ВЕСТН. МОСК. УН-ТА. СЕР. 4, ГЕОЛОГИЯ. 1993. № 4

УДК 550.382.3:552.323.6

В. К. Гаранин, В. А. Жиляева, Г. П. Кудрявцева, О. А. Михайличенко, А. Н. Панкратова, В. Ю. Сафрошкин, В. И. Трухин

ОКСИДНЫЕ МИНЕРАЛЫ И МАГНИТНЫЕ СВОЙСТВА ЛАМПРОИТОВ АВСТРАЛИИ

Изучение магнитных характеристик ферримагнитных минералов дает возможность получать информацию о составе и строении этих минералов, а также о термодинамических условиях их образования, и соответственно содержащих их горных пород [2—7]. Магнитные методы в силу их избирательности позволяют исследовать ферримагнитные минералы, не выделяя их из породы и, следовательно, не нарушая их исходное строение. Надежность полученных результатов существенно

·; 55

увеличивается при совместном использовании магнитных и минералогических методов изучения вещества. Такое комплексное исследование особенно эффективно при изучении сложной ферримагнитной фракции

горных пород, состоящей из нескольких минеральных фаз.

В конце 70-х годов в Австралии был открыт новый тип алмазных месторождений, генетически связанных с лампроитами [1]. Несмотря на интенсивные минералого-петрографические исследования этих пород, магнитные свойства их пока не изучены. Вместе с тем последующие находки новых проявлений лампроитов в различных точках земного шара (Гренландии, Испании, быв. СССР, Китае, Индии, Бразилии и др.) позволяют провести сравнительную характеристику этих пород по магнитным свойствам и объяснить природу этих свойств, а также установить связь последних с содержанием алмаза с привлечением минералогических методов.

Ниже приведены первые результаты комплексного изучения минерального и химического состава оксидов в лампроитах и магнитных свойств последних. Объект исследований — образцы из лампроитовых массивов Австралии (алмазоносные трубки Аргайл и Эллендейл-4, слабоалмазоносное тело Эллендейл-11, неалмазоносные — Маунт-Седрик и Жерло 81-й мили). Наибольшее внимание при минералогических исследованиях уделялось изучению микрокристаллических (размером <100 мкм) фаз в лампроитах, как наименее охарактеризованных и в то же время в основном ответственных за поведение магнитных параметров пород.

Методика исследований. Методика и аппаратура для измерения магнитных характеристик описаны ранее [6]. Для определения постоянной магнитной вязкости из естественного (S_{ve}) и нулевого (S_{vo}) магнитных состояний снималась временная зависимость остаточной намагниченности $I_r(t)$. Остаточная намагниченность насыщения (I_{rs}) и остаточно-коэрцитивная сила (H_{cr}) определялись из анализа кривой $I_r(H)$. Для определения точек Кюри T_c снимались кривые $I_s(T)$. В отдельных случаях снимались кривые $I_{rs}(T)$ и проводилось моделирование термоостаточной намагниченности $I_{rp}(T)$, а также парциальной термоостаточной намагниченности $I_{rp}(T)$.

Изучение оксидов из связующей массы лампроитов проводилось в аншлифах под оптическим микроскопом «Axiophot» фирмы «Opton» (Германия) при увеличениях до 1000^{\times} по стандартной методике и на растровом электронном микроскопе JSM-820 фирмы «JEOL» (Япония) с энергодисперсионной системой AN-10/85 S фирмы «Link» (Великобритания). Контроль за фазовым составом минералов выполнен по изображениям в отраженных электронах с вещественным контрастом. Количественный анализ проводился при ускоряющем напряжении 20 кэВ с использованием в качестве эталонов оксидов: MgO, TiO₂, Al₂O₃, Cr₂O₃, MnO и Fe₂O₃.

Результаты исследований и их обсуждение. Результаты измерения изотермических и термомагнитных характеристик пород представлены в табл. 1. Сведения о минеральном и химическом составе ферримагнитных оксидов для всех изученных образцов, их привязка к оп-

ределенной разновидности лампроитовых пород приведены в табл. 2. Рассмотрим минералогию оксидов из связующей массы лампрои-

тов и магнитные свойства этих пород.

В табл. 1 представлены магнитные характеристики изученных образцов. Величины начальной магнитной восприимчивости κ_0 , естественной остаточной намагниченности I_n , намагниченностей насыщения I_s и I_{rs} лампроитов колеблются в широких пределах. Диапазон коле-

Таблица 1 Магнитные характеристики исследованных образцов из австралийских лампроитов

№ образ- ца	×	I_n (A/m)	Q	S _{ve} (A/m)	S _{vo} (A/m)	I _S (A/m)	1 _{rS} (A/m)	H _{eS}	H _{cr}	H (0,9) H (0,1)	$\frac{I_{rS}}{I_{S}}$
56 ав	48,0.10-5	0,08	4,2		224	73	4.0	24 000	370	6,2	0,050
57 ав	119,0.10-5	0,00	T,2		216	100	20,0	24 000	380	6,7	0,200
57 ав	~~ ~	0,06	4,0	410	221	30	0,4	400	50	25,0	0,015
0, 45	$32,3 \cdot 10^{-5}$			1.0	562	20	1,5	800	760	33,0	0,067
58 ав		0,15	15,0		112	22	3,0	2 080	140	10,6	0,013
26 ав		0,25	15,3		72	43	1,0		100	5,0	0.026
	772,4.10-5				552	40	1,2	400	140	7,9	0.025
20 ав	78,8.10-5	0,20	6,4	750	385	100	10,0	640	140	26,7	0,097
	75,3.10-5				180	100	3,0	640	140	26,7	0,290
50 ав	52,9.10-5	0,42	19,9	. 1	456	64	0,9		118	5,2	0,014
	49,1.10-5				1408	80	1,4	720 [.]	110	5,2	0,018
28 ав		0,27	14,2	360	94	60	1,3	720	120	18,0	0,022
	47,0 10-5	_			904	60	1,8	760	140	19,0	0,031
29 ав	97,5.10-4	0,08	20,6		1920	1214	[277,0]		110	5,9	0,220
	94,8.10-4	_			2448	1000	310,0	_	160	3,8	0,310

