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S U M M A R Y
Repeated heating and cooling cycles appear frequently in thermomagnetic experiments used
to infer the palaeomagnetic field intensity. According to the fundamental assumptions used to
interpret these measurements, a remanence acquired at some temperature T is not influenced
by subsequent heating and cooling cycles at lower temperatures. This presumption is tested
for natural and synthetic multidomain particle ensembles in the case of the so-called tail of
pTRM

∗
(partial thermoremanent magnetization). This case is of special interest, since hitherto

no theoretical explanation for the tail of pTRM
∗

has been available. The experimental results
for all samples show that repeating the acquisition process for the tail of pTRM

∗
leads to an

asymptotic saturation. This phenomenon can be explained in terms of a statistical theory of
multidomain thermoremanence based on concepts of non-equilibrium thermodynamics. The
presented experiments support the hypothesis that domain state stabilization by iterated thermal
magnetization processes in multidomain particle ensembles is a statistical process. Iterative
saturation of the tail of pTRM

∗
can be interpreted using a combination of exponential saturation

functions related to the subspectrum of the involved transition matrix. Its explanation does not
require chemical alteration or irreversible after-effects.
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1 I N T RO D U C T I O N

Several theoretical models have been proposed to describe the phys-
ical process by which large multidomain particles acquire thermore-
manent magnetization (TRM). Prior to the articles of McClelland
& Sugiura (1987) and Shcherbakov et al. (1993) theoretical ap-
proaches to this problem were based on the two-domain hysteretic
TRM model of Néel (1955). McClelland & Sugiura (1987) and
Shcherbakov et al. (1993) use the analogy between multidomain
(MD) remanence and spin glasses to postulate a master equation for
the remanence as a function of temperature. This established a first
link between MD remanence and non-equilibrium thermodynamics
which became increasingly important. The most convincing experi-
mental evidence of the statistical nature of MD thermoremanence is
the microscopic observation of many different domain states within
the same particle after repeated identical TRM acquisition processes
(Halgedahl 1991). This observation has been interpreted by directly
applying renormalization group theory to the ferromagnetic order-
ing process in the vicinity of the Curie temperature T C (Ye & Merrill
1995). This was the next big step towards a non-equilibrium thermo-
dynamic interpretation, although it did not take into account changes
of domain structure below T C. That such changes occur is demon-
strated by a large amount of experimental evidence, reviewed in
Shcherbakov et al. (1993). As an extension of Thellier’s law of ad-
ditivity, astonishing relations between MD magnetization processes

have been discovered (Shcherbakova et al. 2000; Dunlop & Ozdemir
2001). Phenomenological models have been proposed to understand
why such relations can hold even for highly irregular MD particle
ensembles (Shcherbakova et al. 2000; Fabian 2000). They deduce
the observed relations from simple mathematical models, but have
no firm physical basis. The need for a better understanding of the
influence of MD particles upon the Thellier experiment for determi-
nation of the absolute palaeointensity led to increased interest in the
properties of MD TRM during repeated heating and cooling. MD
samples violate Thellier’s law of independence. Therefore, repeated
heating and cooling produces spurious remanences which are diffi-
cult to understand and to account for in palaeointensity studies. The
simplest remanence of this type is the tail of partial TRM (pTRM).
This was discovered by Shashkanov & Metallova (1972) and exten-
sively studied by Shcherbakov et al. (1993)and Shcherbakova et al.
(2000). However, it turned out that a slightly different spurious re-
manence, the tail of pTRM∗ (tpTRM∗) (Shcherbakov et al. 1993),
poses even more difficulties for the interpretation of palaeointensity
measurements (Fabian 2001).

The present study focuses on the physical properties of iterated
thermal processes and here especially on tpTRM∗. A pTRM∗ is
generated by first cooling a sample in zero field to room temper-
ature T 0 and then heating it to some temperature T 1 < T C. Af-
terwards a weak external field H is switched on and the sample is
cooled in the field to T 0. This pTRM∗ is usually smaller than the
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corresponding full pTRM which is acquired by cooling from T C to
T 1, switching on the field H and then cooling to T 0 (Shcherbakov
et al. 1993; Shcherbakova et al. 2000). The tail of pTRM∗ is the
residual remanence left after again heating the pTRM∗ to T 1 and
then cooling in zero field. Its practical importance arises from the
fact that the classical experiments for palaeointensity determination
(Thellier & Thellier 1959; Coe 1967) rely on many repetitive heat-
ing and cooling steps and generate a sequence of tpTRM∗s which
may partly overprint the original NRM. A recent study by Biggin &
Böhnel (2003) explicitly investigates the effects of repeated heating.
To correctly interpret the results of these experiments, a theoretical
understanding of tpTRM∗ is indispensable.

