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SUMMARY

The acquisition of isothermal remanent magnetization (IRM) curves through the
application of stepwise-increasing uniaxial fields to a rock-magnetic sample provides
an important non-destructive tool for the investigation of coercivity spectra (Dunlop
& Ozdemir 1997). We show that, through the use of an automated procedure based
on the expectation-maximization algorithm (Dempster et al. 1977), both saturated and
non-saturated IRM acquisition curves can be effectively modelled into their individual
coercivity contributions.
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I N T R O D U C T I O N

Robertson & France (1994) showed that the individual mag-
netic mineral phases contributing to a bulk IRM curve each
have a cumulative log-normal acquisition path that can be
described using three parameters, namely

(1) B1/2: the applied field at which the mineral phase acquires
half of its saturation IRM (SIRM), providing a measure of the
mean coercivity of that population,

(2) A/ri: the magnitude of the phase distribution, pro-
viding an indication of the component SIRM and therefore its
contribution to the bulk IRM curve, and

(3) DP: the dispersion parameter, expressing the coercivity
distribution of a mineral phase and corresponding to one
standard deviation of the log-normal function.

Therefore, at any given field, B, the IRM intensity of an
individual magnetic mineral component can be approximated
using the function

Fitting is normally performed on the first derivative of the IRM
acquisition curve with respect to the log]0 field (Mclntosh et al.
1996; France et al. 1999). Presenting the acquisition data in
such a manner allows the investigator to readily fit a number of
normal probability density functions (p.d.f.s) to the curve, with
each function corresponding to a single mineral phase. Recently,
the process of fitting IRM acquisition models in a consistent,
unbiased manner has been addressed by Stockhausen (1998)

and Kruiver et al. (2001). Both of the resulting techniques, how-
ever, still require the investigator to work interactively towards
the final model fit using the minimization of pre-defined statistics
(e.g. the magnitude of the residuals between the measured
and modelled curves). Here we present an automated fitting
method based on the expectation-maximization (EM) algorithm
(Dempster et al. 1977; lones & McLachlan 1990), which only
requires the user to define whether the sample has reached
saturation during the acquisition procedure, and the number of
individual mineral phases to be modelled in the final solution.

METHOD

The work of Robertson & France (1994) demonstrated that,
providing no magnetic interactions occur within a sample, the
first derivatives of IRM acquisition curves could be represented
by the combination of a number of separate log-normal prob-
ability density functions. An IRM curve should therefore be
considered as a finite mixture distribution; that is, an acquisition
curve represents a bulk distribution that is composed of a finite
number of log-normal populations. Under this assumption, a
mixture of g separate IRM populations can be represented at
a field of intensity B by the frequency function

(2)

where k corresponds to a log-normal p.d.f. on the field axis,
with mean coercivity 5]/2(,), standard deviation DP(ri and non-
negative mixing proportion Mai}. Measured IRM gradient
values are therefore a discrete realization of the continuous
bulk frequency function and as such should be considered as an
incomplete data set. The bulk frequency function, f(B, 9), can

58



IRM analysis using the EM algorithm 59

be used to describe the IRM gradient curve, where the para-
meters in the matrix 9 represent the form of the mixture distri-
bution (i.e the .B1/2, DP and Mri of each of the IRM components).
However, for the bulk frequency function of a measured sample
the parameters of 0 are all unknowns.

The likelihood, L, provides an indication of how likely a
set of observed data points would have been, had they been
selected at random from the bulk frequency function described
by 9. The process of maximum likelihood estimation (MLE)
involves the determination of values for the 6 matrix that
will maximize the probability that the sample data came from
the calculated bulk frequency function. In order to perform
this maximization procedure and determine the 9 parameters
associated with IRM bulk distributions we used the value of
log-likelihood and the expectation-maximization (EM) algorithm
of Dempster et al. (1977).

THE EM A L G O R I T H M

Using a two-step procedure (expectation and maximization),
the EM algorithm iteratively determines the MLE of the 9
matrix that describes the bulk distribution of a given incomplete
data set. Before EM iteration can begin, it is necessary to
provide an initial estimation of the 9 parameters. Expectation
(E-step) is performed first, and involves the determination of
the complete data log-likelihood constrained by the observed
(incomplete) data and the previously made estimation of 9.
MLE (the M-step) is then performed for the estimated com-
plete data log-likelihood (obtained during the E-step). From
this maximization procedure, new estimates of 9 are deter-
mined. The E- and M-steps are repeated, with the new 0-values
produced during each M-step being utilized in the complete
data likelihood determination in the subsequent E-step. By the
stepwise improvement of the 0 vector the log-likelihood of
the observed data is increased until a predefined convergence
criterion is reached. We have not included a formal derivation
of the EM algorithm, because the essential information on the
algorithm and its application to finite mixture models can be
found in Dempster et al. (1977); Jones & McLachlan (1990);
McLachlan & Krishnan (1997) and McLachlan & Peel (2000).