баний магнитных параметров иногда составляет несколько порядков. Следует отметить, что самые высокие значения этих параметров наблюдаются у неалмазоносных лампроитов. Эти лампроиты характеризуются и самыми высокими значениями магнитной вязкости S_{v0} . Итак, в частности, для образца 29 ав из неалмазоносного лампроитового тела Австралии S_{v0} =1920 А/м. Коэрцитивность лампроитов также разнообразна. Встречены очень высокоэрцитивные образцы среди австралийских лампроитов (H_{cr} достигает до 760 А/м). Вместе с тем величины отношений I_{rs}/I_s , характеризующих доменную структуру ферримагнетиков, в основном низкие — от 0,013 до 0,090. Исключение составляет образец 29 ав из непродуктивного тела, величина I_{rs}/I_s для которого достаточно высокая (до 0,22), что указывает на присутствие в породе мелкодисперсных псевдооднодоменных зерен.

Оливиновые лампроиты. Трубка АК-1 (Аргайл, восточная провинция Кимберли). Оливиновые лампроиты этой трубки изучены на примере образцов двух алмазоносных разновидностей туфов с варьирующими количеством и размерностью ксеногенного обломочного кварцевого материала из вмещающих песчаников: тонко-грубозернистый слоистый туф (обр. 57 ав) и лапиллиево-пепловый слоис-

тый туф (обр. 56 ав и 58 ав).

Образец 56 ав. Содержание микрокристаллических оксидных фаз в этом образце невелико. Преобладают очень мелкие выделения рутила размером 1—3 мкм. Кроме того, встречаются идиоморфные кристаллы хромшпинелидов размером 10—15 мкм, иногда с резорбированной поверхностью и зональным строением, а также сульфиды неправильной и пластинчатой формы размером до 100 мкм. Малораспространенная фаза — ильменит в виде зерен неправильной формы размером 20—30 мкм. Как единичные в связующей массе обнаружены достаточно крупные (200—300 мкм) обломки хромшпинелидов и ильменита ксеногенного происхождения.

Рутил характеризуется повышенными содержаниями железа (до 1 мас. % FeO) и ниобия (до 0,3 мас. % Nb_2O_5). Сульфиды соответствуют двум генерациям. Первая генерация представлена идиоморфными изометрическими выделениями (1—10 мкм) Со-содержащего пентландита (\sim 1 мас. % Co) и пластинчатыми — моносульфидного твердого

Представительные анализы оксидов из связующей массы лампроитов Австралии

№	Кол-во	№ обр., названия трубки, породы	Минерал	Локализация в пределах свя- зующей матрицы	Краткая характерис-	Оксиды, мас.%								
ана- лизов	ана- лизов				тика выделений	MgO	Al ₂ O ₅	TiO ₂	Cr ₂ O ₃	MnO	FeO	Fe ₂ O ₃	Сумма	
1	26	К-1, лапиллиево- туф	Низкомагнезиальный Ті— Al-co- держащий хромит	Включения в оливине В связующей матрице		4,1	4,7	3,0	54,0	2,5	24,6	7,1	100,0	
2	22		Высокомагнезиальный Ті—А1- содержащий хромит		Гомогенные Зональные	13,0	5,1	3,0	56,5	1,6	12,5	7,5	99,2	
3	26		Высокомагнезиальный Ті—А1- содержащий хромит			15,0	5,2	3,4	56,5	1,5	10,0	9,0	100,6	
4	26	трубка АК-1, пепловый туф	Низкомагнезиальный Ті—Al-co- держащий хромит			5,0	4,8	3,5	52,0	2,6	23,0	8,5	99,4	
5	•18		Высокомагнезиальный Ті—А1- содержащий хромит			15,2	5,1	3,4	57,1	1,1	9,8	8,2	99,9	
6	18	Обр. 56ав,	с каймой низкомагнезиального Ті—АІ-содержащего хромита			2,3	4,5	3,7	48,5	2,5	28,8	10,0	100,3	
7	12		Марганцевый ильменит			0,0	0,5	51,8	0,1	4,3	42,2	1,0	99,9	
8	10	Обр. 58ав, грубка АК-1, лапиллиево-пепловый гуф	Низкомагнезиальный Ті—АІ-со- держащий хромит	Включения в оливине	Гомогенные	4,3	3,2	3,3	55,1	1,7	25,0	6,0	99,6	
9 .	24		Высокомагнезиальный Ti—Al- содержащий хромит	В связующей		14,5	5,0	3,0	58,5	1,3	10,0	7,5	99,8	
10	22		Низкомагнезиальный Ті—АІ-со- держащий хромит	матрице		4,9	4,1	3,0	55,5	1,8	23,5	6,0	99,8	

№ ана-	Кол-во ана- лизов	№ обр., названия	Минерал	Локализация	Краткая хардктерис-	Оксиды, мас.%								
ли з ОВ		трубки, породы		в пределах свя- зующей матрицы	тика выделений	MgO	Al ₂ O ₈	TiO ₂	Cr ₂ O ₃	MnO	FeO	Fe ₂ O ₃	Сумма	
11	12	. 58ав, ка АК-1, иллиево- иловый туф	Высокомагнезиальный Ті—АІ- содержащий хромит с каймой низкомагнезиального Ті—АІ-содержащего хромита	В связующей матрице	Зональные	15,6	5,3	3,4	54,9	0,6	9,8	8,4	100,0	
12	12	Обр трубі лапн пег				5,8	5,0	3,6	50,2	2,4	23,2	9,7	99,9	
13	30	Обр. 57ав, трубка АК-1, зер- нистый туф	Магнезиальный Ті—АІ-содержа- щий хромит		матрице		7,5	5,5	3,5	56,5	0,9	20,5	5,0	99,4
14	12	, уф	Высокомагнезиальный Ті—А1- содержащий хромит	Включения в оливине	Гомогенные	14,6	3,0	3,9	59,0	0,4	10,9	9,2	99,9	
15	20	Обр. 26ав, тру Эллендейл-4 лапиллиевый т	Высокомагнезиальный Ti—Al- содержащий хромит	В связующей матрице		12,5	2,5	4,1	57,4	0,7	14,5	7,5	99,2	
16	24	Эл-	Магнезиальный Ті—А1-содержа- щий хромит	Включения	·	10,0	4,0	3,0	58,0	0,5	17,0	7,0	99,5	
17	24	трубка 1, лав	с каймой высокомагнезиального Ті-содержащего хромшпинелида	в оливине	Зональные	12,0	0,7	7,0	30,0	0,9	18,0	32,0	100,6	
18	10	бр. 20ав, трубка лендейл-11, лава	Высокомагнезиальный Ti—Al- содержащий хромит с каймой	Сростки с оливином		Condition	12,0	4,9	3,1	57,1	0,3	15,1	7,2	99,7
19	10	Обр.	высокомагнезиального Ті—А1- содержащего хромшпинелида	, 3-		15,6	6,1	4,5	37,3	0,0	13,8	21,8	99,1	