When Thellier’s law of independence is valid, no tpTRM∗ exists.
Yet, in MD samples considerable tpTRM∗s are frequently observed.
The existence of a tpTRM∗ is intuitively attributed to changes in
blocking and unblocking spectra of the particle ensemble during
thermal treatment. This could suggest that irreversible effects, like
chemical alteration, or irreversible changes of the defect structure
might be responsible for tpTRM∗. However, hitherto there has been
no physical model of this phenomenon.

Here, a statistical MD TRM theory (Fabian 2003) is applied to
understand the variation of remanence during iterated tpTRM∗ ac-
quisition processes. The predictions from this theory are compared
with the results of experimental investigations on several natural
and synthetic MD samples.

2 A S TAT I S T I C A L T H E O RY O F
I T E R AT E D T H E R M A L P RO C E S S E S

The statistical theory of MD TRM (Fabian 2003) applied here as-
sumes that a sample can adopt different irreversible states Si, i ∈
{−N , . . . , N}. For each state Si, the antisymmetric state S−i = −Si

is obtained by inversion of the magnetization structure of Si. The
state S0 = −S0 is defined to denote the non-ordered paramagnetic
state at T ≥ T C. The irreversible state of the sample uniquely deter-
mines the domain state of each particle up to reversible variations
such as reversible domain wall bowing or reversible spin rotations.
When a single particle is considered (which is not usually recom-
mended for a statistical theory) the irreversible states correspond to
all possible domain states (Fig. 1), at no matter which temperature
they can occur.

The magnetic state of the ensemble is described by a ket vector:
the probability distribution |ρ〉 over all possible irreversible magne-
tization states. The ith component |ρ〉i , i ∈ {−N , . . . , N} of this
distribution denotes the probability of the ensemble to be in state
Si. Therefore, |ρ〉i ≥ 0 and the sum over all |ρ〉i is 1. For given

S0

S1 S2 S3 S4 S5 S6

S-1 S-2 S 3- S 4- S 5- S 6-

Figure 1. Simplified example of a collection of irreversible magnetization states within a single MD particle.

temperature T and external field H it is possible to assign to each
state Si its remanence m(Si). The bra vector 〈m| collects all m(Si)
into an operator which, when applied to a probability density ket
|ρ〉, yields the measured remanence 〈m|ρ〉.

A central concept of statistical theory is point symmetry. A quan-
tity is point symmetric if it remains unchanged by inversion of all
spins, it is point antisymmetric if it changes sign by inversion of all
spins. For example, the relation m(S−i ) = −m(Si) for the remanence
of inverse states implies that 〈m| is point antisymmetric. On the other
hand, after cooling of an MD ensemble from T C in zero field, the
probability of inverse states Si and S−i is equal. Consequently, the
final probability distribution |ρ〉 is point symmetric. Both properties
together yield that the measured remanence 〈m|ρ〉 is zero.

A thermal magnetization process P is represented by its transition
matrix M(P) acting upon the probability distribution |ρ〉. The matrix
component Mij is the probability that during the process P the initial
state Sj is transformed into the final state Si. The new probability
density |ρ new〉 after the process is obtained by

|ρnew〉 = M(P)|ρ〉. (1)

The sum of all |ρ new〉i again must be 1. This requires that M(P) is a
stochastic matrix, i.e. that

∑
i Mi j = 1. In realistic cases, calculat-

ing or measuring all entries of the matrix M(P) would be very hard
or even impossible. Fortunately, several properties of thermorema-
nence do not depend upon details of M(P). For example, linearity
and additivity of pTRMs can be inferred from general physical prin-
ciples and symmetry considerations (Fabian 2003).

A magnetization process P is iterative if both temperature T and
field H are the same before and after the process. This implies that
the process can be performed repetitively leading to a sequence of
processes P, P2, . . . , Pk . The process Pk is the kth iteration of P and
accordingly its transition matrix is given by

M(Pk) = M(P)k . (2)

Since the matrix M(P) is stochastic, it is possible to predict how the
sequence of probability densities |ρ(k)〉= M(Pk)|ρ(0)〉 develops. Ac-
cording to the theorem of Frobenius and Perron a stochastic matrix
has the principal eigenvalue λFP = 1 with a corresponding prob-
ability density eigenvector |ρ∞〉. For all other eigenvalues λ(j) the
modulus |λ( j)| is less than 1 and the sum of the components of their
eigenvectors |γ ( j)〉 is zero (see appendix). As a consequence, the
initial state |ρ(0)〉 of the iterative process can always be decomposed
with respect to the eigensystem of M(P) as

