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Abstract The subaerial surface of Koolau volcano is
composed of lavas that define the distinctive endmember
composition for Hawaiian shield lavas, known as the
Koolau component, now designated as the Makapuu-
stage. The geochemical characteristics of lavas recovered
by the Koolau Scientific Drilling Project (KSDP) show
that this distinctive composition forms a <300-m thick
veneer. Below this veneer, from ~300m to 470 m below
sea level, Koolau shield lavas transition to a composi-
tion similar to Mauna Loa lavas, now designated as the
Kalihi-stage. This transition was gradual, occurring over
>80 ka; therefore it was not caused by an abrupt event,
such as a landslide. Among all Koolau shield lavas, there
are correlations between radiogenic isotopic ratios of Sr,
Nd and Pb and compositional characteristics, such as
SiO, content (adjusted to be in equilibrium with Fogq
olivine), Sr/Nb, La/Nb and Th/La. These long-term
compositional and isotopic trends show that as the
shield aged, there was an increasing role for an ancient
recycled marine sediment component (<3% of the
source) accompanied by up to 20% SiO,-rich dacitic
melt. This melt was generated by partial melting of
garnet pyroxenite, probably kilometers in size, that
formed from recycled basaltic oceanic crust. In detail,
time series analyses of depth profiles of Al,O3/CaO, Sr/
Nb, La/Nb and Th/La in the KSDP drill core show
correlations among these ratios indicating that recycled
oceanic crust contributed episodically, ~29 ka period, to
the magma source during the prolonged transition from
Kalihi- to Makapuu-stage lava compositions. The long-
term geochemical trends show that recycled oceanic
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crust was increasingly important as the Koolau shield
moved away from the plume and encountered lower
temperature.

Introduction

Although shield-stage lavas of Hawaiian volcanoes are
derived from the Hawaiian hotspot, commonly inferred
to be a mantle plume, many Hawaiian shields are dis-
tinct from one another in major and trace element
abundances, as well as isotopic ratios (e.g., Frey and
Rhodes 1993; Frey et al. 1994; Hauri 1996; Lassiter
and Hauri, 1998). Some of these geochemical differ-
ences may be related to melting processes, but there is
no doubt that the mantle source for Hawaiian shield
lavas is geochemically heterogeneous. Compositions of
lavas collected from subaerial exposures of the Koolau
shield on Oahu define an extreme endmember. They
are characterized by relatively high SiO, content, SiO,/
total iron, Al,Os/CaO, La/Nb, Sr/Nb, 3’Sr/%sr,
8705/1880s, §'%0 and low total iron and CaO contents,
INd/Nd, °Hf/''Hf and *°°Pb/***Pb (e.g., Frey
et al. 1994; Roden et al. 1994; Lassiter and Hauri 1998;
Blichert-Toft et al. 1999). These geochemical charac-
teristics have provided support for recycled oceanic
crust, including sediments, in the source of Koolau
lavas.

It is also well established that there are important
temporal geochemical changes within individual
Hawaiian shields. At some shields there are large vari-
ations, e.g., Mauna Loa (Rhodes and Hart 1995; Kurz
et al. 1995), whereas at others, such as Mauna Kea, the
temporal changes are relatively subtle (e.g., Special
Section of Hawaii Scientific Drilling Project in J. Geo-
phys. Res., 1996 Vol. 101, pp 11593—-11864,; Theme of
Hawaii Scientific Drilling Project in Geochem. Geophys.
Geosyst. 2003). Hence, an important question is — Does
the entire Koolau shield have the end-member geo-
chemical characteristics manifested by the subaerially