ана-	Кол-во	№ обр., названия		Локализация в пределах свя- зующей матрицы	Краткая характерис-	Окенды, мас.%								
	ана- лизов	трубки, породы	Минерал		тика выделений	MgO	Al ₂ O ₃	TiO ₂	Cr ₂ O ₃	MnO	FeO	Fe ₂ O ₈	Сумма	
20	12	20aB, a Эл- åл-11, ва	Магнезиальный Ті—АІ-содержа- щий хромит с каймой низко-	В связующей	Зональные	8,1	6,8	3,1	57,2	0,0	21,6	3,0	99,8	
21	12	Обр. 20ав, трубка Эл- лендейл-11, лава	магнезиэльного Al—Ті-содержа- щего хромита	матрице		6,0	4,3	6,0	46,5	0,0	27,5	10,0	100,3	
22	10	. 50ав, трубка Маунт- Седрик, лава	Высокомагнезиальный Ті—АІ- содержащий хромит	Включения в оливине	Гомогенные	13,0	2,2	3,7	54,5	0,9	13,0	12,0	99,3	
23	20		трубка Л ик, лава	Магнезиальный Al—Ті-содержа- щий хромит		1 OMOI CHIDIC	8,0	2,2	4,3	51,0	1,4	20,9	11,8	99,6
24	22		Магнезиальный A1—Ті-содержа- щий хромит с каймой низкомаг-	- В связующей матрице	Зональные	8,1	2,1	4,5	52,0	1,3	20,0	11,6	99,6	
25	22	Обр.	незиального Al—Ті содержаще- го хромита		Containing	6,6	2,0	4,6	49,0	1,5	23,0	13,0	99,7	

Примечание. Прочерки в таблице указывают, что измерения соответствующих характеристик не производились.

раствора на основе пирротина. Вторая генерация представлена тонкозернистыми агрегатами пирита (~1 мас. % Со и 2,5 мас. % Ni) размером 50—100 мкм.

Хромшпинелиды установлены как в собственно связующей массе породы, так и в виде мельчайших включений в микрофенокристаллах оливина. Гомогенные включения в оливине по составу соответствуют Ti—Al-содержащему хромиту. При этом наблюдаются две разновидности этого минерала (см. табл. 2): низко- и высокомагнезиальная, отличающиеся также по содержанию марганца. Хромшпинелиды из собственно связующей массы иногда гомогенны, а иногда имеют тонкие каймы. При этом различия в составе ядер и кайм в зональных выделениях отражают нормальную кристаллизационную зональность (см. табл. 2, ан. 5 и 6). Разности хромшпинелидов, слагающих ядра и каймы зональных выделений, а также гомогенных их выделений в связующей массе, практически идентичны по составу таковым из включений в оливине (см. табл. 2).

Особенности химического состава хромшпинелидов из данного лампроита: устойчивые содержания титана (3—3,7 мас. % TiO_2) и алюминия (4,5—5,2 мас. % Al_2O_3), заметные колебания хрома (48—57 мас. % Cr_2O_3) и широкие вариации магния (от 2 до 15 мас. % MgO) и закисного железа (10—29 мас. % FeO). Достаточно низкое и выдержанное содержание трехвалентного железа (7—10 мас. % Fe_2O_3) в хромшпинелидах свидетельствует о низком потенциале кислорода среды минералообразования.

Особенностями хромшпинелидов из связующей массы описываемого образца лампроита являются: малый размер этих выделений (<15 мкм); гомогенное строение хромшпинелидов, включенных в микрофенокристаллы оливина; в случае зональных выделений в собственно связующей матрице — очень маломощная кайма и практически неизменяющиеся в паре ядро — кайма содержания титана, алюминия и окисного железа, а также значительные колебания в составе магния и железа, свидетельствующие о широко проявленных изовалентных замещениях этих элементов.

Ильменит относится к железистой разности этого минерала с полным отсутствием в составе гейкилитового минала, ничтожно малым содержанием эсколаитового (до 0,1 мол.% Cr_2O_3), небольшим содержанием гематитового (до 2 мол.% Fe_2O_3) и корундового (до 1 мол.% Al_2O_3) миналов и высоким содержанием пирофанитовой составляющей (до 10 мол.% $MnTiO_3$). Отметим, что ферримагнитными свойствами этот минерал не обладает даже при температуре кипения жидкого азота $(T=-196^{\circ}C)$.

Образец 58 ав. Этот образец по набору, размерам, форме выделений и распространенности микрокристаллических минералов связующей массы во многом сходен с вышеописанным образцом 56 ав. Составы оксидов представлены в табл. 2. Следует только отметить меньшую распространенность ильменита и сульфидов по сравнению с образцом 56 ав.

Образец 57 ав. В оливиновом лампроите этого образца основными микрокристаллическими рудными минералами являются очень мелкие (<10 мкм) идиоморфные выделения хромшпинелидов (резко преобладающая фаза) и рутила (редкая фаза). Как и в случае ранее описанных образцов, количество выделений указанных минералов невелико. К тому же отметим, что порода состоит из собственно лампроитового материала лишь на 10—20%, а основную ее часть слагают ксеногенные обломки кварца.

