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Abstract. It is important to map the distribution of pollut- 
ants and to trace their sources to assess potential environ- 
mental hazard. The present work concerns the application 
of multivariate statistical methods to a soil data base from 
the province of Styria (Austria) to delineate polluted areas 
and to distinguish between different types of pollution. The 
soil data base comprised pedological, geochemical and 
geological data and was extended by magnetic susceptibil- 
ity measurements to further test the suitability of magnetic 
susceptibility as a tracer for pollution. Topsoil data from 
521 locations were analysed by fuzzy c-means cluster 
analysis and non-linear mapping. Robust cluster solutions 
grouped the database according to the geological back- 
ground and the land use at the sampling sites. The extrac- 
tion of information on heavy metal pollution appeared to be 
possible by analysing the geological units separately and 
reducing the variables to those indicative for the pollution. 
The link between magnetic susceptibility and the heavy 
metal content, which was too complex to be described by 
bivariate statistics, was revealed by the multivariate meth- 
ods. 0 2001 Elsevier Science Ltd. All rights reserved 

1 Introduction 

The possibility to monitor environmental pollution by rock 
magnetic methods has been extensively studied in recent 
years (Petrovsky and Ellwood, 1999). Links between heavy 
metals and magnetic minerals were already postulated in 
the 1980’s (Thompson and Oldfield, 1986). In some later 
studies, significant correlations between heavy metal con- 
centrations and low-field magnetic susceptibility were 
found (e.g. Scholger, 1998). Magnetic iron oxides are able 
to adsorb heavy metals (Georgeaud, 1999). 
In many industrial regions magnetic particles as well as 
heavy metals primarily originate from iron and steel pro- 
duction, as well as coal combustion in power plants. Higher 
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pollution levels are generally found in urban areas (Flan- 
ders, 1994; Strzyszcz et al., 1996). Another important 
source for magnetic particles associated with heavy metals 
is road traffic (Hoflinann et al., 1999). Measurements of 
magnetic susceptibility are comparatively inexpensive and 
can be carried out rapidly. They provide an ideal first base 
to map and delineate polluted areas, restricting the more 
time-consuming and expensive geochemical methods to 
those regions where a more thorough investigation is de- 
sired. 

Although some studies indicated a relation between 
heavy metal pollution and magnetic susceptibility, signifi- 
cant correlations were not always found. Relations between 
magnetic susceptibility and pollution source are complex, 
particularly in the case of multiple pollution sources. Even 
when maps seem to show a link between pollution and 
magnetic susceptibility, tracing the actual source(s) is not 
always possible with bivariate statistical techniques 
(KapiCka et al., 1999). Multivariate techniques are more apt 
to account for complicated links between pollutants and 
magnetic parameters. For a soil database from Estonia, 
principal component analysis proved to be useful to identify 
these links (Bityukova et al., 1999). 

Another way to discriminate polluted and unpolluted ar- 
eas is the recognition of groups in the data set by fuzzy c- 
means cluster analysis (FCM) and non-linear mapping 
(NLM). These methods have been applied successfully in 
geochemistry (e.g. Vriend et al., 1988) and have recently 
also been used to link rock-magnetic parameters to the 
geochemical environment (Dekkers et al., 1994) to mag- 
netically characterize ocean sediments (Schmidt et al., 
1999) and to identify connections between climatic influ- 
ences and magnetic parameters (Kruiver et al., 1999). FCM 
is ‘unsupervised’: no a-priori knowledge concerning any 
grouping is assumed. In the present contribution, FCM and 
NLM are used to analyse a database combining low-field 
magnetic susceptibility data with pedological, geochemical, 
and geological parameters. It will be shown that pollution 
effects are expressed only as a ‘second-order type phenom- 
ena’ in the data. 
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2 Data 

The soil samples were taken in Styria, a province 
(16387 km’) in southeastern Austria. A regular grid of 4 by 
4 km over the whole province ensured a systematic 
investigation covering the total area. Large forest areas 
were not sampled. At regions which were estimated to be 
polluted, some additional samples were taken. Each site is 
given by a circle with a radius of 10 m around the 
calculated grid point. In the four main directions - north, 
east, south, west - samples are taken out of defined layers: 
0 - 20, 20 - 50, 50 - 70 cm for agricultural soils, 0 - 5, 5 - 
20, 20 - 50 cm for other sites. The four samples of each 
layer were dried and mixed to obtain representative data. 
Sampling and geochemical analyses were performed by the 
Styrian Agricultural Laboratory. The data kindly made 
available for this study comprised the following variables: 
geology at the sampling site, geographical coordinates, soil 
type, land use, pH value, P205, K20, exchangeable bases 
(Ca, Mg, Na, K), clay content, humus, fluorine, EDTA- 
extractable manganese and iron, and heavy metals extracted 
by aqua regia (Pb, Cr, Ni, Co, MO, Cd, Hg, As, Cu, Zn). 
The analytical methods are described by Krainer (1998). 

