the typical case
encountered while r (T ) is reconstructed. The initial forward model
is characterized by δχ ′ = χ̂ ′ − χ ′ being both temperature- and
frequency dependent (Fig. 9b). After an optimal estimate of r (T )
is found, the temperature dependence of δχ ′ is suppressed on av-
erage, but a residual dependence of δχ ′ on the frequency remains
(Fig. 9d). The frequency dependence of δχ ′ is much larger than
the measurement errors as long as incorrect estimates of the other
model parameters are used to calculate r (T ). Therefore, 〈δχ ′2〉min

depends on the choice of ε(T ), h0 and τ0, and it is possible to
combine the inversion methods described in Sections 4.2 and 4.3
to obtain a solution for all model parameters, as discussed in the
following section.

4.4 Combined inversion solution for all model parameters

The calculation of r (T ) and ε(T ) discussed previously is based on
the assumption that one model parameter at the time is unknown.
The next step consists in combining the reconstruction of r (T ) and
ε(T ) for given values of the other two parameters h0 and τ0. Us-
ing the same approach developed in Sections 4.2—and 4.3, ε(T )
and r (T ) can be calculated starting from initial estimates ε0(T ) and

r 0(T ), whereby the solution of the inverse problem is applied alter-
natively to the two parameters. Accordingly, ε1(T ) is the solution
obtained with r = r 0 and h0, τ0, which is then used to calculate
r 1(T ). The procedure is reiterated to obtain new estimates ε2 and
r 2. The series of solutions εi (T ) and ri(T ) eventually converges to
asymptotic functions ε̂(T ) and r̂ (T ) that represent the final solution
of the inverse problem for given values of h0 and τ0. Convergence
is ensured if the initial model functions were close enough to the
correct solution. It will be shown later that convergence is generally
robust, and simple initial guesses such as r0 = ε0 = 1 are sufficient.
The solution ε̂(T ) and r̂ (T ) of the inverse model is correct only if
the figures of merit 〈δq2〉 and 〈δχ ′2〉 obtained from the last iteration
have reached minimum values that correspond to the measurement
errors. Depending on the choice of h0 and τ0, differences will per-
sist between the measurements and the forward model calculated
using ε̂(T ) and r̂ (T ) until a correct guess for h0 and τ0 is found.

The final step consists in finding the appropriate values of h0

and τ0 that minimize 〈δq2〉 and 〈δχ ′2〉. Well-defined constraints ex-
ist for both parameters. The weak interaction model discussed in
Section 2.3 is valid only if 0 ≤ h0 ≤ 0.015: solutions for h0 that
fall out of this range are probably not correct and should be dis-
carded. Empirical estimates of τ0 are usually obtained by combin-
ing experiments that cover different timescales, such as Mössbauer
spectroscopy (τ ≈ 10−8 s) and susceptibility or magnetic relaxation
measurements (τ ≈ 10−2−102 s). Pre-exponential factors reported
in the literature for SD particles vary with size and composition
between 10−12 s for ferritin (Dickson et al. 1993) and 4 × 10−9 s for
ferromagnetic particles in the SP–SD range (Moskowitz et al. 1997;
Wernsdorfer 1997a; Egli & Lowrie 2002). Unphysical values
<10−13 s are obtained if magnetostatic interactions are not ade-
quately accounted for (Dormann et al. 1997; Shcherbakov & Fabian
2005). Therefore, 10−13 ≤ τ0(s) ≤ 10−8 represents the maximum
range of realistic pre-exponential factors to consider.

The limited range of possible values for h0 and τ0 allows one to
solve the inverse problem by exploring the validity ranges of logτ0

and h0 in uniform steps. The parameter pair (h0, τ0) that produces a
forward model closest to the measurements corresponds to a global
minimum of both 〈δq2〉 and 〈δχ ′2〉 and represents the full solution
of the inverse problem. A protocol for the full inversion of suscep-
tibility measurements based on this concept can be summarized to
the following steps:

(1) Measure χ (T ; f ) over the widest possible temperature range
using a set of frequencies that typically extends over two decades
(e.g. 1, 10 and 100 Hz). If measurements are performed over more
than three frequency decades, the frequency dependence of χ (T ; f )
is no longer approximated by a linear function, invalidating (25).
Therefore, the inversion of such measurements should be performed
after splitting the measured frequencies in groups that are analysed
separately. Measurements over small temperature steps at few fre-
quencies are therefore best suited for inversion, easing the choice
of the frequency range for which the instrument is most sensitive.
A range of temperatures sufficient to block/unblock all particles is
of advantage but not necessary.

(2) Choose the initial model parameters. If composition and size
of the magnetic particles are fully unknown, τ0 = 10−10s , h0 =
0 and r0(T ) = ε0(T ) = 1 is a good initial guess. Better initial
parameters can be chosen if additional information is available.
Choose a reference temperature T0 within the range of measured
temperatures. Avoid setting T0 equal or close to 0 K, since large
uncertainties occur in the reconstruction of r (T ) and ε(T ) for
T → 0 .
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Figure 10. (a) and (b) Figures of merit for the inversion of the simulated susceptibility measurements of Fig. 7, obtained for a series of τ0 and h0 values. In
both cases, best results are achieved using τ0 = 10−10 s and h0 = 0.01 (star), which coincide with the parameters used to calculate the simulated measurements.
(c) and (d) Reconstruction of ε(T ) and r (T ) for the final model corresponding to τ0 = 10−10 s and h0 = 0.1.