Особенности состава рутила — повышенные примеси марганца (до 2 мас. % MnO) и ниобия (до 2 мас. % Nb₂O₅). В связующей массе встречены также два выделения достаточно редкого высокотитанистого оксида — армолколита, присутствие которого свидетельствует об осо-

бо восстановительных условиях среды минералообразования.

Хромшпинелиды обнаружены только в собственно связующей массе лампроитовой породы. Минерал представлен магнезиальной Ti—Al-содержащей разностью (см. табл. 2) с высоким содержанием хрома (52—59 мас. % Cr_2O_3 при среднем $\sim 56,5$) с устойчивыми содержаниями алюминия (4,5—7,0 мас. % Al_2O_3 при среднем $\sim 5,5$), титана (2,5—4,5 мас. % TiO_2 при среднем $\sim 3,5$), низкими и достаточно выдержанными содержаниями окисного железа (3,2—6,4 мас. % Fe_2O_3 при среднем $\sim 5,0$), переменными содержаниями магния (4—11 мас. % MgO при среднем $\sim 7,5$) и закисного железа (17—25 мас. % FeO при среднем $\sim 20,5$).

Как видно из данных табл. 2, хромшпинелиды описываемого образца практически идентичны описанным выше для образца 56 ав. В связи с этим для них справедливы все выводы, сделанные в отно-

шении хромшпинелидов из предыдущих образцов.

Таким образом, микрокристаллические хромшпинелиды из связующей массы оливиновых лампроитовых туфов (напомним, что именно туфы несут промышленные содержания алмаза в трубке АК-1) представляют преобладающую рудную фазу. Они характеризуются малыми размерами (<20 мкм), квазиидиоморфным габитусом, преимущественным развитием гомогенных выделений при подчиненной роли зональных с крайне небольшим градиентом составов в паре ядро — кайма, высоким содержанием хрома, широкими изоморфными замещениями между магнием и железом. Следует подчеркнуть, что в целом содержания окисного железа в хромшпинелидах низкие (до очень низких), т. е. условия среды кристаллизации минералов являются восстановительными.

Магнитные исследования показали, что кривая $I_S(T)$ образца 56 ав имеет резкий спад I_S в области $T < T_0$, что указывает на присутствие в нем шпинелидов, сильно обогащенных хромом. В данном образце это хромшпинелиды, по составу соответствующие Ті-Аl-содержащим хромитам. Резкое возрастание величины $I_{\mathcal{S}}$ после нагрева и смена характера кривой $I_S(T)$ с вогнутого на выпуклый связаны с преобразованием ферримагнитной фракции в фазу, обогащенную железом. Это могут быть превращения пирротина в магнетит при нагревании до T>> $T_{\rm c_{max}}$ и обогащение мельчайших включений хромшпинелидов железом при серпентинизации включающего их оливина. Расчет кинетических констант, энергии активации Еа и временной постоянной т по изменению намагниченности насыщения $I_{\mathcal{S}}(T)$ при различных температурах (обр. 56 ав) показал, что их величины ниже $(E_a=0.6-0.7 \text{ 9B})$, чем полученные ранее для случая превращения пирротина в магнетит (E_a=1,44—1,65 эВ) [6]. Для случая диффузии ионов Ті, Fe и Mg при регомогенизации структур распада в ферришпинелидах были получены высокие значения E_a ($E_a = 2.23$ эВ). В образце 57 ав пирротин не обнаружен, и практически нет градиента состава хромшпинелидов в парах ядро -- кайма. Содержание хрома в хромшпинелиде высокое. В связи с этим кривые $I_S(T)$ практически обратимы, в области $T\!<\!T_0$ наблюдается резкий спад величины I_S по мере роста T (рис. 1, δ). По форме кривая нагрева $I_S(T)$ образца 58 ав подобна кривой на-

По форме кривая нагрева $I_s(T)$ образца 58 ав подобна кривой нагрева для образца 56 ав, но кривая охлаждения $I_s(T)$ обр. 58 ав расположена ниже кривой нагрева в области температур от 150 до 600°C,

а в низкотемпературной области они обратимы, что отражает отсутствие в этом образце минеральных фаз, которые при нагреве преобразуются в ферримагнетики, обогащенные железом. Этот вывод согласуется с данными микрорентие образца 58 ав отражается в резком спаде I_S в области температур $T < T_0$ по мере роста T (рис. 1, θ).

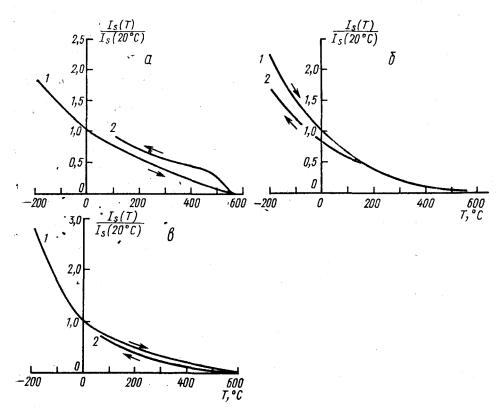


Рис. 1. Термомагнитные кривые образцов оливиновых лампроитов трубки АК-1 (Аргайл, восточная провинция Кимберли). Условные обозначения: а — обр. 56 ав, (Т) 1 — нагрев, 2 — охлаждение; в — обр. 58 ав (Т) 1 — нагрев, 2 — охлаждение

Трубка Эллендейл-4 (западная провинция Кимберли, поле Эллендейл). Проведенные ранее петрографические исследования оливиновых лампроитов трубки Эллендейл-4 [1] показали присутствие хромита и перовскита в составе лапиллиевых туфов (преобладающий тип пирокластических отложений жерла с высокой алмазоносностью). Ниже приведены результаты детального изучения распространенности, фазового и химического состава микрокристаллических оксидов в связующей матрице этих пород.