∣∣ρ(0)
〉 = |ρ∞〉 +

K∑

j=2

a( j)
∣∣γ ( j)

〉
, (3)
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Figure 2. Experimental procedure for iterative acquisition of pTRM∗
k and tpTRM∗

k .

where the a(j) are real numbers. From this decomposition it follows
that after k iterations the probability density is

∣∣ρ(k)
〉 = M

k
∣∣ρ(0)

〉 = |ρ∞〉 +
K∑

j=2

a( j)λk
( j)

∣∣γ ( j)
〉
. (4)

Contributions from the eigenvectors |γ (j)〉 with eigenvalues of norm
<1 exponentially decay away. In the limit k → ∞ the probability
distribution stabilizes at |ρ∞〉. The sample remanence after k itera-
tions is

m(k) = 〈
m|ρ(k)

〉 = 〈m|ρ∞〉 +
K∑

j=2

λk
( j)

〈
m|a( j)γ ( j)

〉
, (5)

and also stabilizes at a limit value m∞ = 〈m|ρ∞〉.
Fig. 2 schematically shows the iterative process of tpTRM∗

k ac-
quisition. Its initial position is Z = [T 0, 0] indicating room tempera-
ture T 0 and external field H = 0. The initial probability distribution
|ρ(0)〉 is obtained by zero-field cooling from the Curie temperature
T C. Since no field is applied during cooling, this distribution is point
symmetric and the initial remanence 〈m|ρ(0)〉 is zero. After the first
tpTRM∗ acquisition process P, the sample’s state is
∣∣ρ(1)

〉 = M(P)
∣∣ρ(0)

〉
. (6)

During the first cooling part of the process P a weak field is applied.
This destroys the initial point symmetry of |ρ(0)〉 (Fabian 2003).
Further thermal processes in zero field do not completely restore
point symmetry—even though they tend to do this. Consequently,
the finally obtained distribution |ρ(1)〉 is not point symmetric and
the sample potentially carries a remanence because 〈m|ρ(1)〉 is not
zero by symmetry anymore. This residual remanence is the observed
tpTRM∗

1.
The previous argument can be stated more formally by splitting

the tpTRM∗ acquisition process into two processes: field cycling
PH = [T 0, 0] → [T 1, 0] → [T 1, H ] → [T 0, H ] → [T 0, 0] and
subsequent zero-field cycling P 0 = [T 0, 0] → [T 1, 0] → [T 0, 0].
Thus, P = PH → P 0 and consequently the transition matrix M =
M(P) is the product of the transition matrices M0 = M(P 0) and
MH = M(PH ). For weak fields H , MH deviates from M0 only by
a small perturbation and can be linearly expanded as MH = M0 +
H R, where R is point antisymmetric (Fabian 2003). M0 as a zero-
field transition matrix is point symmetric. Combining these results
yields for M the decomposition

M = M0MH ≈ M
2
0 + HM0R. (7)

Accordingly, the first-order expansion of the kth iteration Mk is
given by

M
k ≈ M

2k
0 + H

k∑

i=1

M
2i−1
0 RM

2(k−i)
0 . (8)

To hypothesize about the remanence behaviour, let us assume for a
moment that, approximately,
∣∣ρ(0)

〉 = M
2
0

∣∣ρ(0)
〉
, (9)

meaning that zero-field heating and cooling do not change the ini-
tial probability distribution. However, there exists experimental ev-
idence that this ad hoc assumption is violated in the case of pTRMb

and pTRM∗
b studied by Shcherbakov & Shcherbakova (2001) and it

will not be used in the more detailed discussion of the next sections.
Using the assumption (9), the remanence change from step k to k +
1 is

m(k+1) − m(k) = H
〈
m

∣∣M2k+1
0 R

∣∣ρ(0)
〉
. (10)

As in (5), it can be inferred that remanence will relax to some limit
value. In addition, for a physically plausible zero-field cycling matrix
M0 the absolute value of m(k) increases steadily.

In the next section it will be tested whether the evolution according
to eqs (5) and (10) is consistent with experimental data.

3 E X P E R I M E N TA L M E T H O D

The experiments have been performed on six multidomain samples.
Four natural samples (6b, 12b, 11b, 1109) are Tasmanian dolerites
and have been magnetically characterized in Shcherbakova et al.
(2000). The mineralogy and ferromagnetic components of these
samples are described in Schmidt & McDougall (1977). Two syn-
thetic samples (B and JM-1) are highly oxidized magnetite after
thermal stabilization for more than 1 h at T > 700◦C in air.

