ОПРЕДЕЛЕНИЕ ПАЛЕОНАПРЯЖЁННОСТИ НА ПОРОДАХ АРМЕНИИ МЕЛОВОГО И ЮРСКОГО ВОЗРАСТОВ (ПРЕДВАРИТЕЛЬНЫЕ РЕЗУЛЬТАТЫ)

Щербакова В.В. 1 , Щербаков В.П. 1 , Жидков Г.В. 1 , Павлов В.Э., 2 Виноградов Ю.К. 1

¹ГО «Борок» филиал ИФЗ РАН, п. Борок, Ярославская обл., valia@borok.yar.ru
²ИФЗ РАН, Москва, pavlov-home@rambler.ru

Поведение напряжённости геомагнитного поля $H_{\rm дp}$ во времени остаётся актуальной и дискуссионной проблемой палеомагнетизма, и дополнение базы данных по $H_{\rm дp}$ новыми надёжными определениями палеонапряжённости является важной задачей. С этой целью в 2006 году на территории Армении работала международная экспедиция с участием Перин М. (Университет г. Монпелье, Франция), Айвазяна (Институт геологии и геофизики, Армения) и Павлова В.Э. (ИФЗ, Россия). Была отобрана представительная коллекция образцов из разрезов различного

186

возраста (олигоцен, палеоген, мел, юра), при этом отбирались лавы и обожжённые контакты. Отдельно следует отметить, что работы велись, в частности, на разрезах, которые ранее изучались Большаковым А.С.и Солодовниковым Г.М. и по которым этими авторами опубликованы полученные ими определения $H_{\rm дp}$. К настоящему времени изучена часть коллекции, отобранной в 2006 году, а именно – обожжённые контакты из разрезов Товуз, Паравакар (мел) и Кафан (юра), ниже представлены результаты определения на них палеонаправлений и палеонапряжённости.

Термочистка и компонентный анализ намагниченности выполнялись в Москве, в ИФЗ РАН; чистка велась в немагнитной печи до температур, при которых полностью разрушалась природная (NRM) намагниченность. Остальная часть работы сделана в Геофизической Обсерватории «Борок» и включала:

а) определение палеонапряжённости по методу Телье-Коэ; при этом лабораторное поле $H_{\text{лаб}}$ равнялось 20 мкТ. После каждых двух

температурных шагов до возрастающих температур T_i проводились измерение восприимчивости и нагревы до более низких температур T_{i-2} ("check-points"). Всего делалось не менее (16-18) парных нагревов до возрастающих температур, вплоть до 670 °C, и (5-8) check-points.

- б) сравнительное определение $H_{\text{др}}$ по методу Вилсона-Буракова, когда сравниваются на предмет подобия две кривые NRM(T,H_{др}) и TRM(T,H_{лаб}). Для удобства сравнения, файл данных TRM(T,H_{лаб}) помножался на подобранный численный коэффициент, и построенная по этим данным третья кривая TRM*(T,H_{лаб}) пунктирной линией выводилась на график.
- в) измерения магнитных параметров образцов коэрцитивной силы H_{cr} , остаточной коэрцитивной силы H_{cr} , намагниченности насыщения I_{s} , остаточной намагниченности насыщения I_{rs}
- г) термомагнитные исследования I_s и I_{rs} , а именно снятие кривых $I_{si}(T)$ при последовательных нагревах образцов до температур T_i : {(200, 300, 400, 500, 600, 700)°C} и кривых $I_{rs0}(T)$ и $I_{rs1}(T)$ при двух последовательных нагревах образца до точки Кюри T_c .
- д) оценка доменной структуры по термомагнитному критерию (определение хвостов pTRM).

По файлам данных, полученным в процессе выполнения процедуры Телье-Коэ, для каждого образца строились две диаграммы: Араи-Нагата (АН-) и Зийдервельда (Zd-) (в координатах образца). Это позволило нам при отборе АН-диаграмм ДЛЯ оценки палеонапряженности каждого отдельного образца У сравнивать непосредственно температурное поведение как скаляра - абсолютной величины NRM, так и вектора NRM. Для оценки Н_{пр} АН-диаграммы отбирались по следующим критериям:

187

- 1) сегмент АН-диаграммы, по которому проводится линейная аппроксимация для оценки $H_{\rm дp}$, должен был включать не менее 4 репрезентативных точек;
- 2) изменение NRM в пределах этого сегмента \geq 20% от величины полной NRM;
 - 3) направление вектора NRM в этом сегменте постоянно;
- 4) до и в пределах температурного интервала, по которому проводится оценка $H_{дp}$, разница в величинах pTRM-check и первичной pTRM, нормализованная на величину полной TRM, $\leq 5\%$.

