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The aim of this study is to predict the solid-solution
partitioning of heavy metals in river flood plain soils. We
compared mechanistic geochemical modeling with a statistical
approach. To characterize the heavy metal contamination
of embanked river flood plain soils in The Netherlands,
we collected 194 soil samples at 133 sites distributed in the
Dutch part of the Rhine and Meuse river systems. We
measured the total amounts of As, Cd, Cr, Cu, Ni, Pb, and
Zn in the soil samples and the metal fraction extractable
by 2.5 mM CaCl2. We found a strong correlation between
heavy metal contamination and organic matter content,
which was almost identical for both river systems. Speciation
calculations by a fully parametrized model showed the
strengths and weaknesses of the mechanistic approach.
Cu and Cd concentrations were predicted within one log
scale, whereas modeling of Zn and Pb needs adjustment of
some model parameters. The statistical fitting approach
produced better results but is limited with regard to the
understanding it provides. The log RMSE for this approach
varied between 0.2 and 0.32 for the different metals. The
careful modeling of speciation and adsorption processes is
a useful tool for the investigation and understanding of
metal availability in river flood plain soils.

Introduction
In the last century, large amounts of heavy metals have
accumulated in the embanked river flood plain areas of the
Dutch part of the Rhine and Meuse river systems. About 500
km2 of flood plain soils are affected by the deposition of
contaminated sediments. To enable decision making with
regard to river flood plain areas, it is necessary to be able to
predict adverse effects due to the heavy metal pollution of
these flood plain soils.

Relating metal contamination in soils with uptake in plants
and biota is one of the key problems in the risk evaluation

of heavy metal contamination. Often denoted as availability
or bioavailability, the link between metal contamination and
uptake consists of a sequence of several processes (1-3).
The combination of metal speciation modeling with ap-
proaches such as the free ion activity model (FIAM) or the
biotic ligand model (BLM), which combines metal speciation
with uptake by or toxic effects to biota, can give useful insight
in mechanisms and uptake behavior in well-defined aquatic
systems or nutrient solutions (4-7). However, modeling of
metal speciation and uptake in complex soil systems still
presents a major challenge in ecotoxicology.

The first step to work out the relation between heavy metal
contamination of soils and uptake by biota is to derive the
solid-solution partitioning of metals. In the past, geochemi-
cal speciation modeling of soil systems has not been
satisfactory because of the complexity of sorption processes
to the soil matrix (8). To be able to use the many experimental
data on metal sorption published in the literature, under-
standing and accurate modeling of the effects of competition
by the cations and anions present in pore water on the
sorption of metals is essential. Recent improvements of
sorption modeling make it possible to describe the com-
plexation of metals by dissolved or soil organic matter (9-
11) or iron oxides (12, 13) in detail. These sorption models
describe metal sorption on a molecular scale, taking into
account the effects of pH, competition, ionic strength, and
background electrolyte on metal binding. Although in practice
these models cannot be integrated easily in speciation
calculation programs, they are fully parametrized, and
therefore they can be applied directly to predict metal
behavior under a large range of conditions. Several studies
combined many models to a “multisurface” approach (14-
16).

A more straightforward way to calculate solid-solution
partitioning is the use of statistical regression formulas (17-
19). If many data are available and the statistical approach
is applied to soils from similar origin or with comparable
properties, this method is expected to result in relations with
a fair precision. Whereas this approach might not add much
to the understanding of soil processes, it will circumvent the
efforts needed to build up a speciation model and determine
the numerous parameters necessary for the model. However,
different from geochemical modeling, the statistical approach
is unlikely to apply over a wide range of redox conditions,
in view of the different processes that control metal speciation
in oxic and anoxic conditions.

In this paper, we study the heavy metal contamination
in the flood plain sediments of the Dutch part of the Rhine
and Meuse river systems and assess the possibility of
predicting the solid-solution partitioning of heavy metals
and arsenic. We compare two different approaches to
calculate solid-solution partitioning: a geochemical model
fully parametrized by data available in the literature, and a
regression model based on the extensive data set presented
in this work.