exposed lavas? Studies of lavas recovered from a
highway (H3) tunnel (Jackson et al. 1999) and from the
submarine landslide blocks (Shinozaki et al. 2002; Ta-
naka et al. 2002) indicate that the geochemical char-
acteristics of older Koolau lavas may not be similar to
the surface Koolau lavas. Specifically, Tanaka et al.
(2002) argue for a temporal transition from Mauna
Kea-like to Mauna Loa-like to Koolau-like with
decreasing age. However, determining the origin and
relative age of lavas from landslide blocks is difficult. A
more direct approach to determining temporal geo-
chemical variations in Koolau shield lavas is drilling
and coring. This goal was achieved by the Koolau
Scientific Drilling Project (KSDP) which deepened and
cored a ~351 m water well to a depth of ~679 m
(Haskins and Garcia 2004). The upper 351 m were ro-
tary drilled and only rock chips are available, whereas
nearly continuous core was recovered from the lower
328 m using a diamond drill bit. This core samples 103
subaerially erupted lava flows and one sedimentary
unit. Based on petrography and compositions of whole-
rocks and glasses, Haskins and Garcia (2004) conclude
that the distinctive geochemical features of uppermost
Koolau lavas (hereafter referenced as Makapuu-stage
lavas) “form a veneer only 175-250 m thick at the drill
site”’. This veneer overlies lavas with Mauna Loa-like
major element compositions which Haskins and Garcia
(2004) define as the Kalihi-stage of the Koolau shield.

As part of a team effort studying the KSDP core, we
report 26 trace element abundances in 91 KSDP core
samples (Table 1) analyzed by inductively coupled
plasma mass spectrometry (ICP-MS); see Appendix A2
of Huang and Frey (2003) for procedures and discussion
of accuracy and precision. We use these data, in con-
junction with major element compositions and Nd-Hf-
Pb isotopic ratios (Haskins and Garcia 2004; Fekiacova
et al. in preparation; Salters et al., in preparation), to
understand the temporal evolution of Koolau shield
lavas.

Makapuu-stage lavas have been studied by Frey
et al. (1994), who used X-ray fluorescence (XRF) and
instrumental neutron activation (INAA) to obtain trace
element data. In order to minimize bias caused by
using different analytical methods, we reanalyzed by
ICP-MS 15 Makapuu-stage lavas which have been
analyzed for Sr—Nd-Pb isotopic ratios (Roden et al.
1994) and major and trace elements (Frey et al. 1994)
(Table 2)

Results: incompatible elements

Abundances of incompatible elements that are immobile
during alteration, such as Nb and La, are positively
correlated with Th abundance for both Makapuu-stage
lavas and Kalihi-stage lavas (Fig. la, c¢). Sr and Rb
abundances are generally correlated with Th abundance;
however, these trends are more scattered (Fig. 1b, d).
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Some of this scatter, e.g., to relatively low Rb abun-
dance, is caused by altered samples. There are significant
differences between Makapuu-stage and Kalihi-stage
lavas; at a given Th abundance Makapuu-stage lavas
have higher La and Sr abundances than Kalihi-stage
lavas (Fig. 1a, c).

Figure. 2 shows the primitive mantle normalized
trace element abundances of Makapuu-stage and Ka-
lihi-stage lavas. Both lava suites have been adjusted to
be in equilibrium with mantle olivine composition
(Fogp) to minimize the effect of crystal fractionation.
The most obvious difference between the two lava
suites is the relative Sr enrichment in the Makapuu-
stage lavas. Since only relatively unaltered lavas are
plotted, the enrichment of Sr in Makapuu-stage lavas is
not a result of post-magmatic alteration. In contrast to
the large variations in highly incompatible elements,
abundances of heavy rare earth eclements are nearly
constant in both Makapuu-stage and Kalihi-stage lavas
(Fig. 2).

Discussion

The Transition from Makapuu-Stage to Kalihi-Stage
Lavas: Constraints from the KSDP Core

Haskins and Garcia (2004: Fig. 10) used Al,O3/CaO to
define a change from the Makapuu-stage (Al,Os/
CaO>1.45) to Kalihi-stage (Al,03/Ca0203/CaO
within the KSDP drill core (Fig. 3a). Within the upper
part of the KSDP core, at a depth level inferred to be
Kalihi-stage lavas, there are two groups of lavas which
have Al,O3;/CaO near the boundary between Makapuu-
and Kalihi-stage lavas. Units 4, 5, 6 and 9, 10, 12 have
Al,O3/CaO=1.42 to 1.44 (Fig. 3a). Deeper in the core,
Units 70, 85 and 88 have Al,03/CaO of 1.43, 1.45 and
1.54, respectively. Units 85 and 88 are altered lavas;
i.e., among Kalihi-Stage lavas, Unit 88 has the highest
Loss on Ignition (L.O.I.=3.65%), and Unit 85 has a
L.O.1. of 2.89% (Table 4 of Haskins and Garcia 2004).
Consequently, their high Al,O3/CaO may be a result of
alteration.