A P P L I C A T I O N OF THE EM A L G O R I T H M
TO IRM M I X T U R E MODELS

To test the applicability of the EM algorithm to the problem of
IRM 'unmixing' we wrote a Fortran90 program utilizing the
MLE routine of Jones & McLachlan (1990). It also implements
the method of Kruiver et al. (2001) to determine the optimum
number of IRM components to include in a bulk distribution.
For a typical IRM acquisition curve consisting of 30-40 data
points, the IRMUNMIX program, which can be downloaded
from http://www.geo.uu.nl/~forth/Software/soft.html, required
less than 5 s to reach convergence.

In order to model the individual log-normal populations
that contribute to an IRM bulk distribution it is necessary to
provide the algorithm with the following information.

(1) The number of components believed to be contributing
to the bulk curve.

(2) An initial estimate for the values in the 9 matrix.
(3) Whether or not the sample reached saturation during the

IRM acquisition procedure.

In trial runs of the EM algorithm on modelled data we found
that the characteristics of the resolved solutions were extremely
consistent, irrespective of the starting parameters assigned to 9
(the required number of iterations to reach convergence, how-
ever, increased when the algorithm was provided with initial
9 estimates differing greatly from their real values). Because of
the ability of the algorithm to handle poor estimates of 9, we
suggest that fitting models should be initialized with systematic
values assigned to 9, representing equal component contributions
(i.e. Afri(,')= 1 /g), equal dispersions, and mean coercivities evenly
distributed across the Iog10 field axis.

Determining the number of components contributing to an
IRM bulk distribution is not trivial, because the goodness of fit
of a finite mixture model will always improve as the number of
components in the mixture is increased. To assess the number
of individual components that should be included in a model
we adopted the technique of Kruiver et al. (2001), which is
based on a comparison of the residuals (calculated between the
measured and modelled curves) for fits involving different
numbers of components. The technique compares the variances
and means of the residual arrays for two competing models. If
the inclusion of an additional component does not significantly
reduce the variance and mean of the residual array (assessed
using an F-test and Student's Mest, respectively) then the more
complex (higher-component) model is unlikely on a statistical
basis.

Saturation of a sample during IRM acquisition is an important
consideration in the modelling of the measured curves because
a non-saturated sample represents a truncated distribution. In
the application of the EM algorithm to saturated and non-
saturated samples we follow the method of Jones & McLachlan
(1990). In the case of non-saturated samples the maximum
likelihood estimates can be obtained for the truncated distri-
bution using the EM algorithm without modification to the
IRM data set. In the case of saturated curves (data are not
truncated), Jones & McLachlan (1990) demonstrated that the
EM algorithm requires the addition of an extra class (applied
field interval in the case of IRM analysis), corresponding to
(BT, GO), where Br is the maximum field applied to the sample. A
further class, (—00, B0), was also included in the procedure in
order to conform to the method of Jones & McLachlan (1990).
In practice, the inclusion the above class is useful because the
acquisition curve should not be truncated in the low-coercivity
portion of the curve, as the IRM components cannot pass into
negative field values. In the following, we present the analysis
of saturated and non-saturated IRM acquisition curves derived
from both modelled data and natural samples.

MODELLED DATA (SATURATED)

We constructed an overlapping three-component IRM
acquisition curve from the individual contributions described
in Table 1. The input data was processed a total of four times,
with the number of fitted components, g, increasing each time
from one in the first run to four in the final run (Fig. 1).
In each case the characteristics of the starting distributions
given in 9 were selected systematically under the criteria of
equal contributions (i.e. M^) = 1 Ig), equal dispersions, and
mean coercivities evenly distributed across the login field axis
(Table 1). When the input value of g was left unspecified,
our implementation of the Kruiver et al. (2001) technique to
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Table 1. Component parameters used in the construction of the modelled one-, two-, three- and four-component IRM acquisition curves
(A, B, C and D, respectively). The fitting procedure was initialized with systematically chosen starting components and in each case took less than 1 s
to reach convergence. Range represents Bl/2 + DP.