To characterize the properties and heavy metal contami-
nation patterns typical for river flood plain soils, we collected
194 soil samples from locations distributed over the entire
Netherlands. To estimate the soluble fraction of metals, we
extracted all soil samples with CaCl2, a widely used and
efficient extraction method, which was shown to correlate
well with the plant uptake of many metals and nutrients
(20-22).

For the geochemical model, we used a multisurface
approach similar to Weng et al. and Dijkstra et al. (14, 23)
and extended it by also accounting for mineral phases. We
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parametrized the model by data given in the literature rather
than by fitting parameters to the data set as done in other
studies (8, 15, 24). The predictions of the geochemical model
were compared with the measured metal fraction in 2.5 mM
CaCl2. We discuss the strength and limitations of this
approach and suggest some modifications to overcome the
lack of thermodynamic data.

To increase cost efficiency in practice, we explore several
simplifications of the models that decrease the laboratory
efforts and that limit the necessary model input to parameters
that are included in existing databases.

Materials and Methods
Field Sampling. For field sampling, we selected 48 flood plain
sites along the Dutch part of the river Meuse and the three
major branches of the river Rhine: the IJssel, the Lower Rhine/
Lek branch, and the Waal/Nieuwe Merwede branch (Figure
1).

Using prior information, sampling locations were selected
to fulfill two requirements, that is, to obtain a representative
distribution of contamination levels over the entire con-
tamination range and to distribute the sampling locations
well over the river systems. Furthermore, we included a variety
of different land use forms and ecosystem types. Within each
selected flood plain system, we sampled two or three cores
at different points, dependent on the size and heterogeneity
of the flood plain. The cores were generally collected on a
transect perpendicular to the river, but the sampling scheme
was adapted to local conditions if necessary.

We sampled columns with lengths ranging from 60 to 180
cm by a gouche auger sampler (2.5-cm diameter), avoiding
the upper 5 cm of the profile. The columns were separated
into segments of 20 cm. In case a well-defined interface
between layers was apparent in the segment, we adapted
the segment length to avoid mixing of different layers. In
total, we collected approximately 560 segments, from which
we selected 194 samples from the upper 60 cm (137 samples
from 5 to 35 cm and 57 samples from 35 to 60 cm) for analysis.

Chemical Analyses. Samples were dried at 40 °C and were
sieved (<2 mm) before analysis. As, Cd, Cr, Cu, Ni, Pb, Zn,
Mn, Fe, P, and Al concentrations in aqua regia (25) were

measured by ICP-AES (Spectros, Spectro Flame) and ICP-
MS (Perkin-Elmer, ELAN 6000). The content of soil organic
carbon (SOC) was analyzed by wet oxidation with K2Cr2O7

(26). Clay content was measured by sedimentation according
to Houba et al. (27).

CaCl2 extractions were made according to a modified
scheme of Houba et al. (28). We used 2.5 mM of CaCl2 rather
than 10 mM CaCl2 in view of the better agreement with the
major ionic composition of pore water sampled in the flood
plain soils (data not shown).

The pH was measured in the suspension of the 2.5 mM
CaCl2 extraction (27). Dissolved organic carbon (DOC)
concentration was measured in the extract by a TOC analyzer
(Skalar, SK12) after the sample was diluted five times and
was acidified to a pH of 3.0-3.5 by the addition of 0.28 M
HNO3. Concentrations of As, Cd, Cr, Cu, Ni, Pb, and Zn in
the extract were measured by ICP-MS after filtration by 0.45
µm and 1:1 dilution with 0.28 M HNO3 (Merck, suprapur).

Geochemical Modeling. Speciation calculations were
performed with the object-oriented modeling framework
ORCHESTRA, a new geochemical program that gives the user
the flexibility to extend the chemical model with appropriate
sorption models (29).

Equilibrium constants for soluble species and mineral
phases were used from the MINTEQA2 (30) recent database
version 4.0. Equilibrium constants (Ksp) for mineral and
soluble species from other sources are summarized in Table
1. Unlike in other studies (14, 23), we included in our model
all minerals that are likely to occur under the prevailing
conditions, and we allowed them to coprecipitate with metals
and to control the metal activity in solution. The activity
correction was done with the Davis equation (29). All
calculations were performed without temperature correction,
at the standard state (25 °C).