The common magnetic characteristics of the natural samples are
presented in Shcherbakova et al. (2000). They encompass T C, re-
duced saturation remanence M rs/M s, coercive force H c, remanent
coercive force H cr, and the Königsberger ratio Qt = χ TRM/χ 0. Here
χ 0 is the magnetic initial susceptibility and χ TRM is the susceptibil-
ity of thermoremanence acquisition, approximated by TRM(H)/H
for weak fields. Moreover, pTRM spectra and values of pTRM(T 1,
T 2) and pTRM∗(T 1, T 2) imparted at different temperature intervals
are given in Shcherbakova et al. (2000).

All experiments have been performed using the induction coil
thermomagnetometer described in (Shcherbakova et al. 2000). The
device continuously measures the magnetic moment of a rotat-
ing sample during a prescribed series of temperature cycles. Here,
the temperature cycles are set to iteratively produce and delete a
pTRM∗(T 0, T 1) between room temperature T 0 and an upper tem-
perature T 1, either set to 300 or 400 ◦C. Since all measurement cy-
cles are computer controlled, heating and cooling rates are exactly
reproducible. Remanent magnetization is monitored and continu-
ously recorded by a PC. The noise threshold of the magnetometer
is 3 × 10−9 A m2 for a cubic sample with 1 cm edge length. The
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Figure 3. Experimental results for six MD samples. The left-hand axis indicates relative values of tpTRM∗
k (full circles, solid lines), whereas the relative

values of pTRM∗
k (circles, dashed lines) and pTRM∗

k + tpTRM∗
k (squares, dashed lines) are given by the right-hand axis.

maximum available external field is 200 µT, while the residual field,
after switching off the coil, is less than 0.1 µT.

4 E X P E R I M E N TA L R E S U LT S

Between nine and 12 heating and cooling cycles according to Fig. 2
have been performed for each of the six samples. The results in Fig. 3
show that all samples behave very similarly with respect to tpTRM∗

k

acquisition. In all cases, the values of tpTRM∗
k increase rapidly in

the first step from the thermally demagnetized state at k = 0, where
pTRM∗

k = tpTRM∗
k = 0 to k = 1. During the following steps from k =

1 to higher k values the continuous increase of tpTRM∗
k resembles

an exponential approach to a limit value and is very well described
by the phenomenological equation

tpTRM∗
k/tpTRM∗

1 = a − bλk . (11)

The best least-squares fit values for a, b and λ are given in Table 1.
These fits do not extend to k = 0 where the measured remanence is

Table 1. Least square fit parameters a, b, λ for approximating the experi-
mental data by (11).

Sample tpTRM∗
1/ pTRM∗

1 a b λ

B 11.8 per cent 2.004 1.451 0.659
1109 8.6 per cent 1.574 0.825 0.658
7b 7.6 per cent 1.545 0.652 0.790
11b 4.3 per cent 1.593 0.744 0.773
JM-1 14.1 per cent 1.866 1.018 0.812
12b 7.9 per cent 1.635 0.606 0.804

exactly zero instead of a − b. It is not possible to find any reasonable
exponential fit of the data which includes the zero-remanence point
at k = 0. Moreover, the values of λ are relatively high, indicating a
slow approach to saturation. These facts will be the starting point of
the physical discussion in the next section. The ratio a between the
predicted saturation value tpTRM∗

∞ and the initial tail tpTRM∗
1 for

all natural samples is about 1.6 with astonishingly little variation.
Both synthetic samples, however, show markedly higher ratios close
to 2; also their ratios between tpTRM∗

1 and pTRM∗
1 are much higher

than for the natural samples.
In contrast to tpTRM∗

k , the sequence of the measured pTRM∗
k

values does not behave uniformly for the six samples in Fig. 3. It
can either decay as in samples B and 1109, it can remain nearly
constant as for samples 7b and 12b and it can increase as in samples
11b and JM-1. In almost all cases the numerical sum pTRM∗

k +
tpTRM∗

k increases. Only in sample B does it remain constant over
all iterations.

The above experimental results correspond well with the pre-
dictions of Section 2. All tested MD samples show an increase of
tpTRM∗

k with steepest slope at the beginning, even if pTRM∗
k de-

creases. The observed asymptotic saturation can be physically inter-
preted in terms of domain state stabilization, either due to a statistical
process as proposed here or as a result of irreversible changes in the
defect structure of the sample. The latter could be effected by a fixa-
tion of domain walls by defects which at elevated temperature move
towards energetically favourable positions (diffusive after-effect). In
this case the possible iterative remanence gain tpTRM∗

∞/tpTRM∗
1

should be higher for defect-rich materials. This contrasts with the
result that highest gain is observed for hydrothermally produced
synthetic material (JM-1) which is defect poor.