Образец 26 ав. В изученном образце лапиллиевого туфа оксидная минерализация развита довольно широко и характеризуется весьма узким спектром минералов: перовскит, хромшпинелиды, рутил (в порядке падения распространенности). Рутил представлен редко встречающимися очень мелкими (<10 мкм) гомогенными выделениями (см. табл. 2). Минералу присуща редкометалльно-редкоземельная специализация (до 1 мас.% ZrO₂ и 1 мас.% Ce₂O₃). Очень мелкие (<10 мкм) идиоморфные кристаллы перовскита однородного строения (см. табл. 2)

являются преобладающей оксидной фазой. В составе перовскита всегда присутствуют примеси магния и железа (до 4 мас. % каждого оксида), а также церий и тантал (до 2,5 мас. % Ce_2O_3 и 7,5 мас. % Ta_2O_5).

Хромшпинелиды, по распространенности несколько уступающие перовскиту, наблюдаются как в виде редких включений в микрофенокристаллах оливина, так и преимущественно в собственно связующей матрице. Все хромшпинелиды представлены гомогенной разностью с размерами выделений обычно менее 30 мкм при среднем размере 15 мкм. По составу (см. табл. 2) они соответствуют высокомагнезиальному Ti—Al-содержащему хромиту. Для них характерны устойчивое содержание примесей титана (3,9—4,1 мас. % TiO_2) и алюминия (2,5—3,0 мас. % Al_2O_3), высокое — хрома (57—59 мас. % Cr_2O_9), низкие — окисного железа (7,5—9,2 мас. % Fe_2O_3) и закисного железа (10,9—14,5 мас. % FeO) и повышенное — магния (12,5—14,6 мас. % MgO). В хромшпинелидах проявлены в основном изоморфные замещения изовалентного характера ($Mg^{2+} \rightleftharpoons Fe^{2+}$; $Cr^{3+} \rightleftharpoons Fe^{3+}$).

Сравнивая описываемые хромшпинелиды с минералами из туфовтрубки АК-1, можно отметить, что в целом они схожи. Некоторые отличия выражены в несколько меньшей «насыщенности» микрофенокристаллов оливина включениями хромита, отсутствии кайм и в несколько больших магнезиальности и хромистости шпинелидов из связующей массы лампроитов трубки Эллендейл-4 по сравнению с таковыми из

трубки Аргайл.

Трубка Эллендейл-11 (западная провинция Кимберли, поле Эллендейл). При описании слабо- и убогоалмазоносных флогопит-оливиновых лампроитов магматического ядра трубки Эллендейл-11 ранее [1] отмечалось присутствие в большом количестве в связующей массе породы микрокристаллических выделений перовскита и хромита, а также редких зерен апатита. Ниже приведены оригинальные результаты детального изучения микрокристаллических сксидов из связующей массы этой разности лампроитов.

Образец 20 ав. Как и в породах трубки Эллендейл-4, в связующей массе лавы флогопит-оливинового лампроита из трубки Эллендейл-11 широко распространены микрокристаллические выделения оксидов. Среди них преобладает перовскит в виде мелких идиоморфных кристаллов размером 5—15 мкм. Несколько реже встречаются идиоморфные или со сглаженными контурами зерна хромшпинелидов размером 10—30 мкм. Перовскит представлен гомогенными выделениями; среди элементов-примесей в нем методом электронно-зондового анализа уста-

новлено только железо (первые проценты FeO).

Хромшпинелиды, как правило, зональны. Подавляющая их часть встречается в виде включений в микрофенокристаллах оливина, явно тяготея при этом к периферии последнего. Лишь незначительная часть их либо в сростках с микрофенокристаллами оливина, либо в собственно связующей массе. В виде единичных находок хромшпинелид встречен в виде гомогенных зерен по периферии микрофенокристаллов оливина. Ядра включений в оливине представлены магнезиальным Ti— Al-содержащим хромитом с высоким содержанием хрома (в среднем 58 мас. % Cr_2O_3) и низким содержанием окисного железа (около 7 мас. % Fe_2O_3). Тонкие каймы по составу (см. табл. 2) соответствуют магнезиальному (до высокомагнезиального) Ti-содержащему хромшпинелиду с низким содержанием хрома (в среднем около 30 мас. % Cr_2O_3), высоким содержанием титана (в среднем 7 мас. % TiO_2) и окисного железа (в среднем 32 мас. % Fe_2O_3) и минимальной глиноземистостью (менее 1 мас. % Al_2O_3).

Ядра немногочисленных зональных выделений в собственно связующей матрице лампроита представлены магнезиальным Ti—Al-содержащим хромитом (табл. 2, ан. 20) с высоким содержанием хрома (~57,2 мас.% Cr_2O_3) и двухвалентного железа (~21,6 мас.% FeO), а каймы — низкомагнезиальными Al—Ti-содержащими хромитами (см. табл. 2, ан. 21) с пониженным содержанием хрома (в среднем ~46,5 мас.% Cr_2O_3), повышенным содержанием титана (~6,0 мас.% TiO_2) и окисного железа (~10,0 мас.% Fe_2O_3) и высоким — двухвалентного железа (~27,5 мас.% FeO).

Широко проявленная зональность хромшпинелидов (повсеместное развитие резко отличающихся по составу кайм с высокими содержаниями титана и трехвалентного железа около ядер высокохромистого хромита), распространенность перовскита, флогопита и диопсида в связующей массе лампроитовой лавы, свидетельствующие о высокой щелочности лампроитовой системы, указывают на становление трубки Эллендейл-11 в условиях, неблагоприятных для сохранности кристаллов алмазов. Эти данные хорошо согласуются с результатами опробования пород этой трубки, подтверждающими ее убогую алмазоносность.

Трубка Маунт-Седрик (западная провинция Кимберли, поле Нунканабах). Для неалмазоносных оливин-лейцитовых лампроитов трубки Маунт-Седрик в связующей массе отмечались в качестве обычной микрокристаллической фазы мелкие зерна перовскита и призматические выделения прайдерита [1]. Детальная характеристика микрокристаллической рудной минерализации из пород

этой трубки дана ниже.