The presence of orthopyroxene microphenocrysts is a
petrographic characteristic of Makapuu-stage lavas
(Frey et al. 1994), but orthopyroxene also occurs in
KSDP cored lavas classified as Kalihi-stage lavas, that
is, orthopyroxene is present in 6 of the uppermost 11
lava flows, including Units 9, 10 and 12 with high Al,Os/
CaO0, is absent in the underlying 42 lava flows, and is
sporadically present in 13 of the lowermost 37 lava flows
(Table 2 of Haskins and Garcia 2004).

Surface Koolau lavas, i.e., Makapuu-stage lavas,
are distinguished from other Hawaiian shield lavas by
their relatively high La/Nb and Sr/Nb (Fig. 11 of Frey
et al. 1994; Fig. 13b of Huang and Frey 2003). A
distinct difference between Makapuu-stage and Kalihi-
stage lavas in La/Nb and Sr/Nb is apparent in Fig. 4a
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Table 2 Trace Element Abundances (in ppm) in Makapuu-stage Lavas by ICP-MS

Dy Ho Er Tm Yb Lu Hf Ta Pb Th

Tb

Ce Pr Nd Sm Eu

La

Sc Rb Sr Y Zr Nb Ba

Sample”

1.20  0.611 0.181

1.16
1.28

1.67 0.240 3.56 0.560
1.85 0.263 3.73 0.633
1.72 0.238 3.62 0.628

1.6

0.304
0.340

2.11
2.31

1.74 0.803 4.42 0.831
1.77 0.847 4.69 0.891

1.78 0.822 4.51

8.13 83.8 10.7 262 4.15 19.6 521

151

26.5 5.79 416 24.0
257 6.24 411

KOO-1

0.592 0.175

10.3 25.0 4.25 20.0 5.27

139 9.05 81.5
1

25.5

KOO-7

0.674 0.200

0.853 220 0.312

30.7 448 21.0 535

15.5 2.36

2.1

112
5.06 49.5 6.00

154 9.42

249 7.17 480 25.5

KOO-8

0.709 0.362 0.102

0.233 2.52 0.351

1

1.99 0.297
1.87 0.274

1.34 0.682 3.94 0.751

12.0 3.79
15.1
122 279 448 213 553

10.3 25.5 3.96

22.7 2.10 280 222 99

23.1

KOO-9

1.50 0.218 290 0.469 0.968 0.474 0.125

1.45 0.687 3.83 0.730

4.27

117 6.80 61.7 7.88 20.0 3.06

148  8.71

3.07 340 21.0

KOO-10
KOO-15

0.662 0.146

1.10
1.06

1.85 0.885 498 0975 246 0.354 2.00 0.278 3.64 0.579

1.84 0.923 5.21

103

1.50 377 28.4

25.5

0.600 0.139

0.999 2.58 0.382 2.05 0.287 3.57 0.609

19.2 5.36
133 3.39

140 8.65 67.8

101
171

259 0.74 372 29.0

19.2 0.23 276

KOO-16

1.23 0.173 2.36 0.387 0.743 0.388 0.075

1.96 0.275 4.09 0.713

1.55 0.225

1.13  0.538 3.00 0.597

18.2 2.85

5.64 403 7.72

10.7

19.5

KOO-17A
KOO0O-20
KOO-26
KOO-29
KOO-30
KOO-31

0.756 0.194

1.43

1.95 0916 5.03 0.954 242 0.350

1.49 0.747 429 0.841

13.2 333 490 232 596

110

28.8 7.26 454 26.4

26.6

1.76 0.247 2.87 0.465 0.954 0.497 0.125

1.89 0.269 3.78 0.610
1.65 0.232 3.67 0.667

2.16 0.317

152 4.29

115 6.80 61.8 8.44 20.6 3.14

1

1.87 345 25.0

0.679 0.141
0.881

1.19

1.91

1.88 0.887 4.89 0.926 2.34 0.341
1.73 0.779 4.25 0.814 2.06 0.297
1.75 0.815 4.50 0.855 2.14 0.309
1.85 0.872 4.85 0.923 239 0.348