The dried soils are stored in the soil archive of the 
Styrian Agricultural Laboratory in plastic cylinders (9.5 cm 
diameter, 13.5 cm height), which can be measured without 
any sample manipulation with a Bartington MS2C loop 
sensor for cores (125 mm; operating frequency 565 Hz). 
Low-field volume susceptibility of the samples was meas- 
ured using range 1 of the MS2 meter with a resolution of 
I* 1 OF5 SI and a measuring range of 99* 10” SI. The raw 
data were corrected to account for sample-diameters and 
-lengths different from the standard dimensions. We estab- 
lished a specific calibration factor for the sample containers 
by comparing the results from the loop sensor with mass 
specific measurements on 134 sieved sub samples. The 
correlation coefficient between the volume specific and the 
mass specific measurement was 0.96, justifying the use of 
the faster MS2C measurements. 

For the purpose of the statistical analyses, a topsoil value 
was defined as the value in the layer 0 - 20 cm. A weighted 
average of the uppermost two horizons was calculated to 
obtain a topsoil value for grassland and Alpine pasture 
sites. Data ranges of magnetic susceptibility and the most 
important heavy metal concentrations in the topsoil layer, 
for the samples used in this study, are given in Table 1. 

3 Methods 

As a first step in the analysis, the distribution of the vari- 
ables and the correlations between them were analysed. 
Heavy metal concentrations and susceptibility show nearly 
lognormal distributions. Therefore, the logarithmic values 
of these variables were used as input for the multivariate 
statistical analyses. Outliers were removed fi-om the dataset 
to obtain robust solutions. Outliers were defined as values 
deviating more than 3 times the standard deviation from the 
mean logarithmic value. 

Table 1. Minimum and maximum values for the magnetic susceptibil- 
ity and the most important heavy metals measured for the samples used 
within this investigation. The corrected susceptibility values are given as 
mass specific susceptibility. 

susceptibility 
(10.” ml/kg) ::dkg) &.‘kg) 

NI 

(mg/kg) 
minimum 0.2 8 5 1 
maximum 132.5 254 324 420 

co Cd CU 

(mg/kg) (mgikg) (mg/kg) 
minimum 1 0.1 3 
maximum 41 2.0 135 

Two multivariate methods were used in combination to 
find subsets in the soil dataset: fuzzy c-means cluster analy- 
sis and non-linear mapping. In cluster analysis, a set of data 
points (or cases) is split into a given number of groups (or 
clusters). In the conventional hierarchical approach each 
case is completely allocated to a single cluster, thus assum- 
ing well-defined boundaries between clusters. The fuzzy 
approach used here calculates the similarity of a case to all 
clusters. This similarity is expressed by a membership value 
that varies between 0 and 1 for each case. All membership 
values for one case sum up to 1. Thus, gradual changes 
between the clusters can be described. Soil composition 
depends on many geological and environmental processes; 
gradual transitions between different soil types and a wide 
range of pollution stages are to be expected. The tizzy 
approach traces these gradual changes and is therefore more 
appropriate than the conventional approach. The algorithm 
was first published by Bezdek et al. (1984). For the repre- 
sentation of the data points on maps, the cases are assigned 
to the cluster with the highest membership value if the ratio 
of the second highest membership value to the highest 
value is smaller than 0.75. Otherwise, the case is classified 
as ‘ intermediate’. 

In non-linear mapping, a multidimensional scaling 
method, the distance between the data points in the multi- 
dimensional variable space is approached as far as possible 
by a distance matrix in a 2-dimensional space (Sammon, 
1969). The graphical display of the 2-dimensional solution 
illustrates the relations between the samples in the multidi- 
mensional parameter space. Labelling of the samples in this 
2-dimensional map according to the cluster affiliation cal- 
culated before provides us with a rapid quality control of 
the cluster solution. When the cases of the same cluster 
coherently group on the non-linear map, it is probable that 
the clustering is meaningful (compare Figs. 4 and 5). 