Образец 50 ав. Гамма микрокристаллических минералов в связующей массе лавы оливин-лейцитового лампроита несколько шире, чем ранее отмечалось исследователями. Ряд этих минералов (в порядке падения распространенности) представлен прайдеритом, перовскитом, джеппеитом, хромшпинелидами и апатитом. Мелкие (<20 мкм) гомогенные выделения апатита, достаточно редкого минерала в связующей массе изученной породы, соответствуют Sr-содержащей разности (до 5 мас.% SrO) этого минерала. В минералах установлены также повышенные концентрации бария (0,7 мас.% ВаО) и церия (0,8 мас.% Ce₂O₃). Идиоморфные зерна перовскита характеризуются гомогенным строением и представлены весьма специфической бариевой разностью (54 мас. % TiO₂, 36 мас. % CaO, ~1 мас. % FeO и 0,9 мас. % BaO). Наиболее распространенная фаза — мелкие (<10 мкм) выделения прайдерита (75 мас.% TiO₂; 12 мас.% FeO; 1,5 мас.% MgO; 7 мас.% К₂О и 5 мас. % ВаО). Несколько меньшей распространенностью пользуется джеппент (65 мас. % TiO₂; 0,5 мас. % Cr₂O₃; 12 мас. % FeO; 2 мас. % MgO; 6 мас. % K2O и 15 мас. % ВаO), также встречающийся в виде мелких (<10 мкм) идиоморфных зерен.

Распространенной, ранее не отмечающейся микрокристаллической оксидной фазой в оливин-лейцитовых лампроитах трубки Маунт-Седрик, являются мелкие (<30 мкм) идиоморфные выделения хромшпинелидов. Незначительная их часть локализована в виде гомогенных включений в микрофенокристаллах оливина. В этом случае они представлены высокомагнезиальным Al—Ti-содержащим хромитом (см. табл. 2, ан. 22) с несколько повышенной железистостью (\sim 12 мас.% $\rm Fe_2O_3$). Основная же часть хромшпинелидов локализована в собственно связующей массе породы (см. табл. 2, ан. 23—25) в виде гомогенных или реже зональных (малая мощность каймы и низкий контраст составов в пределах ядро — кайма). Гомогенные выделения и ядра зо-

нальных зерен представлены одинаковой разностью — магнезиальным А1—Ті-содержащим хромитом с несколько пониженным содержанием хрома (51-52 мас. % Сг₂О₃) по сравнению со шпинелидами (54 мас. % Cr_2O_3) из включений в фенокристаллах оливина и повышенным — железа (20—21 мас. % FeO; 12 мас. % Fe₂O₃). Каймы зональных выделений сложены низкомагнезиальной (6,6 мас. % MgO) Al—Ті-содержашей разностью (см. табл. 2, ан. 25) с меньшей хромистостью (49 мас. % Сг₂О₃) и более высокой железистостью (23 мас.% FeO; 13 мас.% Fe_2O_3).

Пониженное содержание магния и хрома в составе наиболее распространенных хромшпинелидов свидетельствует, по-видимому, об относительно небольшой глубинности лампроитогенерирующего очага для рассматриваемой неалмазоносной трубки. Повышенное содержание трехвалентного железа (см. табл. 2) в хромшпинелидах связующей массы оливин-лейцитовых лампроитов трубки Маунт-Седрик указывает на повышенный окислительно-восстановительный потенциал среды

минералообразования.

По данным магнитных измерений у обр. 26 ав, 20 ав кривые $I_{s}(T)$ имеют типичный для хромшпинелидов вид. Кривая I_{S} с ростом T асимптотически приближается к оси температур, что свидетельствует о наличии в образце широкого аспекта зерен, различающихся по составу. Кривые $I_{S}\left(T\right)$ необратимы, что указывает на протекание твердофазных реакций в ферримагнетике при термообработке (рис. 2, а, б). Такую

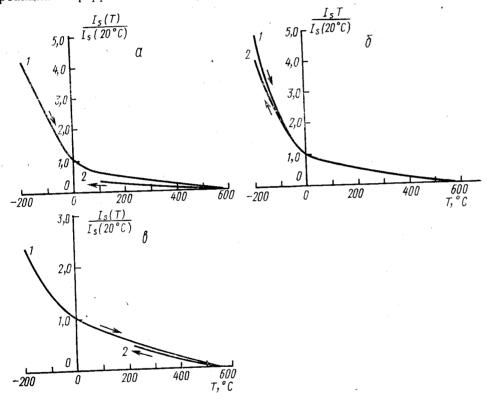


Рис. 2. Термомагнитные кривые образцов оливиновых лампроитов западной провинции Кимберли: а — обр. 26 ав (трубка Эллендейл-4, поле Эллендейл), (Т) 1 — нагрев, 2 — охлаждение; 6 — обр. 20 ав (трубка Эллендейл-11 поле Эллендейл), 1 — грево 2 нагрев, 2 — охлаждение; в — обр. 50 ав (трубка Маунт-Седрик, поле Нунканабах), 1 — нагрев, 2 — охлаждение

необратимость кривых $I_s(T)$ трудно сопоставить с данными микрорент-геноспектрального анализа, согласно которым хромшпинелид в этом сбразце представлен гомогенной разностью. Высокое содержание хрома в хромшпинелиде, по-видимому, отражается в резком спаде величины I_s в области $T < T_0$ по мере роста T, поскольку отношение I_{rs}/I_s например, образца 26 ав не достаточно низкое ($I_{rs}/I_s = 0.026$), чтобы предполагать наличие суперпарамагнитных зерен в нем. По-видимому, необратимость кривых $I_s(T)$ при нагреве указывает на тонкую зональность в зернах, обнаружить которую методом электронно-зондового анализа не удается. Более пологий спад величины I_s в области $T < T_0$ связан с меньшим содержанием хрома в хромшпинелиде по сравнению с предыдущими образцами (рис. 2, 8, обр. 50 ав).

с предыдущими образцами (рис. 2, в, обр. 50 ав).

Лейцитовые лампроиты. Трубка Жерло 81-й мили (западная провинция Кимберли, поле Эллендейл). Минералы из связующей массы неалмазоносных пород изучены на примере образцов лав фицроитового (основного) состава — флогопит-лейцитовых (диопсидовых) лампроитов с рихтеритом из интрузии, слагающей

центральное ядро.