1.87 0.901

109 26.8 430 20.8 5.62
16.3 39.6 546 234 542

10.7 27.8 4.10

9.08 75.1

61

26.5 3.10 440 26.2
252 3.13 438 235

0.164

10.3 739

152

0.543 0.133

1.74 0.243 3.55 0.577 0.951
1.90 0.268 3.63 0.658

19.7 5.25

152 880 71.0
142 9.86

2.99 409 24.0

25.5 4381
26.1

0.673 0.168

1.21
1.15

119 304 462 21.5 554
122 273 444 209 548

103

435 27.0

KOO-48
KOO-50

0.660 0.123

5.03 0.993 256 0.370 2.02 0.283 3.45 0.607

144 9.44 784

0.20 398 29.3

(1)For sample locations see Frey et al. (1994)

where the lower ratios of the Kalihi-stage lavas over-
lap with the Mauna Loa field. These differences are
not a function of MgO content (Fig. 4b). In detail,
however, Units 4, 5 and 6 of the KSDP core overlap
with Makapuu-stage lavas in Sr/Nb and Units 4, 6, 14,
73 and 81 overlap in La/Nb (Fig. 3). We use these
ratios to address the question—was the transition
abrupt or gradual? As shown in Fig. 3, within the
uppermost 32 m of the KSDP core, classed as Kalihi-
stage by Haskins and Garcia (2004), there are six flows
(Units 4, 5, 6, 9, 10 and 12) with geochemical char-
acteristics that are transitional between Makapuu-stage
and Kalihi-stage groups. Also, La/Nb and Sr/Nb
generally increase upwards from an elevation of
~470 m below sea level, but there are high frequency
variations superimposed on these general trends.
Within the KSDP core there is no indication that there
was an abrupt change from only Kalihi-stage compo-
sition to the distinctive Makapuu-stage composition.
Rather the Makapuu-stage geochemical signature
gradually appears towards the top of the core and is
most evident in two groups, Units 4, 5, 6, and Units 9,
10, 12. This inference of a gradual transition from
Kalihi-stage to Makapuu-stage geochemical character-
istics contrasts with that of Shinozaki et al. (2002),
Takahashi and Nakajima (2002) and Tanaka et al.
(2002) who described the transition from Mauna Loa-
like composition (Kalihi-stage) to Makapuu-stage
composition as ‘““very sharp and abrupt” occurring
over an interval of ~10 m in subaerial outcrops on the
Nuuanu Pali.

Haskins and Garcia (2004) argue that the transition
from Kalihi- to Makapuu-stage compositions occurred
over a 60-m-thick sequence of lavas; consequently, this
transition lasted over 2.6-4.6 ka assuming a lava
accumulation rate of 13-23 mm per year (DePaolo and
Stolper 1996). This estimate may be a minimum be-
cause these accumulation rates may be too high for late
shield growth (cf. 8.6 to 0.9 mm per year for Mauna
Kea, Sharp and Renn (2005). Moreover, we infer that
the transition from typical Kalihi-stage composition to
Makapuu-stage composition began at the elevation of
~470 m below sea level in the KSDP drill hole, and
continued to the top of the cored section at ~300 m
below sea level (Fig. 3). This transition corresponds to
at least ~60 lava flows (Table 1). If the time interval
between flows at a given location is ~1,400 years
(estimated from the Mauna Kea portion of the Phase 2
of the Hawaii Scientific Drilling Project core which
consists of ~300 shield and late-shield lava flow units
erupted over ~410 ka, Sharp and Renne (2005), the
transition in composition from Kalihi-stage lavas to
Makapuu-stage lavas lasted for ~84 ka which corre-
sponds to a growth rate of ~2 mm per year, and is
much longer than the estimate, 2.6-4.6 ka, of Haskins
and Garcia (2004). Consequently, in agreement with
Haskins and Garcia (2004) we conclude that the tran-
sition was not caused by a catastrophic event, such as
the Nuuanu landslide.
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Fig. 1 Th abundance versus other incompatible element abun-
dances. The greater scatter of Rb and Sr reflects post-magmatic
alteration; unaltered lavas are lavas with 2.2>K,0/P,O5> 1.2 and
Loss on Ignition (L.O.1.) <0.8% (Haskins and Garcia, 2004). Data
from Tables 1 and 2