(3) Calculate a first estimate ε̂(T ) of ε(T ) using the method
described in Section 4.2 and fixed parameters τ0 , h0 and r0(T ) .
Limit the temperature range considered for reconstructing ε(T ) to
measurements of χ ′′(T ; f ) that are well above the noise level. Set
ε0(T ) = ε̂(T ) before proceeding with step 4.

(4) Obtain a first estimate r̂ (T ) of r (T ) using the method de-
scribed in Section 4.3 and fixed parameters τ0 , h0 and ε1(T ) . Use
a sufficient number of iterations to obtain a convergent result and
verify that δχ ′ = χ̂ ′ −χ ′ after the last iteration step does not show a
systematic dependence on T (e.g. δχ ′ should look like Fig. 9d, and
not like Fig. 9b). This condition is always verified after a sufficient
number of iterations. Set r0(T ) = r̂ (T ) before proceeding with
step 5.

(5) Repeat steps 3 and 4 until a stable solution for r (T ) and ε(T )
is obtained. The inverse problem for the parameter pair (τ0, h0) is
now solved. A figure of merit of the resulting susceptibility model
is given by 〈δq2〉 and 〈δχ ′2〉 .

(6) Repeat steps 2–5 for various parameter pairs (τ0, h0) ob-
tained by exploring the validity ranges of logτ0 and h0 in uniform
steps. Suggested initial steps are one order of magnitude for τ0

(e.g. 10−12 , 10−11 , 10−10 s) and 0.005 for h0 . Refine the steps if
necessary.

(7) There should exist one pair of parameters (τ̂0, ĥ0) for which
both 〈δq2〉 and 〈δχ ′2〉 are absolute minima. These parameters,
together with the corresponding inverse problem solutions r̂ (T )
and ε̂(T ) , represents the final result of susceptibility inversion.

An example of inverse problem solution based on this protocol
has been calculated for the numerical model of Fig. 7. Combinations
of τ0 and h0 given by τ0 = 10−11, 10−10 and 10−9 s and 0.006 ≤
h0 ≤ 0.013 in steps of 5 × 10−4 have been used (Figs 10–13).
A solution that minimizes both 〈δq2〉 and 〈δχ ′2〉 is obtained only

when τ0 and h0 coincide with the model parameters used to generate
the simulated measurements (Figs 10a and b). In this example, the
inversion problem has a single solution that coincides with the model
parameters used to calculate the simulated measurements. If h0 is
arbitrarily set to zero, the minimization of 〈δq2〉 and 〈δχ ′2〉 forces
τ0 to unrealistically small values, in concert with the conclusions
of Shcherbakov & Fabian (2005). Incorrect choices of h0 and of
τ0 produce a clear mismatch between the forward model and the
synthetic data (Figs 11 and 12).

When error-free measurements are analysed, 〈δq2〉 � 0 and
〈δχ ′2〉 � 0 are obtained for one and the same combination of model
parameters, provided that the forward model discussed in Section 3
is correct. If different values of τ0 and h0 are needed to minimize
〈δq2〉 and 〈δχ ′2〉, at least one of the assumptions underlying the
forward model is wrong, as discussed in Section 5. However, small
differences between the values of τ0 and h0 that minimize 〈δq2〉
and 〈δχ ′2〉 could arise from measurement errors or from acceptable
approximations of the forward model. In this case, a meaningful
solution of the inverse problem might be found by defining a single
figure of merit 
. Since 〈δq2〉 and 〈δχ ′2〉 differ typically by at least
one order of magnitude (Fig. 10), the product 
 = 〈δq2〉〈δχ ′2〉 is a
choice that weights equally the real and the imaginary component
of susceptibility.

4.5 Reconstruction of the energy barrier distribution

Once the model parameters r (T ), ε(T ), τ0 and h0 have been de-
termined, it is possible to calculate the EBD G(E 0). As discussed
previously, a logarithmic scale is often more appropriate to repre-
sent EBD extending over several orders of magnitude. An estimate
of the distribution function for log E 0 is obtained from (13) using
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Figure 11. Effects of the interaction field parameter h0 on the calculation of ε(T ) and r (T ). The estimated parameters ε̂(T ) and r̂ (T ) have been reconstructed
using τ0 = 10−10 s and (a and b) h0 = 0.007, (c and d) h0 = 0.011, instead of the correct value h0 = 0.01. Left-hand panel: the functions q(T , fj) and ε̂(T )
(solid lines); ε(T ) (dashed line) is shown for comparison. Right-hand panel: reconstructed χ̂ ′(T, f ) and r̂ (T ) (solid lines); simulated measurements of χ ′(T, f )
and r (T ) are shown for comparison (dashed lines).