As input for the geochemical model, we used the total
amounts of Al, As, Cd, Cu, Fe, Mn, P, Pb, and Zn measured
in aqua regia. The activity of Fe3+ is controlled by the presence
of goethite, and the activity of Al3+ is controlled by the
presence of gibbsite. Since the concentrations of phosphate
were too low to be measurable, we calculated the activity of
PO4

3- by assuming equilibrium with hydroxyapatite. Calcite
reaches equilibrium with the soil solution very slowly at
neutral pH and is therefore not defined as mineral phase in
the model (34). Instead, we defined a fixed background
electrolyte of 2.5 mM CaCl2 as input for the model calcula-
tions. The redox potential of the model system was defined
by a constant pO2 ) 0.20 atm, assuming all samples to be
in equilibrium with the atmosphere.

A multisurface approach is used to calculate adsorption
to the solid phase and dissolved organic matter (DOM). To
calculate the adsorption of metals to organic matter, we used
the consistent nonideal competitive adsorption model (NICA)
that includes a Donnan approach to describe the electrostatic
interactions (10). All model parameters necessary to describe
adsorption on fulvic and humic acid were taken from the
generic NICA parameter set (11). Organic matter consists of
variable fractions of nonreactive matter, humic acid (HA),

FIGURE 1. Sampling locations in the Rhine-Meuse flood plain
system.

TABLE 1. Soluble and Mineral Species and log Ksp Values
Used for Calculation from Sources Other than 30

mineral log Ksp ref

Ca2+ + Cl- ) CaCl+ -1.00 36
Ca2+ + 2Cl- ) CaCl2(aq) 0.00 36
Mn2+ + CO3

2- ) MnCO3(aq) 4.90 37
Zn2+ + 2CO3

2- ) Zn(CO3)2
2- 9.63 38

Zn3(PO4)2‚4H2O + 4H+ ) 3Zn2+ + 2H2PO4
- + 4H2O 3.80 36

ZnFe2O4 + 8H+ ) Zn2+ + 2Fe3+ + 4H2O 9.85 36
Zn2Al(OH)6Cl + 6H+) 2Zn2+ + Al3+ + Cl- + 6H2O 23.50 39
Zn2SiO4 + 4H+ ) 2Zn2+ + H4SiO4 15.33 38
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and fulvic acid (FA). Reliable data on the HA and FA fractions
of organic matter are lacking in the literature, therefore, we
made the assumption that 50% of the soil organic matter
(SOM) is present as HA and 40% of DOM is present as FA.
The remaining fractions of SOM and DOM were assumed to
be nonreactive. To recalculate the measured carbon contents
to organic matter content, we assume for simplicity a carbon
content of organic matter of 50% (31).

Adsorption of metals and anions by iron oxide is calculated
by the charge distribution multisite complexation model (CD-
MUSIC; 12). For the specific surface area of goethite, values
are given from 20 to 200 m2 g-1 (32). We assumed a specific
surface area of 50 m2 g-1 for iron oxide. The parameters used
are given in Tables 1 and 2, Supporting Information. Sorption
to manganese oxide is described by a surface complexation
model of Tonkin et al. (33). For the specific surface area of
manganese oxide, a large range of values is given in the
literature (33). For the model calculations, we used a specific
surface area of 50 m2 g-1. The amounts of Fe and Mn oxides,
used for the sorption modeling, were calculated directly by
the model.

Clay adsorption of Ca, Zn, and Mn is calculated by a simple
ion exchange model with a constant CEC (34). We assumed
clay to be present as illite, the predominant clay mineral in
these soils, with a CEC of 0.35 molc kg-1 (31), and we used
an exchange coefficient KZn/Ca and KMn/Ca of 1 (35).

Statistical Model. For the statistical approach, we fitted
a linear regression equation that relates the extractable metal
concentrations to the sum of all adsorbing phases, pH, and
total amount (17, 18):

where for the different i, Xi represents, respectively, the H+

activity, total amount of the heavy metal, SOC, DOC, total
amount of Fe and Mn, and the amount of clay. All variables
and constants not significant at p < 0.05 (t-test) were removed
stepwise.