The number of clusters to be calculated must be specified 
in advance. Since the most appropriate number is not a 
priori known, solutions are calculated for cluster numbers 
between 2 and 9. The best solution is chosen by comparing 
the non-linear maps as well as by calculating the partition 
coefficient F and the classification entropy H (Bezdek et al., 
1984) which indicate the robustness of the grouping from a 
mathematical viewpoint (Table 2). The best number of 
clusters in this sense is given by the lowest H and highest F 
value. Furthermore, the robustness of the solution is tested 
by running the algorithm several times starting from differ- 
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Table 2. Calculation of the valtdity functionals and their limiting 

values. N: number of samples, c: number of clusters, uL,: membership 
value for the k”’ sample in the ilh cluster. For the comparison of F and 

H for different numbers of clusters, the values of F and H are scaled 

with regard to the interval of possible values 

Validity functional Formula 

Partition 

coefftcient F 

Limits 

l/c<F<l 

Classification 

entropy H 

k=l/=l 
01 H I In(c) 

ent samples. Only if a solution is stable in different runs 
and if a sound explanation of the clusters can be found by 
further analysing the memberships and the location of the 
cluster centers, the solution is accepted. 

4 Results and interpretation 

The first part of the analysis consisted of including all nu- 
meric variables (23), i.e. all variables except geology, land 
use and soil type. The validity mnctionals for the different 
numbers of clusters are given in Table 3. They indicate that 
the three cluster solution is the best solution. Accordingly, a 
sound explanation of the three clusters could be found. The 
memberships reflect the three main geological units of the 
region (Fig. 1 and Fig. 2). There is a clear distinction 
among the gneiss and schist areas (Cluster 1, q ), the sedi- 
ments (Cluster 2, x), and the Paleozoic rocks and grey- 
wacke (Cluster 3, A). Sediments in the vicinity of the third 
group of rocks are assigned to cluster 3 rather than to clus- 
ter 2 containing the sediments in the basin of the southeast. 
The different land use in the basin might be one of the 
causes for this observation. Land use is in part related to the 
clustering because land use is dependent on geology in this 
mountainous area. 

The same cluster analysis without susceptibility produces 
a similar result. There are some points which cross the 
threshold between intermediate points and a cluster assign- 
ment, but none of the cases changes from one cluster to 
another cluster. There is a significant difference between 
the susceptibility values of the geological units (assessed by 
using the Mann-Whitney test for the equality of the median 
values), but susceptibility is only one among 23 variables, 
pH-value, nutrients and some trace elements also differ 
significantly between the soils formed on the different geo- 
logical units. 

To avoid the influence of the geological background, the 
clustering was repeated for the samples from one geological 
unit only. The sedimentary basin is formed by Tertiary and 
Quaternary sediments. The Tertiary sediments were chosen 
for this experiment because they are a sufficiently large 
group (122 samples) and most of them had a high member- 
ship to the second cluster. Thus, a background as homoge- 
neous as possible was created for the samples in this second 

Table 3. Validity functionals for the cluster solutions for all data points 

using all variables. The scaled values for F and H are given (see Table 2). 

From the mathematical viewpoint, the three-cluster solution is the best 

solution as it has the lowest H and the highest F value. It also has a physi- 

cal meaning since it reflects the geological units of the region (compare 

Figs. I and 2) 

N F H 

2 0.108 0 772 

3 0.174 0.692 

4 0.145 0 720 

5 0 124 0.746 

0 Cluster 1 
X Cluster 2 
A Cluster 3 
0 intermediate cases 

Fig. 1. Prevailing cluster membership for the geographical location of the 

samples (top of picture points north). The distance between two ticks is 20 

km. 23 variables were used for 521 data points. 

X sediments (Tertiary and Quaternary) 
0 calcareous Alps 
A Paleozoic rocks and greywacke 
q crystalline rocks (gneiss and schtst) 

Fig. 2. Geological units at the sample locations. The same points as in 
Fig. I are shown. 

experiment. The same 23 variables were used. Again, a 
three-cluster model appeared to be the best solution from a 
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Table 4. Validity functionals for the cluster solutions for the Tertiary 
sediments using all variables. The highest F and lowest H is calculated for 
the three-cluster solution which is also a good solution according to the 

non-linear map (Fig. 4). 