C© 2004 RAS, GJI, 159, 486–494
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Figure 4. Left: Three repetitive experiments on sample 11b show that within 10 per cent error the experiment is repeatable. Irreversible changes during
previous thermal treatment should yield deviations in the opposite direction from that observed. Deviations between the experiments are therefore attributed to
drift in the experimental set-up. Right: Iteration of a tpTRM∗ deletion process shows exponential decay as predicted from theory. The dashed line is the best
exponential fit (see text).

To further test whether irreversible change of the sample is re-
sponsible for the observed increase of tpTRM∗

k the acquisition ex-
periment for sample 11b has been repeated three times after heating
to T C. As shown in Fig. 4 the experiment is repeatable within its
error bounds. Absolute values of tpTRM∗

k for the second and third
run are a bit smaller than in the first run. This is probably due to
instrumental or temperature drift since the relative values normal-
ized to the initial value at k = 1 coincide perfectly. In the case of
irreversible changes of the defect structure one would expect to ob-
serve increasing values of tpTRM∗

1 for subsequent runs. Therefore,
repetition of the experiment provides no evidence for the presence
of an irreversible diffusive after-effect as the primary source of the
observed domain state stabilization. The statistical interpretation
proposed here claims that only the probability distribution over the
domain states is stabilized by iterative processes—not the domain
states themselves. Irreversible changes of the defect structure are
not required to explain domain state stabilization.

A further experiment investigated the decay behaviour of the it-
eratively acquired tpTRM∗

n, when subsequently erased by an also
iterative zero field heating and cooling process with upper temper-
ature T 1 (see Fig. 5).

A similar argument as for tpTRM∗ predicts exponential decay
of the residual remanence to some equilibrium value, since the kth
iteration of the erasure process Perase with corresponding transition
matrix M(Perase) produces the density distribution
∣∣ρ(k)

erase

〉 = M(Perase)
k
∣∣ρ(0)

erase

〉
. (12)

The experimentally obtained remanence m(k)
d = 〈m|ρ(k)

erase〉 after the
kth erasure step can be fit by the exponential decay law

Figure 5. Process of iterative erasure of a previously acquired tpTRM∗
n .

m(k)
d

/
m(0)

d = a + bλk
d, (13)

where a = 0.853, b = 0.143 and λd = 0.823 are obtained from a
least-squares fit of the data in Fig. 4(b). It is remarkable that the
remaining remanence in the limit k → ∞ still is larger than the
initial tpTRM∗

1.

5 D I S C U S S I O N

5.1 Outline of a quantitative interpretation

The experiments of the previous section show that the the quali-
tative behaviour of the iterative the tpTRM∗ process is correctly
predicted by the statistical theory. It is now of interest whether the
measurements can help to identify some of the central quantities of
the abstract theory. According to eq. (5) the remanence as a function
of iteration number k is related to the eigenvalues or the spectrum
of the transition matrix M of the iterative process. The constant
term m∞ is due to an eigenstate to the principal eigenvalue 1. The
variation with k is related to the subdominant eigenvalues λ(j) with
|λ( j)| < 1 which together form the subspectrum of M.

In the experiments it has been observed that the remanence satu-
ration curve for k ≥ 1 is easily fitted by a single exponential function,
whilst the initial step from k = 0 to k = 1 cannot be satisfactorily
represented by this function. Here, a number of numerical inves-
tigations are presented to study which structural properties of the
transition matrix can account for this phenomenon. The simplest ex-
planation suggests that the subspectrum is bimodal with one mode
close to 0 and the other close to the optimal fit value of λ. A physical
interpretation relates these two modes to remanences with unblock-
ing temperatures below or above T 1, respectively.

5.2 Numerical experiments on random stochastic matrices

Numerical and heuristic evidence collected in the appendix demon-
strates that for a random stochastic n × n matrix with equidistributed
entries the complex subspectrum is almost certainly contained in a
circle with centre at 0 and radius rn ≈ 3.7/

√
n. For large n—as oc-

curs in an MD ensemble state space—this would enforce immediate

C© 2004 RAS, GJI, 159, 486–494
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relaxation into the principal eigenstate. Therefore, the equilibrium
state m∞ of the process described by such a matrix is almost imme-
diately reached:

tpTRM∗
1 = tpTRM∗

k , for k ≥ 1. (14)

This is in conflict with the presented observations for the tpTRM∗

process and indicates that the transition matrix M of this process
is not modelled correctly by an equidistributed random stochastic
matrix.