Role of recycled marine sediment in the source
of Koolau lavas

What is the source of the distinctive Makapuu-stage
geochemical signatures? Several characteristics of Mak-
apuu-stage lavas, such as high La/Nb, high '"°Hf/'""Hf
at a given "¥Nd/'**Nd and relatively high '*’0s/'**Os
and 3'80, have been proposed as recycled sediment
signatures (Lassiter and Hauri 1998; Jackson et al. 1999;
Blichert-Toft et al. 1999; Huang and Frey 2003). In
the KSDP core, depth 7p1r0ﬁles of 298pb*/20%pPh*,
'SNd/'"Nd and '""°Hf/'"""Hf (Fekiacova et al., in
preparation; Salters et al. in preparation) are similar to
those of La/Nb and Sr/Nb. Consequently, Makapuu-
stage and Kalihi-stage lavas form trends in La/Nb ver-
sus 2%Pb*/2%pPb* and '*Nd/'"*Nd plots (Fig. 5a, c).
Clearly, these lavas were derived from a source con-
taining two geochemically-distinct components. One
component is like Mauna Loa lavas (Figs. 5a, c), but the
other component defines an endmember with high
208pp* )296ph* (Fig. 5c, d). Since marine sediments typi-
cally have higher ** Th/?*®* U and lower ** U/*%Pb
than primitive mantle values (e.g., Figs. 11 and 12 of Ben
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Othman et al. 1989), ancient recycled sediments are
characterized by relatively low 2°°Pb/?**Pb and
hi§h 208pp 24Py at a given 2°°Pb/?**Pb, i.., high
208pp* 296ph* - Therefore, Pb isotopic ratios of Mak-
apuu-stage lavas are also consistent with ancient recy-
cled marine sediment in their source.

The correlations in Figs. 4 and 5 require that the
inferred sedimentary component has high La/Nb
(>1.6), Sr/Nb (>55) and low Th/La (<0.05). We note
that, based on corrections of La, Sr and Nb with Th
(Fig. 1), the high La/Nb and Sr/Nb in Makapuu-stage
Koolau lavas (Fig. 4) reflect relative enrichment of La
and Sr rather than depletion of Nb. We ask—Are
these characteristics of marine sediment? Sr/Nb and
Th/La are highly variable in marine sediments (Fig. 6;
Fig. 2 of Plank 2005); however, most carbonate- and
phosphate-rich (CaO >20%, Al,O;/P,05<10) sedi-
ments are characterized by high Sr/Nb (> 55) and low
Th/La (<0.05) (Fig. 6). In addition, the hydrothermal
clay section recovered from east of the Tonga trench,
which is also phosphate-rich, has these geochemical
characteristics (Fig. 6; Table 1 of Plank and Langmuir
1998). Only small amounts of phosphate-bearing
carbonate (3%) or hydrothermal clay (0.25%) are
required to explain the high La/Nb and low Th/La
that are characteristic of Makapuu-stage lavas (see
source compositions in Table 3). High Sr/Nb (>55) is
also consistent with 3% phosphate-bearing carbonate
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Fig. 2 Primitive mantle
30

normalized trace element
abundances in Makapuu-stage
and Kahili-stage lavas.
Primitive mantle values are
from Hofmann (1988).
Measured incompatible element
abundances in unaltered lavas
with 2.2>K,0/P,05>1.2 and
MgO > 6.5% were adjusted by
adding or subtracting
equilibrium olivine until the
whole rock Fe/Mg ratio was in
equilibrium with Fog, olivine
(0.1% increments using (Fe/
Mg)olivinc/(Fe/Mg)mclt = 030)
Data from Table 1

2519

djusted abundances / PM values

vine a

oKSDP
oMakapuu

ol

but is inconsistent with only 0.25% hydrothermal
clay, similar to that recovered from east of the Tonga
trench (see source compositions in Table 3). However,
given the wvariable Sr content of hydrothermal

Ba Th Nb Ta La Ce Pr Nd Sr Zr Hf Sm Ti Eu Gd Tb Dy Ho Er Yb Lu

sediments (e.g., Thompson et al. 1988; Honnorez et al.
1999), we do not preclude hydrothermal sediment as a
possible component in the source of Makapuu-stage
lavas.