N F H 

2 0.109 0.770 

3 0.140 0.741 

4 0.109 0.783 
5 0.094 0.803 

30 

20 

IO 

E 

50 

r I22 cases analysed 

intermediate 

cases 

land use 

agriculture 

a grassland 

1 wme, hops, fruit 

3 forest 

Fig. 3. Fuzzy c-means cluster analysts for the Tertiary sediments. Distribu- 
tion of the land use m the clusters. The grouping is determined by the 

intensity of land use. Cluster I contains mainly agricultural soils, cluster 2 

mainly grassland and cluster 3 contains the most intensively used soils: 
almost all the wine, hops and fruit cultivation is found there. 

mathematical viewpoint. The values of the validity func- 
tionals are given in Table 4. Comparison of the cluster 
memberships with land use shows that the clusters clearly 
reflect the intensity of land use (Fig. 3). Susceptibility does 
not differ significantly for the land uses; pH, humus content 
and nutrients should be responsible for this grouping. The 
copper content plays an important role in distinguishing the 
wine cultures. 

These first two clustering experiments showed that the 
variables indicating geology and land use are dominating. 
Also, a further subdivision of the three-cluster model was 
not possible, because many samples (-3 1 % of the samples 
for the four-cluster solution and -48 % for the five-cluster 
solution for the Tertiary sediments) had to be classified as 
intermediate cases (Fig. 4). Apparently, using all variables 
leads to overinformation: the samples are insufficiently 
distinguishable from one another. 

4.1 Effects of pollution 

To extract the information on pollution contained in the 
data set, the number of variables has to be reduced. Analy- 
sis so far has indicated that in the Styrian setting, bedrock 
and land use are dominant factors. Because our prime inter- 
est is the relation between heavy metals and susceptibility, 

* AAd AA 0 I I AAAAA 0 
A A 4 clustersi 1 A.3 * 5 clusters ~~ _--_----- -1 L ~~~~~~_.._ 0~ ~~ ~_. 

A Cluster 1 
q Cluster 2 
0 Cluster 3 
0 Cluster 4 
X Cluster 5 
0 mtermedtate cases 

Fig. 4. Plot of the cluster soluttons for the Terttary sedtments (all vart- 

ables) in the nonlinear map. The three-cluster model shows only a few 
intermediate cases whereas the five-cluster model classifies a large 

number of cases as intermediate. After defuzzification, no samples 
would be allocated to two out of the five clusters, indicating that this 
five-cluster model is not robust. 

susceptibility was selected along with some heavy metals 
which are known to be geogenic in the study area (Cr, Ni, 
Co, Cu) and some which are typically anthropogenic (Pb, 
Cd) as pointed out in the soil survey report of the Styrian 
Agricultural Laboratory (Kreiner, 1998). Regional normal 
values of metal concentrations were defined during this 
survey by analysing subsoils. Lead and cadmium were the 
only trace elements which exceeded these normal values in 
more than 30 % of the topsoils. The same result was ob- 
tained by analysing the difference between topsoil and 
subsoil values: as a first approximation, anthropogenic 
input was inferred when this difference exceeded two times 
the error of the analysis. This occurred for lead in 68 % of 
the soils, for cadmium even in 86 % of the soils. On the 
other hand, less than 1.5 % of the soils showed this behav- 
iour concerning Cr, Cu, Ni and Co. 

With this set of seven variables (susceptibility, Cr, Cu, 
Ni, Co, Pb, Cd), there appeared to be much less intermedi- 
ate cases (less than 15 % for cluster numbers between 2 and 
5, see Fig. 5). Based on the validity fimctionals (Table 5) 
the two-cluster solution should be selected, although solu- 
tions with more than two clusters seem acceptable as well. 
The picture becomes obscured for six clusters where no 
satisfactory solution was achieved in 250 iterations. With a 
higher number of clusters increasingly subtle features of the 
data set are visualized. The two-cluster solution distin- 
guishes between samples with high values for all variables 
in one cluster (‘polluted cluster’) and samples with lower 
values in the other cluster (‘unpolluted cluster’). In the 
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Table 5. Validity functionals for the cluster solutions for the Tertiary 

sediments using the reduced set of variables: magnetic susceptibility, Pb, 

Cr, Ni, Co, Cu. Cd. According to the F- and H-values, the two-cluster 

solution should be chosen. 
N F H 

2 0.499 0.334 

3 0.455 0.360 

4 0.436 0.369 

5 0417 0.389 

‘0 l . .--~~ 
A Cluster I 
q Cluster 2 
0 Cluster 3 
l Cluster 4 
X Cluster 5 
0 nnermedtate cases 