One possibility to explain slower approximation is to assume that
at every iteration only few states actually change in course of the
tpTRM∗ process. Then, for most states Si the transition Si → Si is
most probable and Mii is systematically larger than the other matrix
coefficients. If only with probability ε a state can randomly change
into another, this corresponds to the mathematical assumption that
the structure of the transition matrix M is better modelled by a
random matrix of the form

M = (1 − ε)I + εA, (15)

where A is a random stochastic matrix with equidistributed random
coefficients and I denotes the identity matrix. For a subdominant
eigenvalue λ of M one obtains that

λ − (1 − ε)

ε
(16)

is an subdominant eigenvalue of A and according to the numerical
results almost certainly

|λ − (1 − ε)| < 3.7
ε√
n

. (17)

If n is sufficiently large, λ is therefore very well approximated by 1 −
ε. This, however, implies that the approach to equilibrium behaviour
for the magnetization, to a good approximation, would follow the
equation m(k) ≈ m∞[1 − (1 − ε)k]. Adjusting the two parameters
m∞ and ε to the measurement data of the previous section results in
relatively poor fits. As noted before, the reason is that starting from
tpTRM∗

0 = 0, the initial increase to tpTRM∗
1 is too high compared

with the subsequent increase to tpTRM∗
2 and so on.

5.3 A physical model of the transition matrix

The latter observation leads to another physically motivated model
schematically illustrated in Fig. 6. Here each state Si is considered
in the transition matrix M as a product of the single-particle do-
main states. If these domain states are relatively independent, i.e.
magnetostatic particle interaction is less important, it is possible to
transform M into an approximate block matrix by synchronously
reordering rows and columns. The nearly uncoupled blocks of the
reordered matrix constitute more or less independent stochastic ma-
trices. Especially, the independent blocks Bk can have different
values of ε k in the mixture Bk = (1 − ε k)I + ε kAk with a ran-
dom stochastic matrix Ak . Physically, high values of ε k represent
MD particle populations which are more easily changed during the
tpTRM∗ process and low values of ε k represent MD particles which
are not affected at all or only with a small probability. In principle,
this model allows for an arbitrary distribution d(λ) of eigenvalues
over the interval [0, 1]. It is not possible to infer much detail about
d(λ) beyond the fact that it appears to be bimodal. The exponential
fit used for data description in eq. (11) corresponds to a discrete
spectrum with two components at the subdominant eigenvalues 0
and λ. However, numerical experiments show that bimodal continu-
ous polynomial spectra with the same number (N = 3) of adjustable

0

i

1

0 10
0

1

(a) (b)

(c) (d)

Figure 6. Speculative structure of the transition matrix M. After syn-
chronously reordering rows and columns a near block structure can be ob-
tained (a). Each block (dark shaded) is a near stochastic submatrix which
corresponds to a single MD particle interacting only weakly with the rest of
the sample. Accordingly, light shaded areas contain entries �1/N , where
N × N is the matrix size. Each dark shaded block in (a) is a convex mixture
of a random stochastic matrix A and the identity matrix I. In (b) such a block
B of size 50 × 50 is shown. B = (1 − ε) I + ε A, where ε = 0.3. The grey
scale ranges from white (0) to black (1). The spectrum of B is depicted in (c).
The principal (Frobenius) eigenvalue 1 is separated from the subspectrum of
eigenvalues which cluster tightly around λ = 0.70 ≈ 1−ε. The radius of the
subspectrum in this case is ρ2 ≈ 0.06. In (d) a remanence acquisition curve
modelled by iterating B is shown. A random point antisymmetric vector 〈m|
and a random point symmetric initial state.

parameters as the above discrete fit can explain the observations
at least equally as well. In contrast, all tested three-parameter fits
using unimodal continuous spectra deviate considerably from the
measured data.

This result indicates that two different physical mechanisms for
tpTRM∗ acquisition exist. The first mechanism is related to blocks
of M with subdominant eigenvalues close to 0. It probably repre-
sents MD particles with many possible domain structures separated
by low energy barriers which can be easily overcome below T 1.
These particles change their domain structure during each iteration
of the tpTRM∗ acquisition process, but on average do not change
their average remanence acquired at the first iteration. They are
responsible for the immediate step-like increase from zero rema-
nence to tpTRM∗

1. In the classical interpretation the first mechanism
corresponds to remanences with blocking temperature below T 1.
The second mechanism is related to blocks of M with subdominant
eigenvalues close to λ. It represents particles the domain structure of
which most probably remains unchanged during the tpTRM∗ acqui-
sition process and classically are considered as ‘blocked’. Yet, during
iteration they still have the capacity to stepwise adjust their domain
structure. This statistical adjustment leads to a gradual stabilization.
Again two possible processes are conceivable for its explanation.
Either the domain state adjustment occurs by directly overcoming
energy barriers which at T 1 are still relatively low and therefore
will ‘unblock’ at temperatures only slightly above T 1. In this case
domain state stabilization at T 1 is closely related to blocking and
unblocking at temperatures slightly above T 1 as recently suggested
by Leonhardt & Krása (2004) based on fits to experimental data.
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On the other hand, domain state stabilization could be effected in-
directly by regular domain changes with unblocking temperatures
below T 1 which occur in the same grain and via domain reorgani-
zation increase energy barriers for remanences already blocked in
other regions of the particle.