Figure 12. Effects of the pre-exponential factor τ0 on the calculation of ε(T ) and r (T ). The estimated parameters ε̂(T ) and r̂ (T ) have been reconstructed using
h0 = 0.1 and (a and b) τ0 = 10−11 s, (c and d) τ0 = 10−9 s, instead of the correct value τ0 = 10−10 s. Left-ahand panel: the functions q(T , fj) and ε̂(T ) (solid
lines); ε(T ) (dashed line) is shown for comparison. Right-hand panel: reconstructed χ̂ ′(T, f ) and r̂ (T ) (solid lines); simulated measurements of χ ′(T, f ) and
r (T ) are shown for comparison (dashed lines).
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Figure 13. Reconstructed energy barrier distributions (EBD) Ĝ(log E0), represented by solid line segments corresponding to measurements performed at the
same temperature. The EBD used to calculate the simulated measurements, G(log E 0), is shown for comparison (dashed line). (a) EBD obtained for three
different values of τ0 and a combination of model parameters that minimize 〈δq2〉 and 〈δχ ′2〉 for each value. (b) EBD reconstruction obtained using ε(T ) = 1.
The other model parameters are identical to those used for the forward model. (c) EBD reconstruction obtained using h0 = 0. The other model parameters are
identical to those used for the forward model. The wrong choice of h0 affect the amplitude of Ĝ (arrow) but has little influence on the shape of the distribution,
as shown by rescaling G (dotted line) to fit Ĝ. (d) EBD reconstruction obtained using r (T ) = 1. The other model parameters are identical to those used for the
forward model. The amplitude of Ĝ is affected by a wrong choice of r (T ) (arrow), but the shape of the distribution remains unchanged, as shown by rescaling
G (dotted line) to fit Ĝ.

the transformation role for distribution variables:

Ĝ(log E0) = 2 ln 10

πξbr (T ) J [2h0r (T ) ln w]
χ ′′(T, f ),

T/ε(T ) = −E0/(kB ln w).

(35)

The EBD can be plotted directly from measurements of χ ′′(T ; f )
using the coordinates

E0,k, j = −kBTk ln(2πτ0 f j )/ε(Tk),

Ĝk, j = 2 ln 10

πξbr (Tk) J [2h0r (Tk) ln(2πτ0 f j )]
χ ′′(Tk ; f j ).

(36)

If correct estimates of r (T ), ε(T ), τ0 and h0 are used, all points
specified by (36) collapse on a single, smooth line representing the
EBD.

Examples of energy barrier reconstruction based on the numer-
ical model of Fig. 7 are shown in Fig. 13. The representation of
Shcherbakov & Fabian (2005) has been used, where all points cor-
responding to measurements performed at the same temperature
are connected by a line (isothermal lines). This representation has
the advantage of clearly showing eventual incoherencies of the in-
version method, since a perfect overlap of the isothermal lines is
obtained only if all model parameters and the underlying assump-
tions of the forward model are correct (Fig. 13a).

Incorrect estimates of τ0 affect the reconstruction of ε(T ), which
in turn shifts the median of Ĝ toward lower or higher energy barriers
(Figs 13a and b). This shows the importance of avoiding arbitrary
choices of τ0. On the other hand, r (T ) and h0 influence the am-

plitude of Ĝ, but not its shape, making energy barrier calculations
relatively insensitive to the latter two parameters. This result is ex-
pected for h0, since it follows directly from the assumptions that
weak magnetostatic interactions do not alter the energy barrier sig-
nificantly.

4.6 SUSINVER code

The inversion method discussed in 4.2–4.5 has been implemented
in the package SUSINVER running on Mathematica� 6.0 and later
versions. SUSINVER provides a set of built-in Mathematica� func-
tions for the calculation of the forward model, the inversion of sus-
ceptibility measurements and the graphical representation of r (T ),
ε(T ) and G(E 0). The forward models of Figs 4–7, as well as the
inversion results of Figs 8–13, have been calculated using SUS-
INVER, which also provided most of the graphics shown in these
figures. The graphical interface allows the user to check the inver-
sion results and optimize parameters such as the number of iterations
and the choice of temperature intervals for calculating ε(T ). SUS-
INVER is freely available on request from the author, together with
solved examples and instructions for using the built-in functions.

5 I N T E R P R E TAT I O N A N D L I M I T S
O F S U S C E P T I B I L I T Y I N V E R S I O N

The limits of the susceptibility inversion method discussed in
Section 4 are related to the assumptions underlying the forward
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model, namely: (1) uniaxial anisotropy; (2) validity of the Néel–
Brown relaxation model (i.e. eq. 3) and (3) the temperature depen-
dences of m and H K are independent of the particle’s volume (Fig.
2d), and 4) the particle distribution in space is completely random
(Fig. 1h). The implications of these assumptions will be discussed
here, with particular emphasis on the interpretation of the inversion
results.