Comp

A
1
2
3

B
1
2
3

C
1
2
3

D
1
2
3
4

Mri

0.25
0.30
0.45

0.25
0.30
0.45

0.25
0.30
0.45

0.25
0.30
0.45
N/P

Constructed

B]/2
log mT
(ml)

0.90 (8)
1.7 (50)
2.40 (251)

0.90 (8)
1.7(50)
2.40 (251)

0.90 (8)
1.7 (50)
2.40(251)

0.90 (8)
1.7 (50)
2.40 (251)

N/P

Components

DP
log mT

0.25
0.4
0.27

0.25
0.4
0.27

0.25
0.4
0.27

0.25
0.4
0.27
N/P

range
mT

4-14
20-125

134^67

4-14
20-125

134-467

4-14
20-125

134-467

4-14
20-125

134^167
N/P

Mri

1
N/P
N/P

0.5
0.5
N/P

0.33
0.33
0.33

0.25
0.25
0.25
0.25

Starting Components

Bl/2
log mT
(mT)

1.75 (32)
N/P
N/P

1.2(16)
2.4 (251)

N/P

1.50 (32)
2.00 (100)
2.50 (316)

0.7 (5)
1.4(25)
2.1 (126)
2.8 (631)

DP
log mT

0.10
N/P
N/P

0.10
0.10
N/P

0.10
0.10
0.10

0.10
0.10
0.10
0.10

range
mT

45-56
N/P
N/P

13-20
200-316

N/P

25-39
79-125

252-398

4-6
20-32

100-158
501- 794

Mri

1
N/P
N/P

0.39
0.61
N/P

0.25
0.34
0.41

0.21
0.21
0.28
0.30

Fitted Components

Bl/2
log mT
(mT)

1.82 (66)
N/P
N/P

1.08 (12)
2.29(195)

N/P

0.91 (8)
1.77 (58)
2.41 (257)

0.87 (7)
1 .42 (26)
2.14(138)
2.45 (282)

DP
log mT

0.73
N/P
N/P

0.36
0.33
N/P

0.25
0.43
0.26

0.24
0.38
0.35
0.25

range
mT

12-355
N/P
N/P

5-28
91-417
N/P

4-14
21-157

141-474

4-13
11-63
62-309

158-501

\t
b'.'
;?.••

Figure 1. (a) Modelled three-component IRM acquisition curve. The closed symbols show the bulk IRM distribution, and the solid line represents
the combined signals of the log-normal components (indicated by different degrees of shading), (b) (c) (d) and (e) Final fits produced by the EM
algorithm (shaded components and combined signal) compared with the input distribution (solid symbols) for the one-, two-, three- and four-
component fits, respectively, (f) Absolute residuals calculated between the input and EM-fitted distributions for the one- to four-component models.
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Figure 2. (a) Modelled three-component distribution used in the investigation of the effects of non-saturation on the EM fitting procedure,
(b) (c) (d) and (e) Fitted solutions at different levels of saturation. The closed symbols represent the data points of the bulk distribution that were
provided to the algorithm, and the open symbols correspond to points that were removed from the input data in order to simulate non-saturation.
R2 values correspond to the linear correlation coefficient calculated between the full IRM distribution [solid symbols in (a)] and the modelled
distribution for the five non-saturated solutions.

determine model complexity successfully determined that g
should be set equal to three.

In the case of the three-component fit, a squared correlation
coefficient of R2 = 0.9998 was determined for the linear
correlation of the final fit to the input model. The one- and
two-component absolute residual arrays are approximately
an order of magnitude greater than those of the three- and
four-component solutions. The bulk curves for the three-
and four-component models are effectively identical, demon-
strating that, although the fit of a finite mixture model will
always improve as the number of components is increased, it
is generally best to favour simplicity over complexity, for
example in this case a three-component model.

MODELLED DATA ( N O N - S A T U R A T E D )

To investigate the effects of non-saturation on the EM-fitted
models we used the same IRM acquisition curve as above but

only supplied the algorithm with data corresponding to 50, 60,
70, 80 and 90 per cent of total saturation remanence. A three-
component model was fitted for each truncated data set, and
the correlation coefficient between the final fit over the full field
range and the input model was calculated. Fig. 2 shows the
results of the fitting procedures. A good approximation of the
three-component model was produced when the algorithm was
supplied with data up to the 60 per cent saturation level. As
more data were provided (70, 80 and 90 per cent) the fitted
model gradually converged towards the solution for the full
data set shown in Fig. l(d).

Comparison of the fitted models with the input curve, shown
in Table 2, demonstrates that, although the R2 value of the
60 per cent saturation fit is higher than that of the 70 per cent
model, the parameters of the individual components in the
70 per cent curve are closer to those of the input distribution. In
the models where few data points are provided for the high-
coercivity tail of the curve there is a tendency for the algorithm
to overestimate DP for the final component. The provision

Table 2. Comparison of the EM-derived component parameters for the non-saturated model curves with the known population characteristics of the
input distribution.