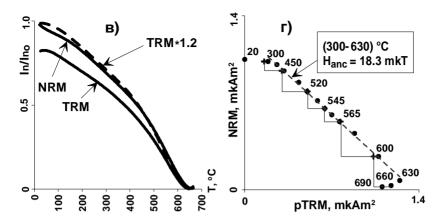
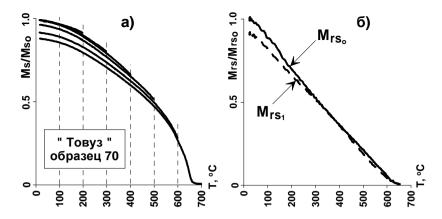



Рис. 1. Исследование магнитных свойств образца.

Магнитные свойства. Обожженные породы двух изученных разрезов - Товуза и Кафана - обнаруживают сходные магнитные свойства и очень похожее поведение различных кривых, которое, в частности, прослеживается на рис.1 для образца №70 (Товуз). Кривые $I_{\rm si}(T)$ (Рис. 1a) гладкие, выпуклые по форме, мало меняются при последовательных нагревах вплоть до 700 °C, так что общее изменение величины $I_s \le 10\%$. Температуры Кюри T_c , определённые по этим кривым, лежат в области (620-660) °C, что указывает на маггемит как основной ферромагнитный носитель остаточной намагниченности. Что касается поведения I_{rs} (Рис.1б), видно, что в интервале температур { T_0 -(200-300) °С} кривая $I_{rs1}(T)$ идёт несколько ниже $I_{rs0}(T)$, дальше они становятся мало различимы вплоть до полного разрушения I_{rs}. У кривых $NRM(T,H_{10})$ и $TRM(T,H_{100})$, снятых по методу Вилсона, как правило, обнаруживается интервал подобия в области температур от (300-400) °C и до Т_с, у отдельных образцов эти кривые подобны практически во всём температурном интервале (T_0 - T_c) (Рис.1в). T_c , определяемые по кривым $I_{rs0}(T)$ и NRM(T,H_{пр}), также лежат выше 600 °C. Всё это говорит в пользу

188

того, что у исследованных образцов ферромагнетик устойчив к нагревам и сохранил информацию о первичной NRM, имеющей термоостаточную природу,

Паравакар. Все изученные образцы этого разреза проявляют схожее поведение I_s и I_{rs} , типичные кривые $I_s(T)$ и $I_{rs}(T)$ приведены на Рис. 2,а, б (образец 115). Температуры Кюри T_c , определяемые по этим кривым, лежат в области (600-650) °C. Однако видно, что при последовательных нагревах, в интервале температур (200-400)°C, I_s заметно падает по величине, хотя общий выпуклый вид кривых $I_{si}(T)$ сохраняется (Рис. 2a). Кривые $I_{rs0}(T)$ и $I_{rs1}(T)$ заметно различаются по форме, по величине I_{rs1} несколько меньше I_{rs0} (Рис.26). Это указывает на то, что в процессе нагревов ферромагнитный материал испытывает изменения. Но при этом у кривых $NRM(T,H_{nn})$ и $TRM(T,H_{na6})$, снятых по методу Вилсона, как правило, обнаруживается интервал подобия в области температур от (200-300) °C и до T_c , у отдельных образцов эти кривые подобны практически во всём температурном интервале (T_0 - T_c) (Рис.2c). Можно предположить, что носителями NRM являются мелкие ферромагнитные частицы, близкие по размеру к однодоменным, которые мало меняются при нагревах и сохраняют первичный сигнал, но их вклад в величины I_s и I_{rs} незначителен. Мы сделали оценку доменной структуры образцов этого разреза по термомагнитному критерию, что подтвердило это предположение: величина хвостов pTRM оказалась на уровне шумов прибора, т.е. носителями pTRM являются зёрна практически однодоменные по размеру.

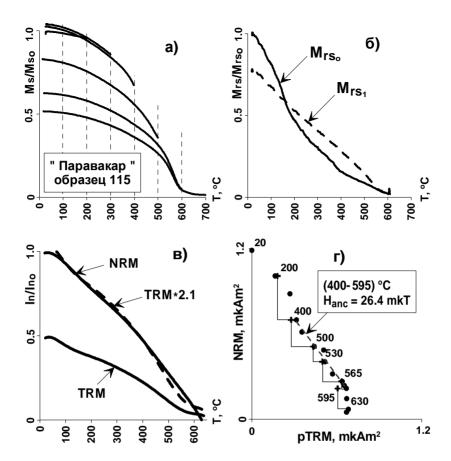


Рис. 2. Исследование магнитных свойств образца.