5.1 Non-uniaxial anisotropy

The forward model describing the susceptibility of SP particles
with non-uniaxial anisotropy has never been solved explicitly. Su-
perparamagnetic relaxation calculations for mixed uniaxial and cu-
bic anisotropies show that multiple relaxation rates exist between
different equilibrium states of the same particle (Newell 2006a,b).
The practical consequence for susceptibility measurements is that a
single particle might be characterized by multiple blocking condi-
tions. The most obvious effect is that identical particles with mixed
anisotropy behave similarly to a set of uniaxial particles with differ-
ent magnetic moments and energy barriers. Given this equivalence
between one particle with mixed anisotropy and an appropriate set
of fictive uniaxial particles, one would expect the forward model
discussed in Section 3 to be still valid, as long as the EBD is
not converted into a volume distribution. However, thermally ac-
tivated transitions between different equilibrium configurations of
the same particle are not independent from each other, as they would
be in an equivalent model with multiple uniaxial particles. The lack
of independence between different transitions could give raise to
unexpected effects that might invalidate some aspects of the for-
ward model discussed in Section 3. The case of cubic and mixed
anisotropies will be discussed in detail in a follow-up paper.

5.2 Departures from the Néel–Brown relaxation model

As discussed in Dormann et al. (1997), the Néel–Brown relaxation
model applies to non-interacting magnetic particles whose moment
reverses by coherent rotation. This reversing mode has been verified
experimentally for T > 1 K by direct relaxation time measurements
of single Co nanoparticles with a diameter of 25 nm in a field
slightly smaller than the switching field (Wernsdorfer et al. 1997a).
Measurements on larger nanoparticles suggest that the magnetic
moment reverses by a nucleation process. In such cases, best fit to
the experimental data is obtained when the relaxation time constant
τ = τ0eβ is replaced by τ = τ ′

0 exp(β p), where p is a positive expo-
nent (Wernsdorfer et al. 1995), giving raise to a so-called stretched
exponential law for the relaxation time. A stretched exponential law
seems also necessary to explain the same type of measurements
on maghemite (Lederman et al. 1994) and the aging effect due to
oxidation of Ni nanowires (Wernsdorfer et al. 1997b). These obser-
vations led to the suggestion that a stretched exponential relaxation
law would apply to ferri- and antiferromagnetic particles, whereas
the Néel–Brown law would be strictly valid only for ferromagnetic
particles. This has profound implications in the interpretation of
geologic materials, where remanence carriers are usually ferrimag-
netic particles with various degrees of low-temperature oxidation.
However, it should be noted that relaxation time experiments on
single nanoparticles have been all performed in a strong field, and
that deviations from the Néel–Brown relaxation model might not
necessarily persist at low fields or in a zero field, such as with suscep-
tibility measurements or during the acquisition of a thermoremanent
magnetization in the Earth magnetic field. Measurements of a single

maghemite particle indeed show an increasingly better agreement
with the Néel–Brown law as the field is decreased.

The effect of a stretched exponential relaxation law on the forward
susceptibility model is investigated in the following by generalizing
Néel’s solution of the kinetic equation of isolated uniaxial particles
to the case of a general relaxation law with transition rate f (β) over
the normalized energy barrier β. The Néel–Brown relaxation model
is given by f −1(β) = τ0eβ , whereas a stretched exponential model
is described by f −1(β) = τ ′

0 exp(β p) with p > 0. Using Néel’s
(1949) approach to the solution of the kinetic equation based on a
generic transition rate f (β), the switching susceptibility of isolated
particles is given by

χsw = χ0
f ′(β)β

f (β) + iω
. (37)

The classic Néel solution (2) follows from f −1(β) = τ0eβ ; on
the other hand, the stretched exponential relaxation law gives

χsw = χ0
pβ p

1 + iτ0ω exp(β p)
. (38)

Two examples for p = 0.8 and p = 1.2 are shown in Fig. 14.
The blocking condition is given by β0 = − ln1/p(τ0ω), instead of

Figure 14. Switching susceptibility models of random assemblages of non-
interacting particles with a stretched exponential relaxation law (solid lines),
and best least-squares fit obtained using a Néel–Brown relaxation law
(dashed line). (a) Real and imaginary part of χsw for p = 0.8, E/k B =
0.465, τ0 = 10−10s and ν = 1100Hz. Best approximation using eq. (2) is
obtained with E/k B = 1.23, h i = 0.0155 and τ0 = 5.2 × 10−9. (b) Real
and imaginary part of χsw for p = 1.2, E/k B = 1.82, τ0 = 10−10s and
ν = 1100Hz. Best approximation using eq. (2) is obtained with E/k B =
0.936, h i = 0 and τ0 = 2.67 × 10−12s.
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Figure 15. Numerical model of randomly oriented SW particles used to test the effect of a correlation between model parameters on the inversion of
susceptibility data. The model consists in a mixture of two independent groups of particles characterized by (a) temperature dependences r 1(T ), ε1(T ) and
r 2(T ), ε2(T ) respectively, (b) energy barrier distributions G 1(log E 0) and G 2(log E 0) and interaction field constants h0 = 0 and h0 = 0.006. The pre-exponential
factor is τ0 = 10−10 s, and no interactions are assumed to occur between the groups. The simulated susceptibility measurements of a sample containing these
two groups of particles are shown in (c) and (d) for f = 1, 3, 10, 30 and 100 Hz.