Model

Input Curve
50 per cent Saturation
60 per cent Saturation
70 per cent Saturation
80 per cent Saturation
90 per cent Saturation
100 per cent Saturation

Compl B1/2 Comp2 B1/2

Log mT Log mT

0.90
0.84
0.86
0.87
0.88
0.89
0.91

.70

.09

.41

.52

.52

.59

.77

Comp3 Bi/2
Log mT

2.40
1.99
2.37
2.44
2.42
2.39
2.41

Compl DP Comp2 DP Comp3 DP
Log mT Log mT Log mT

0.25
0.22
0.23
0.24
0.24
0.25
0.25

0.40
rO';32

0.42-
0.41
0.40
0.37

0.27
0.38
0.36
0.35
0.35
0.30
0.26
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of data beyond the maximum gradient point of the last com-
ponent improves the fit; however, even at 90 per cent saturation,
DP is overestimated in the final model. We therefore recom-
mend that, in the case of curves where the maximum gradient
point of the highest-coercivity phase has not been passed
during acquisition, an interactive fitting procedure, for example
Kruiver et al. (2001), should be utilized in preference to the EM
algorithm.

Although we have tested the fitting procedure on both
saturated and non-saturated modelled data, both of these
investigations assumed a noise-free environment. The quality
of any fit will degrade as the relative magnitude of any con-
taminating noise increases. Therefore, when dealing with real
samples, more caution is required in the interpretation of fits
obtained from noisy data sets.

M E A S U R E D DATA ( S A T U R A T E D )

A small suite of 20 samples from the ODP609 core (Ruddiman
et al. 1989) was selected to provide examples of saturated IRM
acquisition curves. The samples were taken from a section of
the core spanning the climate transition from marine isotope
stage 55 (warm) to stage 54 (cold) at ~ 1.6 Ma. In all cases the
samples reached saturation before application of the maximum
field of 1 T (Figs 3a and b). A number of the obtained IRM
gradient curves were extremely noisy at low field values, and it
was therefore necessary to smooth the data sets with a cubic
spline before they were fitted. Each curve was modelled with
two components, a decision made after the majority of the
preliminary models returned two-component fits based on the
criteria of Kruiver et al. (2001). Fig. 3(c) shows a fit for one of

Figure 3. (a) IRM acquisition plots for the 20 samples selected from Marine Oxygen Isotope Stage (MIS) 55 to the transitional zone of MIS54 in ODP
core 609. (b) IRM gradient plots for the investigated samples (the gradient curves are often fairly 'noisy' because the measurement error is visualized
better in this way of representation), (c) Two-component EM solution for a bulk IRM distribution: component 1 (2) light (dark) shading, (d) (e), and
(f) Comparison of the distribution parameters for the fitted components with the proxy climate index provided by the magnetic susceptibility record.
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the samples after smoothing, revealing that the coercivity
spectra for the two populations are quite similar (see Table 3
for the mean characteristics of the two populations).

This analysis enables us to compare the characteristics of
the IRM components with the climatic signal as provided by
magnetic susceptibility (the fidelity of magnetic susceptibility
as an accurate recorder of palaeoclimatic change was deter-
mined by its comparison with the lower-resolution carbonate
content record of Ruddiman et al. 1989). The linear regression
coefficients reveal that climate had little influence over the
mean coercivity or dispersion of the two magnetic-mineral
components (Figs 3d and e). The absolute magnetization of com-
ponent 1 shows no relationship with magnetic susceptibility (•/).
The magnetization of component 2, however, demonstrates a
linear trend with respect to the % signal (Fig. 3f). This pattern
indicates that, in this portion of the ODP609 core, climate was
controlling the absolute concentration of component 2 (higher
concentrations in warmer conditions), but not its magnetic
properties, whilst component 1 remained unaffected by the
ambient climatic conditions. The mean #1/2 values of com-
ponents 1 and 2 are 27 and 56 mT, respectively, indicating that
both mineral populations consist of single-domain magnetite.

Table 3. Mean component parameters for the two magnetic-mineral
populations fitted to the ODP609 sample collection.