Results and Discussion
Figure 2 presents the total amount of heavy metal as a
function of the soil organic carbon content for the Rhine and
Meuse river systems. The similarity of the contamination
pattern within and between the two river systems is remark-
able. Zn, Cd, Cu, Cr, Pb, and As correlate strongly with the
organic matter content, Ni to a little lesser extent. The
regression equations differ only slightly between the Rhine
and Meuse river branches except for Cr and As, where the
regression equations are significantly different. For heavy
metals preferentially bound to organic matter, the solid-
solution partitioning is strongly dependent on the solid-
solution partitioning of organic matter. With the organic
carbon content positively correlated to the contamination
degree, the solution concentration of the metals preferentially
bound to organic matter will therefore depend to a large
extent on the DOC concentration in soil solution.

Whereas the contamination patterns were quite compa-
rable for the two rivers, the flood plain sediments of the
Meuse and Rhine differed significantly in Ca content. In the
Rhine branches, an average concentration of 31 g kg-1 of Ca
((11.2 g kg-1) was measured, whereas in the Meuse flood
plain the Ca concentrations were significantly smaller and
more variable (9.2 g kg-1 ( 8.8 g kg-1). Although the Ca content
is not expected to influence metal behavior directly, it will
influence the pH of the soils when it is present as calcite.
Figure 3 shows that indeed a relation between Ca content
and sediment pH is observed. Because of sufficient amounts
of Ca in the Rhine sediments, the pH is high (7.47 ( 0.16).
In comparison, the pH values of the Meuse flood plain

samples were much smaller and more variable (6.76 ( 0.40)
and ranged from 5.86 to 7.62 dependent on the amount of
Ca present. Since the effect of pH on metal partitioning is
well documented, one should expect that, despite the
comparable contamination patterns in both river systems,

FIGURE 2. Heavy metal content of top soil layers (5-60 cm) as a
function of the organic carbon content. (a) Zn, Cd, and Cu; (b) Cr
and Ni; and (c) Pb and As. Open symbols: Meuse river. Solid
symbols: Rhine river system. Fitted trendline functions and R2 values
are shown for all samples from both rivers. In the case of Cr and
As, fitted trendline functions are shown for each river.

FIGURE 3. Soil pH as a function of Ca content of top soil layers
(5-60 cm). Open squares: Meuse river, solid squares: Rhine river
system.

log MeCaCl2
) ∑

i

ai log Xi + const. (1)
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the extractable metal fractions in the Meuse samples will be
higher.

Figure 4 shows the measured concentrations in the 2.5
mM CaCl2 extractions compared to the predictions of the
fully parametrized geochemical model. We did not present
geochemical calculations for Ni, because the thermodynamic
data were of poor quality (40), the data support for the NICA
parameter was weak (11), and no parameters for the binding
to goethite were available. Since in 90% of all samples the
extractable concentrations of Cr were below the limit of
determination (<3 µg L-1), we also omitted further calcula-
tions for Cr.

Without any calibration or fitting, the general trend for
the extractable metal fraction of Cd and Cu is predicted well
by the speciation model. The predicted values for Cd were
on average approximately 0.45 log units too large, whereas
the results for Cu were 0.15 log units too small. In the case
of Cu, the speciation model calculates that more than 98%
of soluble Cu was bound to DOM. By calibrating the HA and
FA fractions, the prediction of Cu can therefore easily be
improved. However, this affects the prediction of Cd, which
is mainly bound to organic matter, too. We tested different
combinations of HA and FA content in DOM and SOM, but
there was no reasonable way to improve the predictions for
Cd without worsening the prediction of Cu. No known
mineral phases influenced the speciation of Cd under the
prevailing conditions, and because of the low activity of Cd2+,
binding in diffuse double layers of organic matter, oxides,
and clay was negligible (<1%). Manganese oxide can
potentially bind large amounts of Cd (41). However, despite
the use of four surface binding sites, the model of Tonkin et
al. (33) fails to describe the available literature data on Cd
binding to manganese oxides. The binding of Cd was largely
underestimated in several cases. It is difficult to improve the
manganese sorption model in such a way that it would fit
both our data and literature data consistently. Therefore, we
did not attempt to change model parameters to improve our
model.