β0 = − ln(τ0ω) as for the Néel–Brown relaxation model, produc-
ing a different frequency dependence. An additional effect of the
stretched exponential relaxation law is the modification of the linear
dependence of Reχsw on β < β0. If p < 1, this effect is qualitatively
similar to that produced by interactions in systems of randomly ori-
ented particles. The temperature and frequency dependence of χ ,
calculated using a stretched exponential relaxation, is intrinsically
different from the SSR forward model discussed in Section 3. How-
ever, forward SSR models with appropriate values of τ0 and h i can
produce a relatively good fit to the data if p is close to unit. This
is especially true for p < 1, where a fictive interaction field ap-
proximates Reχsw for β < β0. Nevertheless, forward susceptibility
models calculated using p = 0.8 and 1.2 are clearly incompatible
with the SSR model (Fig. 14). Therefore, a stretched exponential
relaxation law is expected to produce a significant misfit between
any SSR forward model and the measured data, allowing a clear
identification of such cases.

5.3 Mixtures

An important assumption underlying the susceptibility inversion
method presented here is based on the independence of the model
parameters. This independence is necessary to solve the inversion
problem, but one can easily imagine cases where a correlation exist
between the volume of the particles, their temperature dependence
and their arrangement in space (e.g. Figs 2e and i). For example, the
magnetic anisotropy of small nanoparticles is affected by a surface
contribution. The temperature dependence of surface anisotropy is
not well understood; however, experiments on thin films show clear

differences with respect to volume anisotropy (André et al. 1995).
Since the surface of a particle scales as V 2/3, smaller particles have
a larger surface anisotropy contribution, and the temperature de-
pendence of m and H K might therefore depend on V . The spatial
distribution of particles might also depend on their volume. If the
particles are grown in a heterogeneous medium, such as a soil, differ-
ent growing conditions in different parts of the sample could lead to
the formation of particle aggregates characterized by different grain
size distributions. In such cases, the distribution of interaction field
and particle volumes could be different in each aggregate.

To understand the effect of correlations between model parame-
ters, consider the simplest possible case given by a mixture of two
isolated groups of SP particles. Each group is characterized by dif-
ferent magnetic parameters summarized in Fig. 15. The first group
of particles has larger energy barriers, temperature-independent m
and H K and no magnetostatic interactions (h0 = 0). The second
group is composed of interacting particles (h0 = 0.006) character-
ized by strong temperature dependence of m and H K and smaller
energy barriers. Since the two groups are isolated, the resulting
magnetic susceptibility is simply given by the sum of the suscepti-
bilities calculated for each group. A correlation between different
model parameters depends on the fact that smaller particles have
on average stronger temperature dependences and are affected by a
larger interaction field.

The model of Fig. 15 has been used to calculate synthetic sus-
ceptibility measurements that have been inverted using the method
described in Section 4. Results are shown in Fig. 16 for a combina-
tion of τ0 and h0 that minimizes 
 = 〈δq2〉〈δχ ′2〉. All reconstructed
model parameters are intermediate between those assumed for the
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Figure 16. Inversion results for the simulated measurements shown in panels (c) and (d). (a) The functions q(T , fj) overlap almost perfectly, except for a range
of temperatures around 100 K. (b) Estimate ε̂(T ) of ε(T ), compared with the exact parameters ε1(T ) and ε2(T ) used to model the two groups of particles. (c)
A perfect overlap is obtained between χ ′(T, f ) reconstructed from χ ′′(T, f ) and the simulated measurements. (d) Estimate r̂ (T ) of r (T ), compared with the
exact parameters r 1(T ) and r 2(T ) used to model the two groups of particles. (e) Estimated energy barrier distribution Ĝ, compared with the distributions used
to model the two groups of particles. (f) 〈δq2〉 and 〈δχ ′2〉 are minimized by τ0 ≈ 10−11 s, h0 ≈ 0.0045 and τ0 ≈ 10−10 s, h0 ≈ 0.005. All estimated model
parameters are intermediate between those characterizing the two groups of particles used to calculate the forward model.

two groups of particles in Fig. 15. Although the agreement between
simulated measurements and the reconstructed susceptibility is ex-
cellent, some inconsistencies exist between the values of τ0 and h0

that minimize 〈δχ ′2〉 and 〈δq2〉. For example, a minimum in 〈δχ ′2〉
is obtained for h0 = 0.005 and τ0 = 10−10s, but 〈δq2〉 is minimized
by h0 = 0.0045 and τ0 = 10−11 s. The minima of 〈δχ ′2〉 and 〈δq2〉
are also less well defined compared with those obtained for the nu-
merical sample of Fig. 7. Such inconsistencies can be attributed to
the correlation between different model parameters.

5.4 Checking susceptibility inversion results

As already discussed, some assumptions of the susceptibility model
discussed in Section 3 might not apply to certain categories of
SP particles. It is therefore necessary to evaluate the reliability of
inverse problem solutions. This can be done by considering three
main problems in the interpretation of susceptibility measurements:
(1) magnetostatic interactions exceeding the limits of the weak in-
teraction model discussed in 2.3; (2) deviations of the magnetic

C© 2009 The Author, GJI, 177, 395–420

Journal compilation C© 2009 RAS



Magnetic susceptibility: inversion theory 417

relaxation law from the Néel–Brown model (i.e. stretched exponen-
tial models) and (3) strong correlations between r (T ), ε(T ), h0 and
the volume of the particles. Following checks can help in identifying
such problems:

(1) Is h0 ≤ 0.015? If not, the forward susceptibility model dis-
cussed in Section 3 is probably not correct.