Component

1

2

Mean
SIRM

10~ 2 Am2 kg"1

1.11
i

1.96

Mean B\/2
log mT

(mT)

1.43
(27)
1.75
(56)

Mean DP
log mT

0.34

0.25

Mean
Range

mT

12-59

32-100
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The apparent sensitivity of component 2 and insensitivity of
component 1 to climatic change raises a number of interesting
questions concerning the processes controlling the magnetic
mineral assemblage in the ODP609 core. Although a more
detailed rock-magnetic investigation is required to understand
the observed IRM variations fully, we tentatively suggest that
component 2 may correspond to a biogenic contribution.
Kruiver & Passier (2001) have suggested that magnetosomes in
Mediterranean sediments are characterized by magnetites with
increased coercivities, typically 51/2 is ~65 mT, and reduced
dispersions, DP<0.3. These characteristics indicate that the
IRM component 2 in the ODP609 core may correspond to a
magnetosome population, the magnitude of which is at least
partially controlled by climatic conditions.

MEASURED DATA (NON-SATURATED)

In order to investigate the effectiveness of the fitting algorithm
on IRM data obtained from non-saturated natural samples
we determined the acquisition curve for a Czech palaeosol
sample (B-180), which was subsequently subjected to an acid
ammonium oxalate/ferrous iron [AAO-Fe(II)] extraction pro-
cedure (van Oorschot et al. 2001). The palaeosol was red to
brownish red (Munsell: 7.5 YR6/6) in colour and was formed
in a subtropical (Mediterranean) climate. In such an environ-
ment one would expect the formation of both haematite and
goethite in a palaeosol, with a preference towards haematite
production in sufficiently warm and dry conditions (Cornell &
Schwertmann 1996). The extraction was expected to remove
fine-grained iron oxides, and after treatment a second IRM
acquisition curve was obtained from the sample. Fig. 4 shows
that the fitted IRM curve of the 'pre-extraction' sample is
dominated (~96 per cent contribution) by a magnetite com-
ponent with a #1/2 of 30.7 mT. In addition, there is a high-
coercivity haematite phase (goethite was rejected on the basis of

cjftVit:'-

Log Field Log Field

Figure 4. (a) IRM acquisition of Czech palaeosol sample B-180 'pre-' and 'post-' AAO-Fe(II) treatment, and the 'difference' between the two curves,
(b) (c), and (d) EM fits for each data set. where the two mineral components (magnetite/haematite) are represented by different degrees of shading
(light /dark).
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Table 4. Fitted IRM component parameters for the palaeosol sample B-180, 'pre-' and 'post-' AAO-Fe(II) treatment, and for the 'difference' between
the two acquisition curves representing the minerals dissolved during the procedure. N/P = not present.

Comp. 'Pre-extraction' 'Post-extraction' 'Difference'

Mti

1 0.963
2 0.037

B\j2

log mT
' (mT)

1.487 (31)
2.920 (832)

DP
log mT

0.502
0.168

range
mT

9-97
565-1124

Mri

0.839
0.161

-Bl/2

log mT
(mT)

1.726 (53)
2.931 (853)

DP
log mT

0.447
0.331

range
mT

19-148
398-1828

Mr,

1.000
N/P

B\n
log mT
(mT)

1.412(26)
N/P

DP
log mT

0.535
N/P

range
mT

7-88
N/P

thermal IRM decay experiments) contributing less than 4 per
cent to the bulk curve (Table 4). The bulk IRM curve was thus
close to saturation and the EM algorithm returns reliable
output.

After extraction, the relative contribution of the magnetite
phase has decreased (~ 84 per cent) and its mean coercivity has
increased (53.2 mT). The low-coercivity component is still
sufficiently dominant for the EM algorithm to perform smoothly.
Indeed, the fit of the 'difference' curve—calculated by sub-
tracting the 'post-extraction' curve from the 'pre-extraction'
one to provide a representation of the IRM acquisition of the
minerals dissolved during the AAO-Fe(II) treatment—shows
that only the magnetite phase of the sample was affected by the
treatment. The coercivity of the removed magnetite appears to
be lower than that of the original population. Attempts to fit
the 'difference' curve with a two-component model produced
an unstable second population that was inconsistent with the
mineral phases defined in the 'pre-extraction' curve, suggest-
ing that no haematite was present in the removed mineral
component.

CONCLUSIONS

(1) The use of the fitting procedure based on the EM
algorithm provides an effective method for determining the
contributions and characteristics of individual magnetic mineral
populations in both saturated and non-saturated bulk IRM
curves. If the maximum of the highest-coercivity component
in the gradient curve has not been passed, however, interactive
fitting (Kruiver et al. 2001) is preferred.

(2) It has been shown that the procedure is particularly
powerful when separating a number of mineral populations with
overlapping coercivity spectra.

(3) Implementation of the Kruiver (2001) criteria in the
modelling software provides a robust indication of the number
of mineral components that should be fitted to a bulk IRM
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