Образцы 28 ав и 29 ав. Широко развитая рудная минерализация в связующей матрице представлена гомогенными выделениями рутила, прайдерита и апатита. В единичных случаях встречены сфен и голландит. Наиболее распространенный в связующей массе лавы рутил представлен очень мелкими (<10 мкм) выделениями пластинчатой формы. В минерале установлены повышенные содержания железа (до 3 мас. % FeO). Прайдерит, также довольно распространенный минерал, представлен мелкими (<10 мкм) гомогенными выделениями. Его состав (в мас.%): 73% TiO_2 , $\sim 10\%$ FeO, 2% MgO, 8% K_2O и 7% BaO. Апатит, достаточно широко распространенный, встречается в двух генерациях: мелкие зерна менее 10 мкм и более крупные выделения размером до 100 мкм. В целом для апатита характерна церий-цирконий-тантал-стронциевая специализация. Минерал обеих генераций различается по содержанию элементов-примесей (в мас.%): для минерала ранней (мелкие зерна) — 4% ZrO₂; 1.5% Ta₂O₅; 0.8% Ce₂O₃; 5% SrO; для более поздней — 1% ZrO₂; до 13% Ta₂O₅; 0.5% Ce₂O₃; 7% SrO. Следует подчеркнуть полное отсутствие в связующей массе лавы каких-либо фаз со структурами типа шпинели и ильменита.

Вместе с тем термомагнитный анализ показал, что эти образцы имеют совершенно разные по форме кривые $I_S(T)$, а также различаются по величинам магнитной восприимчивости κ_0 и намагниченности I_n , I_S , I_{rS} (см. табл. 1). Обр. 28 ав имеет вогнутую, асимптотически приближающуюся к оси T кривую $I_S(T)$, обратимую в области $T < T_0$ в цикле нагревание — охлаждение с резким спадом I_S в области T < $< T_0$ по мере роста T. Такой вид кривых соответствовал лампроитам, ферримагнитная фракция которых в основном была представлена хромшпинелидами (рис. 3, a и $2, \delta$). Обр. 29 ав, наоборот, имеет выпуклую кривую $I_s(T)$ без резкого спада I_s в области $T < T_0$, практически обратимую. Такие кривые соответствовали магнетиту или титаномагнетиту с высоким содержанием магнетитового минала (рис. 3, 6). Однако в обр. 29 ав величины $H_{\sf CR}$ невысокие, а высокие значения параметра магнитной вязкости $S_{v0} = 1920$ A/м и отношения $I_{rS}/I_{S} = 0,22$ могут свидетельствовать о присутствии в образце мельчайших включений ферримагнетиков (см. табл. 1), размеры которых лежат за пределами разрешения электронно-зондового прибора [3]. В отношении образца 28 ав такого утверждения сделать нельзя, так как величины S_{vo} и I_{rs}/I_{s} достаточно низкие (см. табл. 1).

Подводя итог рассмотрению рудной минерализации в связующей массе лампроитов из различных трубок Австралии, можно отметить. следующее.

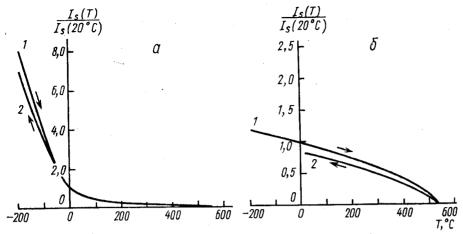


Рис. 3. Термомагнитные кривые образцов лейцитовых лампроитов трубки Жерло 81-мили (провинция Западной Кимберли, поле Эллендейл): а — обр. 28 ав (Т) 1 — нагрев, 2 — охлаждение; б — обр. 29 ав (Т) 1 — нагрев, 2 — охлаждение

1. Для высокоалмазоносных оливиновых лампроитов (туфовой фации) трубки АК-1 (Аргайл) типоморфным признаком связующей матрицы является широкая распространенность магнезиальных (до высокомагнезиальных) хромшпинелидов с высоким содержанием хрома преимущественно гомогенного строения. Они характеризуются вогнутыми, почти обратимыми кривыми $I_s(T)$ в цикле нагрев — охлаждение с резким спадом I_s в области ниже комнатной температуры T_o по мере роста T. Исключение составляет образец 56 а, содержащий в составе ферримагнитной фракции пирротин, который при термообработке претерпевает превращение в магнетит.

2. Для алмазоносных оливиновых лампроитов трубки Эллендейл-4 также характерно присутствие в связующей массе магнезиальных (до

высокомагнезиальных) хромшпинелидов с высокими содержаниями хрома, нередко зональных. Кроме того, наблюдаются многочисленные выделения перовскита. В отличие от образцов трубки АК-1 (Аргайл) кривые $I_S(T)$ лампроитов этой трубки необратимы. В области $T > T_0$ кривыя охлаждения располагается ниже кривой нагрева, а в области $T > T_0$ выше кривой нагрева. По выдимием

криван охлаждения располагается ниже кривон нагрева, а в обмент $T < T_0$ — выше кривой нагрева. По-видимому, это связано с наличием зональности в зернах ферримагнитной фракции этих лампроитов.

3. В неалмазоносных оливин-лейцитовых лампроитах трубки Ма-

3. В неалмазоносных оливин-лейцитовых лампроитах труоки Маунт-Седрик преобладают хромшпинелиды зонального строения с пониженными магнезиальностью и хромистостью при высоких содержаниях железа, широко распространены выделения прайдерита, джеппеита и перовскита. Сравнение скорости спада величины $I_{\rm S}$ по мере роста T лампроитов из трубок Аргайл, Эллендейл-4 и Маунт-Седрик показывает, что у последних она самая низкая, а это согласуется с тем, что у шпинелидов данного лампроита понижена хромистость.

4. Особенность неалмазоносных флогопит-лейцитовых (диопсидовых) с рихтеритом лампроитов (фицроитов) основного состава трубки Жерло 81-й мили — широкая распространенность апатита, рутила, прайдерита и полное отсутствие шпинелидов и ильменита. По магнитным данным лампроиты трубки Жерло 81-й мили сильно различаются.