(2) Does the inverse problem have the same solution upon min-
imization of 〈δχ ′2〉 and 〈δq2〉 ? If different combinations of h0

and τ0 are required to minimize 〈δχ ′2〉 and 〈δq2〉 , some model
parameters are probably correlated. Solutions of the inverse prob-
lem, however, could be interpreted as an average of different indi-
vidual particle properties.

(3) Does the minimization of 〈δχ ′2〉 and 〈δq2〉 give a realistic
estimate of τ0 ? Values around 10−12 and 10−10 s are expected
for antiferromagnetic and ferrimagnetic particles, respectively. Un-
realistic values of τ0 could be related to strong interactions or to
violations of the Néel–Brown relaxation law.

(4) Is the parameter b obtained from susceptibility inversion
close to unit for particles whose magnetization is expected to be
approximately homogeneous? If not, the Néel–Brown relaxation law
does not apply to the system of particles under consideration. This
might be due to strong interactions or to a non-uniform reversing
mode of the magnetic moment (Wernsdorfer et al. 1995).

In a follow-up paper, susceptibility measurements of samples
containing SP particles of different compositions are analysed. The
inversion results for well-dispersed magnetic particles do pass the
criteria (1)–(4) in most cases, suggesting that the susceptibility
model discussed in this paper has a general validity.

6 C O N C LU S I O N S

A method for inverting susceptibility measurements as a function of
temperature and frequency has been developed for random assem-
blies of weakly interacting, uniaxial SP particles. This method rep-
resents a generalization of the Shliomis–Stepanov–Raikher model,
which accounts for weak magnetostatic interactions and for particles
with a magnetization that is not perfectly homogeneous. A priori
assumptions on the magnetic properties of the particles, as well as
model functions describing the distribution of energy barriers, are
completely avoided. The only assumption required by the model is
that no correlation exists between the temperature dependence of
the magnetic moment and the microcoercivity on one hand and the
volume of the particles and magnetostatic interactions on the other.
Furthermore, the susceptibility model is based on the Néel–Brown
relaxation law. The effect of different relaxation laws, such as the
stretched exponential, has been investigated.

Estimates of the temperature dependence of magnetic moments
and microcoercivities, the mean interaction field, the distribution of
energy barriers and the pre-exponential factor in Néel–Brown’s re-
laxation theory can be obtained from the inversion of susceptibility
measurements, providing a precise characterization of SP particles.
The reliability of the developed inversion method has been tested on
numerical samples, whereby the parameters used to generate sets
of synthetic susceptibility measurements could be reconstructed
accurately.

The inversion of susceptibility data provides an interesting char-
acterization tool to investigate SP particles with known composition
on one hand and mixtures of iron nanominerals occurring in natural
rocks and sediments on the other. Accurate absolute estimates of the
magnetic moment and the anisotropy constant can be obtained for

SP particles of known composition and grain size, determined from
independent observations (e.g. electron microscopy). This data pro-
vide a useful term of comparison for the analysis of SP particle
mixtures occurring in nature. Susceptibility inversion provides also
a self-consistency check of existing theories on magnetic relaxation
phenomena.
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A P P E N D I X

A1 Pre-exponential factor

The high energy barrier approximation of the pre-exponential factor
for a magnetic particle with volume V , magnetic moment m(T ) and
non-relaxing magnetization M nr = m/V is given by

τ0 =
√

π

4

m(0)

γ0 E

[
1

ηr
+ ηr

(
Mnr(T )

Mnr(0)

)2
](

E

kBT

)−1/2 (
1 + kBT

E

)
(A1)

(eq. (1) in Dormann et al. 1996). The last term of (A1) can
be neglected for large energy barriers. Using m = VM nr(0) and
β = E/(kBT ) with E = μ0m HK/2 and μ = Mnr(T )/Mnr(0) gives
eq. (3).
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A2 Formulation of the SSR model

The SSR model for identical, aligned SW particles is usually written
as

χ = χ‖
1 + iωτ‖

cos2 α + χ⊥
1 + iωτ⊥

sin2 α, (A2)

where α is the angle between the easy axes and the applied field,
and

χ‖ = μ0m2

kBT

1 + 2S̃2

3
, χ⊥ = μ0m2

kBT

1 − S̃2

3
(A3)

are the so-called equilibrium susceptibilities, with (1 + 2S̃2)/3 = ξ

(eqs 3.75 and 4.2 in Garcı́a-Palacios 2000). In the low-frequency
case, ωτ⊥ � 1. Substituting β in (A3), and integrating over all
angles gives the susceptibility

χ = 2m

HK

βξ

1 + iωτ‖

1

2

∫ π

0
cos2 α sin α dα

+ 2m

HK

1 − ξ

2

1

2

∫ π

0
sin3 α dα

(A4)

of randomly oriented particles. Eqs (4) and (5) follow immediately
from (A3) if m is replaced by M s.