All the above different mechanisms do not exclude each other and
do not even necessarily occur in separate grains. It also is imaginable
that different regions of the same particle show different behaviour
with respect to these mechanisms.

5.4 The decay experiment

The decay pattern of the erasure process in Fig. 4 is truly exponential.
No initial step occurs and correspondingly the transition matrix will
have a unimodal subspectrum with a peak at the decay exponent
λd. Remanences with unblocking temperature below T 1 are already
demagnetized after the previous tpTRM∗ acquisition step and cannot
generate a rapid remanence loss at the first demagnetization step.
Therefore, only remanences which previously have been iteratively
stabilized are demagnetized now. If they behave exactly as during
acquisition, the relation λ = λ2

d should hold. For sample 11b, Table 1
gives λ = 0.773, while fitting of Fig. 4 yields λ2

d = 0.678. Thus,
remanence decay is more rapid than acquisition.

5.5 Significance for MD TRM theories

The Thellier experiment of palaeointensity determination and its
modifications rely on repetitive heating and cooling of the sample
(Thellier & Thellier 1959). Since remanence carriers in most rocks
are not ideal single-domain (SD) particles, the response of MD
remanence during this experiment is of central importance. The
optimal way of performing palaeointensity determinations is not
known. For example, the question of whether heating steps prior
to pTRM acquisition should be performed within or without an
external field has not been solved (Levi 1975; Calvo et al. 2002;
Biggin & Böhnel 2003). A satisfactory treatment of such problems
should be based on a physical theory, although a final presentation in
terms of a phenomenological model might be conceptually simpler
(Leonhardt & Krása 2004).

The results from our iterated tpTRM∗ experiments coincide very
well with their statistical description (Fabian 2003). In contrast,
previous theories of MD TRM cannot account for the observed
effects. Thus the presented results can serve as an experimentally
and theoretically confirmed benchmark for improved physical or
phenomenological models of MD TRM. The full statistical theory
in its present state cannot be directly used for the interpretation of
palaeointensity experiments. Yet, its application to this problem is
the topic of current research.

6 C O N C L U S I O N S

(1) Exponential remanence behaviour of MD samples during it-
erative thermal processes is correctly predicted by a non-equilibrium
statistical theory of thermoremanence.

(2) Domain state stabilization during iterative thermal treatment
is not due to the fixation of individual domain structures. Instead, it-
eration gradually brings the statistical domain state distribution into
an eigenstate of the transition matrix of the process. What stabilizes
is probability density, not domain structure.

(3) Accordingly, irreversible changes by chemical alteration,
stress release or defect movement are not central to the explana-
tion of iterative domain state stabilization.

(4) The transition matrix of tpTRM∗ acquisition in MD samples
has a bimodal subspectrum. The first mode describes an immediate
tail generation probably in particles with low energy barriers. The
second mode is related to a creeping stabilization, probably related to
higher energy barriers or remanence acquisition at higher blocking
temperatures.
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A P P E N D I X A : S P E C T R A L P RO P E RT I E S
O F S T O C H A S T I C M AT R I C E S

Transition matrices M, as considered in the statistical theory of MD
TRM, are stochastic matrices. Their entries denote transition proba-
bilities between a complete set of possible states Si. This implies that
all entries are non-negative and that the sum over each column of the
matrix M is 1. For such matrices, the set of eigenvalues (spectrum)
has very special properties as stated by the theorem of Frobenius
and Perron.

Mi j := P(Sj → Si )

Frobenius–Perron theorem

For all eigenvalues λk of a transition matrix M is |λk | ≤ 1. λ1 = 1
is an eigenvalue of M which has a non-negative eigenvector v ≥ 0.

Proof: For any vector v we have for the sum of the components of
Mv
∣∣∣∣∣

N∑

i, j=1

Mi jvi

∣∣∣∣∣ =
∣∣∣∣∣

N∑

i=1

vi

∣∣∣∣∣ .

Thus for any eigenvector v with M v = λv we have λ
∑

i vi = ∑
ivi

which can be fulfilled either when λ = 1 or when
∑

i vi = 0. Since
all vectors fulfilling the latter condition only span a vector space
with dimension N − 1 there must exist at least one eigenvector
with eigenvalue 1. Since ‖Mv‖1 ≤ ‖v‖1 all eigenvalues are ≤ 1.
M therefore is a contraction which maps the compact set of non-
negative unit vectors into itself. Thus, according to Schauder’s fixed
point theorem, M possesses a non-negative fixed point v which is
a non-negative unit eigenvector to the eigenvalue 1. (Frobenius and
Perron).