The extractable Zn concentrations were overestimated
by more than one log scale. For the speciation of Zn, organic
matter binding is less important than in the case of Cd and
Cu. The minerals williamite, franklinite, and hemimorphite
are possible sinks for Zn. Although they have been shown to
be present in contaminated soils (42, 43), reliable solubility
data are lacking. Moreover, the dissolution of franklinite
depends on the form in which iron oxides are assumed to
be present in soil. Our model assumes iron oxide to be present
as goethite, however, Lindsay (36) found that in soil the
activity of Fe3+ can be larger than calculated in equilibrium
with goethite. He recommends the use of an empirical “soil”-
Fe(OH)3 with a solubility between amorphous iron oxide and
goethite. In the case of hemimorphite, no solubility constant
is available at present. We can improve therefore our model
by either calibrating the solubility constants of iron oxide,
franklinite, or williamite or by proposing a solubility constant
for hemimorphite. We cannot prove which of the minerals
is present in soil. However, since all of them have the same
pH-dependency (log Zn2+ + 2pH ) const.), the mineral
actually present does not affect the outcome of the calculation
much. We chose to decrease the log Ksp value of franklinite
by one unit to 8.85. Figure 5a shows the result of the
calculation with the modified log Ksp of franklinite. The
modification improved the prediction of Zn, except for
samples with a pH smaller than 6.5, which is due to the
strong pH dependency of the dissolution reaction of the
mineral phase.

Lead concentrations were profoundly overestimated too,
a problem already discussed by Weng et al. (14). In view of
our model predictions for the extractable Pb fractions, which
were more than 2 orders of magnitude too large, we estimated
that only 1% of all Pb in soil can be bound to organic matter.
Because of the high affinity of Pb to organic matter at high
pH, the Pb2+ activity is too low to make it likely that mineral
phases such as chloropyromorphite or PbHPO4 (44) can be
formed under these conditions. Several studies imply that
Pb can be sorbed to goethite not solely as a Pb2+ cation but

FIGURE 4. Concentrations of Cd, Cu, Zn, Pb, and As extracted by 2.5mM CaCl2 and calculated by the geochemical model. Open symbols
correspond to samples with a pH < 6.8. The dashed line represents a trendline through the average values; the full line represents the
1:1 line.
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also as PbCO3 (45, 46), PbSO4 (47), PbCl+ (48, 49), and PbPO4
-

species (50, 51). We used the data available in the literature
to fit the presence of a PbCO3, PbSO4, and PbCl surface species
on goethite, but none of this species improved our model
outcome much. Literature data on phosphate and Pb sorption
are not consistent: when we calculate a PbPO4 species sorbed
to goethite that fits to our data, we derive a value that is too
large to explain the data of Ler et al. (50) but too small to
describe the data of Weesner et al. (51). However, despite the
contradictory data, we hypothesize the formation of a PbPO4

complex on goethite, recognizing that we cannot support
this by independent literature data. Figure 5b shows that the
proposed PbPO4 surface species can explain the measured
Pb concentrations substantially (see also Table 6).

At pH > 6.8, the extractable amounts of As were well
predicted and 90% of all samples were within one log unit.
However, larger deviations appeared at pH values below 6.8.
Since no As-containing mineral phase precipitates under the
given conditions and our model defines a specific binding
of As only to iron oxides, the distribution relies predominantly
on the assumed surface amount of iron oxide. Changes of
the assumed specific surface area of goethite will only affect
the overall sorption amount but will not improve the As
prediction at low pH values. It is unclear whether specific
binding to other surfaces or binding of other arsenic species
to goethite is responsible for the solid-solution partitioning
at lower pH. Smedley et al. (52) suggest that at the given pH
range, binding to Al hydroxides, which are present in flood
plain soils at approximately 20 g kg-1 on average, might affect
the solid-solution partitioning of As.