Fig. 5. Plot of the cluster solutions for the Tertiary sediments (reduced 

set of vartables) in the non-linear map. There are less intermediate 

cases than in the solutions with all variables (compare Fig. 4). 

three-cluster solution, a cluster appears with relatively high 
values for lead and for cadmium and lower values for the 
other heavy metals (‘cadmium cluster’). The cadmium in 
these samples is envisaged to originate from mica schist. 

In the four-cluster solution, an additional cluster with 
relatively high values of the geogenic variables (Cr, Cu, Ni, 
Co) and moderate values of the anthropogenic variables 
(Pb, Cd) is separated from the ‘unpolluted cluster’. It is 
interpreted as an anthropogenically unpolluted cluster with 
some geogenic heavy metals (‘geogenic cluster’). In the 
five-cluster solution, a new cluster appears which has the 
second highest lead values and the second highest suscepti- 
bility values (‘lead cluster’) whereas the values of the other 
heavy metals are relatively low. It is mainly formed by 
cases which separate from the ‘geogenic cluster’ but the 
‘polluted cluster’ also contributes to it. The highest lead and 
susceptibility values are still allocated to the ‘polluted clus- 
ter’ where values for all variables are high (likely industrial 
contamination). It has to be noted that no real hierarchy 
exists: though new clusters may be formed mainly by points 
of one of the old clusters, usually there are cases from other 
clusters which contribute to it. 

It is now possible to distinguish between polluted and 
unpolluted soils. As an example, Figure 6 shows the sam- 
ples of the ‘lead cluster’ of the five-cluster solution, printed 

50 km 

Fig. 6. Schematic drawing of the study area with the main roads of the 

regton. The points mark the locations of the samples which were attrtb- 

uted to a cluster characterized by high values of lead in the five-cluster 

model for the Tertiary sediments with the reduced vartable set: Cr. Ni, 

Co, Cu, Cd, Pb, magnetic susceptibility. 

on a road map of Styria. They group around the city of Graz 
and along the main roads. These lead contaminations are 
presumably caused by the traffic. There are, however, some 
points as well where the high lead values are probably geo- 
genie in origin. Anthropogenic and geogenic contamination 
are mixed in this cluster. 

The two clusters which are estimated to be polluted 
(cluster 4: ‘lead cluster’ and cluster 5: ‘polluted cluster’) 
have significantly higher susceptibility values as is demon- 
strated by the boxplots of the logarithmic susceptibility 
values of the five clusters (Fig. 7). 

The influence of susceptibility on the cluster assignment 
is higher when using only seven variables instead of 23. 
However, only nine out of the 122 cases changed from one 
cluster to another when susceptibility was excluded from 
the analysis. Also, the general trend in cluster formation 
remains the same. The potential use of susceptibility as a 
pollution indicator requires the solution with susceptibility 
as a variable. To define areas where further investigations 
might be worthwhile, this procedure seems to be warranted. 

The definition of the groups would have been impossi- 
ble by using bivariate statistics only. Figure 8 shows the 
scatterplots for the logarithmic values of susceptibility 
versus the logarithmic values of lead and chromium. From 
cluster 2 to 5, susceptibility values rise with increasing lead 
contents (Fig. Sa). This accounts for their correlation within 
the whole data set (correlation coefficient between lead and 
susceptibility: 0.3 11). Within the individual clusters, the 
data points are basically uncorrelated. The correlation be- 
tween lead and susceptibility within the ‘lead cluster’ is 
insignificant. Cluster 1 is not distinguished by the lead 
content. 