A3 Energy barrier distribution

The EBD G(E 0) (as defined in Section 3.4) is the contribution
of all particles with a given energy barrier E 0 to the susceptibility
χ0 ∝ m/HK of the sample. The energy barrier itself is the function of
a set of independent variables describing the magnetic properties of
the particles. In the case of SW particles, the independent variables
can be chosen to be the grain volume V and the microcoercivity H K,
and a set of particles with identical composition is fully described
by the joint grain distribution f (V , H K) (as defined in Jackson et al.
2006) as the contribution of all particles with a given volumes V and
microcoercivities H K to the magnetization of the sample, which is
∝ m. Since χ0 ∝ m/HK and f (V, HK) ∝ m, G(E 0) is obtained by
integrating f (V , H K)/H K over all (V , H K) pairs corresponding to
the same E 0. Using E0 = μ0μsV HK/2,

G(E0) = 1

E0

∫ ∞

0
f (V, HK) d V (A5)

with HK = 2E0/(μ0μsV ). The joint distribution can be written
as f = v(V ) s(H K, V ), where v is the volume distribution and s
is the microcoercivity distribution. If the microcoercivity distribu-
tion is much narrower than the volume distribution, s(H K, V ) can
be approximated with a Dirac δ-function centred on the average
microcoercivity H̄K(V ) of all particles with volume V . A further
simplification is obtained if H̄K is assumed to be independent of V .
In this case, (A5) simplifies to

v(V ) = μ0μs H̄ 2
K

2
G(μ0μsV H̄K/2). (A6)

In case of a bimodal mixture of particles with two different values
of H̄K, it is clear from (A6) that the relative contribution of each
group of particles to G and v is different.

A4 Proof of eq. (14)

After substituting (13) with f = f 1 into (11) with f = f 0 and
assuming ξb = 1, one obtains

χ ′′(T, f0) = r (T )

r (u)
χ ′′(u; f1)

J [2h0r (T ) ln w0]

J [2h0 r (u) ln w1]
,

u

ε(u)
= T

ε(T )

ln w0

ln w1
.

(A7)

If all terms containing T are brought to the right-hand side of
(A7), eq. (14) is obtained.

A5 Proof of the π/2-law

Using (14), eq. (16) can be written as

χ ′
sw(T, f ) = 2

πξb

∫ −Inw

0
q(u)r (T )ξ (β)J [2h0r (T )β]dβ, (A8)

with u being the solution of (17). Since q(u), and thus the entire
expression inside the integral, is independent of f , the derivative
of (A8) with respect to ln w is simply given by applying Leibnitz’s
rule:

χ f = 2

π
χ ′′(u, f )

r (T )

r (u)

ξ (β)

ξb

J [2h0r (T )β]

J [2h0r (u) ln w]

∣∣∣∣
β=− ln w

,

u

ε(u)
= − T

ε(T )

β

ln w

∣∣∣∣
β=− ln w

.

(A9)

The second line of (A9) simplifies to u/ε(u) = T/ε(T ), which
has the trivial solution u = T . If this solution is substituted into the
first line of (A9), (18) follows immediately.

A6 Proof of eqs (19) and (20)

Using (17), one can calculate the derivative of u with respect to β:

∂u

∂β
= − T

ε(T )

1

ln w

[
1

ε(u)
− u

ε2(u)
ε′(u)

]−1

, (A10)

and rewrite (16) using the substitution rule du = (∂u/∂β) dβ:

χ ′
sw(T, f ) = 2

πξb

∫ T

0
(u, f )

r (T )

r (u)
ξ (β)

J [2h0r (T )β]

J [2h0r (u)Inw]

∂β

∂u
du. (A11)

Eq. (19) is obtained from (A11) after solving (17) with respect
to β, then substituting β with the resulting expression and ∂β/∂u
with the reciprocal of (A10). Similarly, the first integral in (8) is
first rewritten by substituting G(E 0) with (13), obtaining

κ = 2r (T )

πξb

∫ 0

∞

χ ′′(u; f )

r (u)β J [2h0r (u)Inw]
η(β)dβ. (A12)

Eq. (20) follows after substituting β with u.

A7 Proof of eqs (21) and (23)

A set f1, f2, . . . , fn of n functions is linearly independent in a given
interval I if the Wronskian determinant W ( f1, f2,, . . . , fn) with

W =

∣∣∣∣∣∣∣∣∣∣∣

f1 f2 · · · fn

f ′
1 f ′

2 · · · f ′
n

...
...

. . .
...

f (n−1)
1 f (n−1)

2 · · · f (n−1)
n

∣∣∣∣∣∣∣∣∣∣∣
(A13)
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is not zero for at least one x ∈ I . Considering χpδp as functions of
f , the corresponding Wronskian determinant can be written as

W =

∣∣∣∣∣∣∣∣∣∣

χεδε χrδr χhδh0 χτδ ln τ0

∂ f χεδε ∂ f χrδr ∂ f χhδh0 ∂ f χτδ ln τ0

∂2
f χεδε ∂2

f χrδr ∂2
f χhδh0 ∂2

f χτδ ln τ0

∂3
f χεδε ∂3

f χrδr ∂3
f χhδh0 ∂3

f χτδ ln τ0

∣∣∣∣∣∣∣∣∣∣
, (A14)

where ∂n
f is the nth derivative with respect to f . Since the δps do

not depend on f , they are scalar constants that can be extracted
from the determinant. Therefore, the Wronskian determinant given
in eq. (21) is proportional to (A12). Eq. (21) was then evaluated
analytically using Mathematica� and (11) and (12).