Table 2 and Figure 6 show the results of the regression
calculations of the statistical model. The statistical model
shows better results than the fully parametrized geochemical
model with a root-mean-square error (RSME) of the log-
transformed data varying between 0.11 and 0.33 (Table 3).
The statistical approach also resulted in a smaller standard
error of prediction than in other studies that aimed at
developing a more general statistical model (17, 18). This

can be attributed partly to the large size of the used data set
and partly to the limited and well-defined area of this study,
with soils of a comparable origin.

Reduction of Input Variables. Both statistical and
geochemical models required an extensive input. Several
options were explored to reduce the number of input
parameters of the models.

Table 3 summarizes the effect of these simplifications on
the RMSE of the statistical model. Table 4 summarizes the
regression parameters for the simplified models.

A statistical approach using the total amount, SOC, clay,
and pH performed only slightly less than the full statistical
model (Table 2). The RMSE-values differ less than 0.03 log
units for all metals except Ni. In The Netherlands, the pH is
often not measured for risk assessment of soils. Therefore,
we tested the effect of disregarding the pH on model
agreement. Without pH, the RMSE increases for Cd, Zn, and
Ni by 0.08-0.13 log units. Measuring the pH requires an
extra analytical procedure, whereas the total amount of Ca
can be easily measured simultaneously with other metals on
ICP-AES at negligible extra costs. Hence, we assessed whether
the correlation between Ca and the pH (Figure 3) can be
used to replace the pH by Ca in the statistical model, where

FIGURE 5. Concentrations of Zn (a) and Pb (b) extracted by 2.5mM CaCl2 and calculated by the modified model. Open symbols correspond
to samples with a pH < 6.8. The line represents the 1:1 line.

TABLE 2. Regression Parameter for Cd, Cu, Zn, Pb, Ni, and As Extractable by 2.5 mM CaCl2a

const pH [-]
log Metot
[mol kg1]

log SOC
[kg kg-1]

log DOC
[kg L-1]

log Fetot
[mol kg-1]

log Mntot
[mol kg-1]

log clay
[kg kg-1]

log Cd [mol L-1] n.s. -0.668 0.604 0.484 0.184 -0.589 -0.308 n.s.
log Cu [mol L-1] -3.692 0.108 0.414 0.374 0.404 -0.368 n.s. n.s.
log Zn [mol L-1] 1.056 -0.824 0.580 0.637 n.s. -1.087 n.s. n.s.
log Pb [mol L-1] -3.795 -0.414 0.719 n.s. 0.335 n.s. -0.751 -0.414
log Ni [mol L-1] -1.157 -0.380 0.467 0.382 0.568 n.s. -0.700 n.s.
log As [mol L-1] --4.654 0.114 0.794 1.051 n.s. -0.951 n.s. -0.411
a Metot is the total amount of the metal in question. n.s. ) not significant.

TABLE 3. Root-Mean-Square Error (RMSE) of the Statistical
Model for Cd, Cu, Zn, Pb, Ni, and As in 2.5 mM CaCl2a

log RMSE Cd Cu Zn Pb As Ni

full model 0.201 0.113 0.324 0.311 0.255 0.194
Metot, SOC, clay, pH 0.223 0.141 0.339 0.330 0.269 0.244
Metot, SOC, clay 0.327 0.149 0.448 0.361 0.276 0.274
Metot, SOC, clay, Catot 0.198 0.144 0.339 0.318 0.271 0.224

a The RMSE is calculated from log-transformed concentrations. Metot

is the total amount of the metal in question

pH ) 0.787 log Catot + 7.588 (2)
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The RMSE values of the model that uses eq 2 were
comparable to the values of both the full model and the
simplified model using the individual pH values, that is, they
vary less than (0.03 log units from both models.

In Table 5, we provide several generic input parameters
on the basis of averaged values measured in both river
systems. These values were used to reduce the number of
input variables for the modified version of the geochemical
model. Table 6 summarizes the RMSE of the simplified
geochemical models and the fully parametrized model.
Using average values for the total amount of P, Mn, and Al
hardly changed the RMSE values for the metals. Use of an
average value for Fe also increases the RMSE of Pb and As
by 0.13 and 0.04 log units, respectively. Unlike Pb and As,
which are mainly bound to iron oxides, for the other metals
the agreement is not affected by using an average value for
Fe.