Что не менее важно, диаграммы Араи-Нагата (рис. 2г) не фиксируют резких изменений в области температур (300-400) °C, в частности, check-points (крестики) располагаются близко к первичным точкам. Значения $H_{\rm дp}$, полученные по таким диаграммам, хорошо согласуются между собой и по величине близки к $H_{\rm дp}$ по разрезу Товуз, который имеет практически тот же возраст. Все эти соображения послужили для нас поводом не отказываться от данных по Паравакару и, с определёнными оговорками, представить их в статье.

<u>Результаты.</u> В Таблице представлены наши результаты определения палеонаклонения $J_{дp}$, величины $H_{дp}$, полученной двумя способами — Телье и Вилсона, значения VDM, рассчитанные с использованием $J_{дp}$, и, для сравнения, аналогичные данные из статей Большакова и Солодовникова. В качестве ошибки определения

использована стандартная ошибка σ . Возраст разрезов – стратиграфический. При расчёте VDM во внимание принимались значения H_{np} , полученные методом Телье.

Таблица. Палеомагнитные данные.

Paspes	Возраст	Палеонаклонение, град.	Щербакова и др. (2007)					Большаков, Солодовников (1981, 1983)		
			метод Вилсона- Буракова		метод Телье-Коэ			22 Am^2	кТ	целений
			число опре- делений	Ндр, мкТ	число опре- делений	Ндр, мкТ	$\begin{array}{c} \text{VDM,} \\ \times 10^{22} \text{Am}^2 \end{array}$	$\mathrm{VDM,}\times 10^{22}\mathrm{Am}^2$	Н _{яр} , мкТ	число определений
Товуз - 6	коньяк- сантон (90-83 млн. лет)	40.3	21	22.0 ± 1.0	36	20.3 ± 0.5	4.4 ± 0.2	4.4 ± 0.2	22 ± 1	139
Паравакар - 1		45.5	15	31.0 ± 3.0	27	26.9 ± 0.9	5.5 ± 0.2	4.3 ± 0.3	22 ± 2	57
Кафан - 1	оксфорд-кимеридж (161-151 млн. лет)	31.8	17	11.3 ± 0.5	31	10.1 ± 0.5	2.3 ± 0.1			
Кафан - 2		17.7	9	7.5 ± 0.4	11	7.2 ± 0.4	1.8 ± 0.1			
Кафан - 3		24.3	12	18.0 ± 0.5	12	17.4 ± 0.7	4.2 ± 0.2			
Кафан - ср.		24.9				11.1 ± 0.6	2.7 ± 0.2	3.0 ± 0.2	14.4 ± 0.9	184

Видно, что оба метода — Телье и Вилсона — дают очень близкие значения $H_{\rm дp}$, что в определённой степени увеличивает надёжность наших результатов. Полученные значения VDM для всех трёх разрезов низкие — в (2-4) раза ниже его современной величины $8.12\times10^{22}~{\rm Am}^2$ - и вполне согласуются с данными для этих же разрезов Большакова, Солодовникова. На рис. 3 (см. Щербаков, Сычёва) показаны определения $H_{\rm дp}$ для интервала (400-0) млн. лет, представленные в базе данных. Косые крестики обозначают данные Большакова и Солодовникова. Гистограмма вверху рисунка представляет результат статистического анализа данных в интервале (400-5) млн. лет, проведенного авторами (Щербаков, Сычёва), и указывает на существование двух мод в значениях VDM: близкой к современному и приблизительно в 2 раза ниже.

Наши новые результаты, показанные черными кружками, хорошо вписываются в общий спектр данных и поддерживают гипотезу о том, что в геологической истории Земли напряжённость геомагнитного поля не всегда была такой, как в настоящее время, и существовали длительные временные интервалы с низким значением напряженности поля, в частности, в мелу и юре.

Работа выполнена при поддержке гранта РФФИ 06-05-64538.

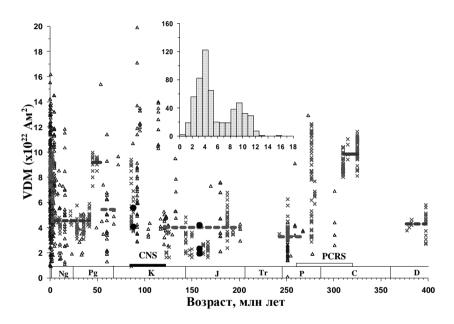


Рис. 3. Сводка данных по VDM за последние 400 млн. лет.

- Большаков А.С., Солодовников Г.М. О напряженности геомагнитного поля в позднемеловое время // Физика Земли. 1981. №10. С. 58-68.
- Большаков А.С., Солодовников Г.М. Напряженность геомагнитного поля в Армении в поздней юре и раннем мелу // Физика Земли. 1983. №12. С. 82-90.
- 3. Щербаков В.П., Сычёва Н.К. Об изменении величины геомагнитного диполя за геологическую историю Земли // Физика Земли. 2006. № 3.