The above properties imply that by repetition of an iterative pro-
cess the system will approach an eigenstate to the eigenvalue 1.
All other contributions to the initial ρ 0 decay exponentially with
the number of iterations. Since

∑
i ρi = 1 the vector ρ has a non-

zero component in the eigenspace of λ = 1. Otherwise
∑

i ρi would
be zero as shown above. If some states (particles) are not influ-
enced by an iterative process P, the eigenspace of λ = 1 of M(P) is
degenerate.

The set of all eigenvalues of all n-dimensional stochastic matrices
is exactly described by a theorem of Karpelevič (Karpelevič 1951;
Ito 1997). In the limit n → ∞ it asymptotically fills the whole unit
disc.

Subdominant eigenvalues λ with |λ| = 1 occur only for permu-
tation cycles, which in the case of transition matrices correspond

to cyclic transitions Si1 → Si2 → · · · → Sik . The eigenvalues of
permutation matrices consisting of only one cycle of length k are ex-
actly the kth roots of unity. Consequently, large subdominant eigen-
values correspond to highly probable permutation cycles of states
or—equivalently—to near uncoupling of state subspaces (Hartfiel
& Meyer 1998).

The subspectrum of iterated stochastic matrices

Although non-negative matrices, due to their relevance in the theory
of Markov processes, have been studied for a long time, astonish-
ingly little is known about the general structure of their subspectrum.

Here a numerical approach is used to investigate the subspectrum
of random stochastic matrices with equidistributed entries. A ran-
dom stochastic n × n matrix M is constructed by first choosing n2

independent equidistributed random numbers aij ∈ [0, 1]. The final
matrix coefficients Mij are calculated by normalizing the columns
according to

Mi j = ai j∑
k=1...n aik

. (A1)

Then all complex eigenvalues of M are calculated.
The results of many thousands of such experiments are shown

in Fig. A1. They indicate that the average subspectral radius ρ 2,n

of an equidistributed random n × n stochastic matrix decreases as
2.6 n−1/2 and for sufficiently large n almost certainly all eigenvalues
lie in a disc of radius 3.7n−1/2 centred at the origin.

A note on the heuristic interpretation

Assume that A is a random n × n stochastic matrix and λ is an
element of its subspectrum. Using the central limit theorem on the
construction in (A1), one can show that for equidistributed A, each
entry aji is asymptotically equidistributed on the interval [0, 2

n ]. For
each subdominant eigenvalue λ, there exists an eigenvector x such
that for xm with |xm| = max |xi| we have

|λ| = λxm =
n∑

j=1

a ji xi =
n∑

i=1

ami Re(xi ). (A2)

The equidistributed coefficients ami ≥ 0 are not independent since
their sum is 1. Similarly, the numbers Re(xi) ∈ [−1, 1] are not in-
dependent since their sum is zero. Moreover, ami and Re(xi) depend
on each other since the eigenvector x can be expressed in terms of
the coefficients of A. Yet it is plausible that these dependences are
rather weak and consequently these numbers in the statistical sense
are nearly independent. Under this (unproven) hypothesis, the right
hand side of (A2) can be interpreted as an undirected n-step 1-D
random walk with average step size d ∝ 〈a ji |Re(xi )|〉 ∝ 1

n . Thus,
the average distance of the endpoint from the origin is proportional
to d

√
n ∝ 1√

n
. The average maximal distance obtained during n − 1

independent similar walks (for each eigenvalue of A) also is propor-
tional to 1√

n
. According to this heuristic argument, the subspectrum

of large n × n random stochastic matrices will contract in propor-
tion to 1√

n
as numerically observed in Fig. A1. However, a strict

proof that the subspectral radius converges to zero exists only in
the special case of doubly stochastic matrices (Berkolaiko 2001).
It crucially relies on the fact that for a doubly stochastic matrix M
the matrix MTM is again stochastic. Therefore, this proof cannot
be easily modified to yield the same result for general stochastic
matrices.
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Figure A1. Subspectra of random stochastic matrices. Each plot in (a) shows the union of at least 10 000 eigenvalues of randomly generated stochastic n × n
matrices. Apparently, this union is contained almost certainly within a circle of radius ρn, which decreases like 1/

√
n. In (b) the inverse of the average distance

rn of the eigenvalues from the origin is plotted as a function of
√

n, yielding a straight line with slope ≈2.6.
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