FIGURE 6. Concentrations of Cd, Cu, Zn, Pb, Ni, and As extracted by 2.5mM CaCl2 and concentrations calculated by a regression model
(Table 2). The full line represents the 1:1 line and the dashed lines represent the standard error of estimation.

TABLE 4. Simplified Statistical Model for Cd, Cu, Zn, Pb, Ni, and As Extractable by 2.5 mM CaCl2a

const log Metot [mol kg1] log Catot [mol kg1] log SOC [kg kg-1] log clay [kg kg-1]

log Cd [mol L-1] -5.260 0.620 -0.700 0.548 -0.287
log Cu [mol L-1] -4.920 0.170 0.120 0.682 n.s.
log Zn [mol L-1] -5.141 0.621 -0.822 0.600 -0.375
log Pb [mol L-1] -7.425 0.445 -0.472 0.480 -0.554
log Ni [mol L-1] -5.663 0.274 -0.459 0.656 n.s.
log As [mol L-1] -4.395 0.654 0.159 0.928 -0.792
a Metot is the total amount of the metal in question. n.s. ) not significant.

TABLE 5. Generalized Input Parameters for Simplified
Speciation Modela

DOC
[mg L-1]

pH
[-]

Altot
[mg kg-1]

Ptot
[mg kg-1]

Mntot
[mg kg-1]

Fetot
[mg kg-1]

eq 3 eq 2 20 000 1000 900 30 000
a DOC values and pH are calculated according to eq 3 and 2,

respectively.

TABLE 6. RMSE of the Geochemical Model for Cd, Cu, Zn, Pb, and As in 2.5 mM CaCl2 with a Reduced Number of Input Variablesa

log RMSE Cd Cu Zn Pb As

fully parametrized model 0.523 0.268 1.298 (1.245)b 2.765 0.656 (0.395)b

modified model (Figure 5) 0.513 0.272 0.697 (0.517)b 0.450 0.740 (0.508)b

average Ptot, Mntot, and Altot 0.513 0.272 0.697 (0.517)b 0.452 0.740 (0.507)b

average Fetot, Ptot, Mntot, and Altot 0.513 0.273 0.697 (0.517)b 0.577 0.775 (0.594)b

average Ptot, Mntot, and Altot, DOC from SOC (eq 3) 0.499 0.269 0.696 (0.517)b 0.451 0.740 (0.503)b

average Ptot, Mntot, and Altot, DOC from SOC (eq 3), pH from Catot (eq 2) 0.503 0.269 0.692 (0.629)b 0.419 0.659 (0.543)b

a The RMSE is calculated from the log-transformed concentrations. Metot is the total amount of the metal in question. b Values in parentheses
are for samples with pH > 6.8.
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Since the HA and FA fraction of DOC can be variable, we
tested whether DOC is a good estimator for the HA and FA
concentration of pore water. When we replaced the measured
values of DOC by an average value, the geochemical model
did not perform well (data not shown). In view of a significant,
but not very strong correlation between SOC and DOC (Figure
7) for the soils in this study, DOC may be derived from SOC
according to

Calculating DOC concentrations with eq 3, the RMSE
decreased for Cd and Cu, which are both mainly bound to
organic matter. Since the correlation between SOC and DOC
is not very strong, the better agreement of a DOC value
calculated by eq 3 indicates that DOC is not a reliable
estimator for HA and FA in soil solution. However, there is
no method available at this moment to measure the fulvic
and humic fractions efficiently on a routine basis. A calibra-
tion of the HA and FA fractions to the individual soil system
is recommended in the literature (53), and averaged DOC
values are found to perform almost as well as individual
measured samples for a single soil with different treatments
(54). DOC values calculated with eq 3 lead to good or even
slightly better agreements as using measured values, which
implies that HA and FA fractions of natural DOC can be
considerably variable.