Solution of eq. (22) with respect to δr gives

δr = χεδε − χhδh0 − χτ δ ln τ0

χr
. (A15)

Since r = r (T ) ∈ R, δr must be a real function that is independent
of f , that is, Im(δr ) = 0 and ∂(δr )/∂ f = 0. These two conditions
give⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(χ ′
εδε − χ ′

hδh0 − χ ′
τ δ ln τ0)χ ′′

r

−(χ ′′
ε δε − χ ′′

h δh0 − χ ′′
τ δ ln τ0)χ ′

r = 0,

(χε, f δε − χh, f δh0 − χτ, f δ ln τ0)χr

−(χεδε − χhδh0 − χτ δ ln τ0)χr, f = 0.

(A16)

Both equations in (A16) can be solved with respect to δε, obtain-
ing the two solutions:

δεI = (χ ′
hχ

′′
r − χ ′′

h χ ′) δh0 + (χ ′
τ χ

′′
r − χ ′′

τ χ ′
r ) δ ln τ0

χ ′
εχ

′′
r − χ ′′

ε χ ′
r

,

δεII = (χh, f χr − χhχr, f ) δh0 + (χτ, f χr − χτχr, f ) δ ln τ0

χε, f χr − χεχr, f
.

(A17)

Since ε = ε(T ) ∈ R, δε must be a real function that is indepen-
dent of f . Hence, ∂(δεI)/∂ f = 0, Im(δεII) = 0 and ∂(δεII)/∂ f = 0.
The last condition involves second derivatives of f , and assuming
these to be zero, it is automatically fulfilled. The first two condi-
tions can be met only if δεI is constant in the frequency domain
and δεII is constant in the temperature domain. This is only possible
if the terms that multiply δh0 and δτ0 in δεI and δεII are linearly
dependent. Linear dependence imply that they are proportional to
each other, or in other words, that their ratios are constant. Eq. (23)
follows immediately by requiring these ratios to be constant in the
frequency domain (i.e. ∂/∂ f = 0 for the case of δεI) or in the
temperature domain (i.e. ∂/∂T = 0 for the case of δεII).

A8 Proof of eqs (25) and (27)

If u/T → 1, one can write u = (1 + δ) T with δ → 0. Eq. (15) is
then linearized with respect to δ, obtaining

δ(T ) = λ − 1

1 − T ε′(T )/ε(T )
. (A18)

Using s = δ/(λ − 1), (25) is obtained. Rearranging (A18)
and substituting δ with (λ − 1)s gives the following differential
equation:

ε′(T )

ε(T )
= 1

T

[
1

s(T )
− 1

]
. (A19)

(A19) is solved by integration with respect to T , obtaining:

ln ε(T ) = A +
∫

dT

Ts(T )
− ln T, (A20)

where A is an integration constant to be chosen, so that ε(T0) = 1.
Eq. (27) follows from (A20) after A is calculated.

The stability of (27) at T → 0 can be investigated by approximat-
ing s(T ) with the Mc Laurin series s(T ) = s(0) + s ′(0) T +O(T 2).
Following limit solution is then obtained:

lim
T →0

ε(T ) =
(

T

T0

)1−1/s(0) ( s(0) + s ′(0)T

s(0) + s ′(0)T0

)1/s(0)

. (A21)

(A21) does not diverge at T = 0 only if s(0) > 1. Therefore,
ε(T → 0) is very sensitive to measurement errors if s(0) → 1.

A9 Proof of eq. (31)

Linearization of (19) with respect to ρi , obtained after ignoring the
dependence of the cosh terms on r , gives

�χ ′
sw(T, f, ri ) = 2 ln w

πT ξb

∫ T

0
χ ′′(u, f )

ri (T )ε(T )

ri (u)ε(u)
[ρi (T ) − ρi (u)]

×
[

1 − u
ε′(u)

ε(u)

]
J (. . .)

J (. . .)
ξ . . . du.

(A22)

Eq. (A22) is rearranged to obtain

T �χ ′
sw,i (T, f )

ri (T )ε(T )
= 2 ln w

πξb
.

×
∫ T

0
χ ′′(u, f )

ρi (T ) − ρi (u)

ri (u)ε

[
1 − u

ε′(u)

ε(u)

]
J (. . .)

J (. . .)
du.

(A23)

The derivative of (A23) with respect to T is

∂

∂T

T �χ ′
sw,i (T, f )

ri (T )ε(T )
= 2 ln w

πξb
ρ ′

i (T ),

×
∫ T

0

χ ′′(u, f )

ri (u)ε(u)

[
1 − u

ε′(u)

ε(u)

]
J (. . .)

J (. . .)
ξ (. . .)du,

(A24)

where ρ ′
i is the derivative of ρi with respect to T . Since ri ≈ r , the

integral in (A24) can be identified with χ ′
sw, and (31) follows.
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