Fig. 3 Depth profiles of Al,O3/
CaO, La/Nb, Sr/Nb and La/Yb
for KSDP drill hole. (2o
analytical uncertainties for La/
Nb, Sr/Nb and La/Yb are from
Appendix of Huang and Frey
(2003), and 20 analytical
uncertainty for Al,O5;/CaO is
less than the symbol size
(Rhodes, 1996)). All lavas from
the KSDP core were classified
as Kalihi-stage lavas by
Haskins and Garcia (2004). The
Makapuu/Kalihi-stage
compositional boundary,
vertical dashed lines, is taken as
Al,03/Ca0O=1.45 (Haskins and
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Garcia, 2004), La/Nb=1.09
and Sr/Nb=39.4 (lowest values
in Makapuu-stage lavas;

Fig. 4). There is considerable

structure in these depth profiles. 300

1.3 14
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Al,O3/Ca0, La/Nb and Sr/Nb
generally increase upwards
from an elevation of ~470 m
below sea level, but there are
superimposed high frequency
variations. The depth profiles of
Sr/Nb and La/Yb are
highlighted by thick gray lines
(defined by running means for
every five samples). The former
contains several cycles and a
secular trend of increasing Sr/
Nb with decreasing depth. The
latter contains several cycles,
but lacks a secular trend
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Phosphate-bearing carbonate-rich sediments with
high Sr/Nb and low Th/La are a regional feature of the
equatorial eastern Pacific Ocean; e.g., they occur in the
Guatemala trench and basin, as well as in the Peru and
Columbia trenches (Plank and Langmuir 1998; Patino
et al. 2000; Plank et al. 2002). However, these phos-
phate-bearing carbonate-rich sediments are associated
with biological activity, such as nannofossil and foram
deposits that did not exist at 2 Ga. Nevertheless, the
high rare earth element content of Proterozoic marine
carbonate sediments, such as phosphorites and carbon-
ates associated with banded iron formations, indicate
that these sediments are likely to have low Th/La
accompanied by high Sr/Nb (e.g., Tu et al. 1985).

Because of their enrichment in rare earth elements,
such sediments have elevated Lu/Hf. If we use data for
modern sediments, the carbonate section from Guate-
mala trench has Lu/Hf =1.4 and the hydrothermal clay
section from east of the Tonga trench has Lu/Hf=0.47
(Table 1 of Plank and Langmuir 1998); in contrast, the
primitive mantle value is 0.24 (Hofmann 1988). Con-
sequently, ancient recycled phosphate-bearing carbon-
ate and hydrothermal sediments are characterized by
high "°Hf/'’Hf at a given '“Nd/'**Nd, which is
consistent with the shallow slope of the Hawaiian shield
lava trend in an eng—€pr plot (Fig. 2 of Blichert-Toft
et al. 1999).

The inferred sedimentary component in Koolau lavas
must have high ¥’Sr/%°Sr (~0.7045, Fig. 14 of Huang
and Frey 2003). Hydrothermal sediments are charac-
terized by high Rb/Sr. For example, the hydrothermal
clay section from east of the Tonga trench has Rb/
Sr=0.09 (Table 1 of Plank and Langmuir 1998), and the
primitive mantle value is 0.03 (Hofmann 1988). Conse-
quently, aged recycled hydrothermal sediments will have
relatively high 3’Sr/®*¢Sr. In contrast, phosphate-bearing
carbonate-rich sediments are characterized by low Rb/
Sr. For example, the carbonate section from the Gua-
temala trench has Rb/Sr=0.005 (Table 1 of Plank and
Langmuir 1998). Can ancient recycled phosphate-bear-
ing carbonate-rich sediments have relatively high
87Sr/3°Sr? At 2 Ga, seawater 87Sr/%Sr was > 0.704 (Fig.
3 of Ray et al. 2002). Consequently, ancient recycled
phosphate-bearing carbonate-rich sediments, which
inherited *’Sr/*Sr from seawater, can explain the high
87Sr/%°Sr in Makapuu-stage lavas.