The substitution of the measured values of pH by the
total amount of Ca (eq 2) had a positive effect on the
prediction of Pb and As (Figure 8) in the modified geochemical
model. This substitution leveled out the variation of pH values
and mainly affected the results at low pH values. For the
samples with a pH > 6.8, the RMSE for Zn and As were larger

but for pH < 6.8 the RMSE was smaller (Table 6). This result
is difficult to explain, but it implies that the Ca content is a
better estimator of pH than the measured values itself, at
least for pH values below 6.8. The measurement of pH is a
rather robust technique for the given pH range, and deviations
of the measurements are more likely to happen at high pH.
We attribute this effect on the RMSE to the suspension effect
during the measurement of the pH.

Reducing the number of input variables of the geochemi-
cal model by replacing them with average values or equations,
the agreement between model and measurements remained
good or even improved for some metals. Comparable to the
statistical model, the only modification necessary for using
this model for risk assessment is to extend the standard set
of parameter measured in aqua regia by Fe and Ca. For the
Rhine river system, the pH is rather constant (Figure 3) and
it is therefore unnecessary to replace the pH value by Ca.
This makes it possible to use the existing governmental
databases on contaminated flood plain soils to calculate the
solid-solution partitioning with this simplified model.

Geochemical Modeling versus Statistical Approach. We
presented two models to predict solid-solution partitioning
of heavy metals in oxic river flood plain soils. Both approaches
have their specific advantages.

The statistical approach results in very accurate predic-
tions for all metals in a 2.5 mM CaCl2 extract. However, this
approach relies on the availability of a sufficiently large
number of consistent data. Furthermore, the regression
equations can only be applied to soils with the same
properties. Nevertheless, with the reduced set of variables,
the equations can be easily applied to calculate the availability
of heavy metals in river flood plain soils in The Netherlands
under oxic conditions.

To study the influence of redox processes on heavy metal
speciation, which is important in view of frequent flooding,
we need a geochemical model. After two modifications, the
model presented here predicts the extractable amount of all
metals with an RMSE better than 0.74 log scale. This is
comparable to the results of other studies (14, 23).

Whereas the trend is predicted well, a large part of the
RMSE is due to a systematic deviation from the 1:1 line. When
we are less interested in predicting soluble metal concentra-
tions but using the model to test out the influence of certain
parameters on the solid-solution partitioning, this systematic
deviation might be less relevant. When the RMSE is calculated
relative to the trendline as given in Figure 4 instead of the
1:1 line, the residuals of the geochemical model were smaller
for all elements. Thus, for the simplified geochemical model,
RMSE-values equal 0.312, 0.211, 0.642, 0.419, and 0.613 for
Cd, Cu, Zn, Pb, and As, respectively, with respect to the
trendlines.

FIGURE 7. DOC concentration as a function of the organic carbon
content. Open symbols: Meuse river. Solid symbols: Rhine river
system.

DOC ) 1.0488 × 10-4 × SOC0.4545 (3)

FIGURE 8. Concentrations of Pb and As extracted by 2.5 mM CaCl2 and calculated by the simplified geochemical model with generic values
for DOC, Altot, Mntot, Fetot, and Ptot. The pH is calculated from Catot. Open symbols correspond to samples with a pH < 6.8.
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Still less precise than the statistical model, the geochemical
model has several advantages: the quality of a geochemical
model is not dependent on the number of samples, which
is often limited in risk assessment studies. Instead, the
outcome solely depends on the quality of thermodynamic
data on speciation and sorption and adequate sorption
models. Progress in this field can be incorporated in a
mechanistic geochemical model, and the shortcomings of
the model prediction can point us to important gaps in the
understanding of soil chemical processes, as is here the case
for Zn and Pb.

Besides solid-solution partitioning, geochemical models
provide detailed information on the speciation of metals in
soil solutions. Although we did not measure metal activities,
several other studies showed that a realistic modeling of metal
speciation in the soil solution is possible if metal complex-
ation by DOC is taken into account (14, 16, 19). If the heavy
metal uptake by biota is linked to the free metal cation activity,
as is proposed by FIAM, a geochemical calculation is
necessary to provide the activities of specific species.
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