Other variables have to be analysed to find the reasons 
for the discrimination of cluster I. For example, it clearly 
separates in the plot of susceptibility versus chromium 
(Fig. Sb). The representation of the data points in real two- 
dimensional planes (Fig. 8) appears to be less distinctive 
than the non-linear map (Fig. 5). In the scatterplots the 
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6 

5 

5. 4 
:, 
z 3 

2 

I 
n 

f 
0 

z 14 27 33 21 15 

I 2 3 4 5 

Cluster number 

Fig.7. Boxplot of susceptibility for the clusters built by using the reduced 

set of variables on soils formed on Tertiary sediments. The boxes contain 

50 % of the values in the cluster. The line in the box indicates the median 
value. N is the number of cases in the cluster. The two clusters (No. 4 

and 5) which are estimated to be affected by pollution, have significantly 
higher susceptibtlity values than the other clusters 

points are mixed and it would be necessary to analyse many 
of these plots at the same time to get an idea about possible 
groups. This clearly shows the merit of multivariate analy- 
sis by taking several variables simultaneously into account 
to arrive at a consistent pattern. 

5 Conclusions and implications 

Fuzzy c-means cluster analysis and non-linear mapping on 
the Syrian soil data set resulted in a grouping according to 
the main geological units of the study area when all topsoil 
variables at all sites were used. Splitting of the samples 
according to their geological unit and redoing the analysis 
resulted in a grouping according to land use. This proves 
that the results of the analysis have a physical meaning and 
that the algorithm works successfully. But for solutions 
with higher numbers of clusters, almost all data points were 
classified as intermediate. The distinction between the cases 
is insufficient if too many variables are used. 

This difficulty could be circumvented by choosing a 
smaller set of variables, in the case of the present study 
indicative of pollution. Fuzzy c-means cluster analysis for 
one geological unit with this reduced variable set returned 
interpretable information on pollution, setting the stage for 
an interpretation of the pollution sources. Geogenic and 
anthropogenic contributions appear to be mixed. 

Like in previous studies, susceptibility turns out to be re- 
lated to heavy metal content. The relations appear to be 
complex and influenced by many parameters, like the geo- 
logical background, land use, and various pollution sources. 
On the one hand, these multiple influences prevent a 
straightforward application of magnetic susceptibility on its 
own to distinguish between various pollution sources. On 
the other hand, however, most pollution sources appear to 
produce magnetically susceptible materials as a ‘byprod- 
uct’. Therefore, susceptibility measurements are a rapid tool 

5 

4 

s 
r 

3 

2 

5 

4 

s 
r 

3 

2 

X 

X 
0 a> 

2 2.5 3 3.5 4 45 
In(Pb) 

1: ‘cadmium cluster’ 

2: ‘unpolluted cluster’ 

3: ‘geogenic cluster’ 

4: ‘lead cluster’ 

5: ‘polluted cluster’ 

intermedtate cases 

X El b) 

X 

0 

“!I q 
A b 
I I I I 1 

2.5 3 3.5 4 4.5 5 
In(Cr) 

Fig. 8. Fuzzy cluster analysis for Tertiary sediments with the reduced set of 
variables. a) Points of the clusters in the In(Pb)-ln(sus) space. From cluster 
2 to 5, susceptibility and lead values tend to increase. Lead obviously plays 
no role in distinguishing cluster 1. b) Points of the clusters in the In(Cr)- 
In(sus) space. Here, cluster I separates quite clearly from the other clusters 
Finding groups in the data set by analysing the btvariate plots would be 
much more difficult than by multivariate methods as the pomts are not as 
clearly distinguished as in the nonlinear map (Fig. 5). 
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to define those areas which warrant further investigation. 
Multivariate analysis, including the appropriate variables, 
can then be used to distinguish between different sources of 
pollution. 

Two main points have to be taken into account when us- 
ing the combination of fuzzy c-means cluster analysis and 
non-linear mapping for the interpretation of soil data sets: 
1) If only topsoil values are used, geological background 
quickly dominates the outcome of the analysis; when more 
subtle information is desired, the data set should be divided 
into subsets with the same geological background. 2) Too 
many variables may veil the differences between the sam- 
ples. The set of variables must be reduced according to the 
aim of the analysis. When these constraints are taken into 
account, the method is a powerful tool to find meaningfL1 
groupings in soil data sets. 

Information on potentially hazardous levels of heavy 
metals in soils has undoubtedly implications for agriculture. 
Research into how far they are incorporated in the culti- 
vated plants, independent of the origin of the pollutants, 
may be required. If the analysis is to be used to define an- 
thropogenically polluted areas, it will be necessary to opti- 
mise the investigation by finding a method to better take the 
background into account. By including subsoil samples in 
the analysis it may be possible to differentiate meaningfUlly 
between airborne heavy metals and those originating from 
the bedrock. 
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