Кривые $I_S(T)$ образца 29 ав типичны для магнетита, а образца 28 ав подобны лампроитам с высоким содержанием хрома.

5. Незначительная (вплоть до полного отсутствия) распространен-иость ильменита.

На рис. 4 представлены характерные кривые $I_S(T)/I_S$ (20°C) лампроитов разной степени продуктивности, характеризующейся различ-

ным составом ферримагнитной фракции. Выпуклый характер кривых имеют неалмазоносные лампроиты, в которых присутствуют шпинелиды, близкие по составу к магнетиту. Вогнутые кривые $I_{S}(T)$ имеют слабоалмазоносные лампроиты, содержащие хромшпинелиды переменного состава с преобладанием составов с T_c $< T_0$. И наконец, почти линейный характер кривых $I_s(T)$ наблюдается у алмазоносных лампроитов. Таким образом, намечается возможность разделения лампроитов на минералогические типы, характеризующиеся различной степенью продуктивности по форме кривой $I_{S}(T)$.

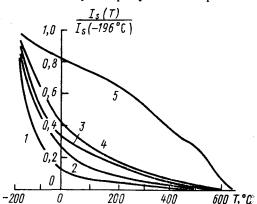


Рис. 4. Сравнение кривых нагрева пород различной продуктивности из лампроитов образцов Австралии: Условные обозначения: 1, 2, 5 — неалмазоносные тела (обр. 28, 50, 29 соответственно); 3—4 — алмазоносные (обр. 26, 56 соответственно)

Заключение. Изучение минералогии оксидов из связующей массы лампроитов Австралии и магнитных свойств этих пород позволило выявить их типоморфизм на уровне различных типов лампроитовых пород (ультраосновные, основные) и их фациальной принадлежности (туфы, туфобрекчии, интрузивные лампроиты). Показано, что типоморфизм состава минералов из связующей массы лампроитов и их распространенность коррелируют с алмазоносностью лампроитов. К типоморфным признакам оксидов из связующей массы лампроитов относятся: распространенность микрокристаллических оксидов («плотность» рудной минерализации), набор различных минеральных фаз и их соотношение, размеры выделений, а также химический и фазовый состав последних.

Кратко сущность выявленного типоморфизма выражается в следующем. Относительно характерных его деталей на уровне провинции — это широкое проявление рутила, перовскита и К—Ва-содержащих титанатов в связующей массе лампроитов Австралии. Следует также указать на падение хромистости и магнезиальности микрокристаллической минерализации при переходе от ультраосновных к основным и средним (от оливиновых к флогопитовым, лейцитовым, диопсидовым и т. д. лампройтам) и возрастание в том же направлении ее титанистости и особенно железистости.

Учитывая важность микрокристаллических выделений в связующей массе шпинелидов как наиболее чутких индикаторов среды зарождения и эволюции лампроитов магм, более подробно остановимся на анализе типоморфных особенностей шпинелидов. Характерным является следующее: преобладающее (либо широкое) развитие среды микрокристаллических оксидов высокомагнезиальной разности хромита в связующей массе высоко- и алмазоносных пород и их преимуществен-

но гомогенная форма выделений. С падением алмазоносности пород гомогенные зерна хромшпинелидов сменяются зональными выделениями с каймами хроммагнетита. Гамма шпинелидов неалмазоносных пород характеризуется явным преобладанием зональных хромит-хроммагнетитовых выделений над гомогенными хромитовыми и преобладанием гомогенных хроммагнетитовых и титаномагнетитовых разностей. Подобная тенденция однозначно иллюстрирует прямую связь между глубинностью и окислительным потенциалом эволюционирующей лампроитовой системы, с одной стороны, и ее алмазоносностью — с другой.

На основе магнитных данных могут быть выявлены некоторые особенности ферримагнетиков, которые отражают условия их формирования. В частности, для лампроитов, содержащих зональные зерна хромшпинелидов, кривые $I_s(T)$ в цикле нагрев — охлаждение необратимы. В зависимости от состава зон может иметь место как увеличение намагниченности насыщения I_S и температуры Кюри T_c (оливин хромшпинелид), так и уменьшение этих параметров (хромшпинелид -магнетит). Хромшпинелиды с высокими содержаниями хрома на кривой $I_S(T)$ в области $T < T_0$ имеют резкий спад I_S по мере роста T. Рост величины I_{S} в результате термообработки указывает на формирование ферримагнитной фазы с высоким содержанием магнетитового минала (превращения пирротин — магнетит, титаномагнетит — магнетит и ильменитовые ламмели и др.). В свою очередь зональность и процесс титаномаггемитизации указывают на условия, в которых сохранность алмазов менее вероятна. Наличие высокого содержания хрома, наоборот, свидетельствует о глубинных условиях формирования лампроитов. Высокое содержание титаномагнетита и магнетита, свидетельствующее об окислительных процессах, отражает условия, неблагоприятные для формирования алмазов. Это отражается в высоких значениях магнитной восприимчивости $arkappa_0$, намагниченностей I_n , I_S , I_{rS} и величин температур Кюри $T_c \approx 580$ °C.

Таким образом, изучение оксидов из связующей массы представляет эффективный способ для определения паспортизации лампроитовых тел и оценки алмазоносности последних.

СПИСОК ЛИТЕРАТУРЫ

- 1. Джейкс А., Луис Дж., Смит К. Кимберлиты и лампроиты Западной Австралии. М., 1989.
- 2. Жиляева В. А. и др. Особенности кимберлитов трубки Удачная. ВИНИТИ, 1985. № 7819-B.
- 3. Кудрявцева Г. П. и др. Магнетизм и минералогия природных ферримагнетиков. М., 1982.
- 4. Трухин В. И. Введение в магнетизм горных пород. М., 1973.
- 5. Трухин В. И. и др. Ферримагнетизм минералов. М., 1983. 6. Трухин В. И. и др. Магнетизм кимберлитов и траппов. М., 1989.
- 7. Трухин В. И. и др. Магнетизм пород из кимберлитовых трубок Якутии//Изв. АН СССР. Сер. Физика Земли. 1984. № 9.

Поступила в редакцию 21.01.92