Additional evidence supporting marine sediments as
a source component for Makapuu-stage lavas arises
from correlations between Ce/Pb and La/Nb, Th/La and
Ba/Th in Koolau glasses that extrapolate toward a
component with low Ce/Pb and Th/La and high Ba/Th
and La/Nb (Fig. 7). Compared with MORB and OIB,
marine sediments are generally characterized by low Ce/
Pb (e.g., Hofmann 1997). Specifically, the carbonate
section at Guatemala and the hydrothermal clay section
from Tonga have Ce/Pb=0.6-0.8 (Table 1 of Plank and
Langmuir 1998; Table 2 of Patino et al. 2000). In
addition, these sediments have high Ba/Th (> 1,000),
low Th/La (0.02-0.03) and high La/Nb (18-56). In
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contrast to the glass data, whole rock data (even after
applying an alteration filter) do not form obvious trends
in Fig. 7, implying that Ce/Pb and Ba/Th were affected
by post-magmatic alteration even in these relatively less
altered whole rocks. Nevertheless, the linear trends
formed by glass data in Fig. 7 imply a source component
with low Th/La, Ce/Pb and high La/Nb and Ba/Th,
which is consistent with phosphate-bearing carbonate-
rich or hydrothermal sediments as a source component
for Koolau lavas.
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Fig. 4 Sr/Nb vs La/Nb, and MgO (%) versus Sr/Nb for Makapuu-
and Kalihi-stage lavas. Only relatively unaltered lavas (Kalihi-
stage, Makapuu-stage and Mauna Loa lavas) with 2.2>K,0/
P,O5>1.2 and L.O.1.<0.8% are plotted. Symbols indicate trace
element data from Table 1. Major element data are from Frey et al.
(1994) (Makapuu) and Haskins and Garcia (2004) (KSDP),
respectively. Fields labeled as “Makapuu-stage Lavas™ are defined
by XRF and INAA data from Frey et al. (1994). Mauna Loa data
are from Garcia et al. (1995a), Rhodes (1995, 1996), Rhodes and
Hart (1995), Cohen et al. (1996) and Rhodes and Vollinger (2004),
our unpublished trace element data for the Mauna Loa section of
HSDP 2
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time-integrated >**> Th/**®* U since the Earth formation, and is
defined as  [”*Pb/***Pb)sampie-29-4751/[C*°Pb/***Pb)sampic-9-307]
(Galer and O’Nions, 1985). Kalihi-stage lavas overlap with the
field defined by Mauna Loa lavas in panels a and c. The linear
trends in these panels imply that the transition from Kalihi-stage
composition to Makapuu-stage composition reflects an increasing
role of a component with high La/Nb and ***Pb*/?°°Pb* coupled
with low **Nd/'**Nd and Th/La. Since "®Hf/""Hf is positively
correlated with "3Nd/'"*Nd (Salters et al., in preparation.), the
distinctive component in Makapuu-stage lavas also has relatively
low '7®Hf/'"Hf. Isotopic data for Kalihi-stage lavas are from
Salters et al. (in preparation.) and Fekiacova et al. (in prepara-
tion.). Isotopic data for Makapuu-stage lavas are from Roden et al.
(1994) and Lassiter and Hauri (1998). Mauna Loa data are from
Rhodes (1995, 1996), Rhodes and Hart (1995), Cohen et al. (1996),
Blichert-Toft et al. (2003) and our unpublished trace element data
for the Mauna Loa section of HSDP 2

Relative role of garnet pyroxenite/eclogite
and peridotite as sources for Koolau lavas:
trace element constraints

After Koolau whole rock compositions are adjusted to be
in equilibrium with a common mantle olivine composi-
tion (Fogg), the abundance of heavy rare earth elements is
much less variable than those of highly incompatible
elements (Fig. 2). This result reflects garnet as a residual
mineral during partial melting (Hofmann et al. 1984).
Compared with other Hawaiian shield lavas, Makapuu-
stage lavas at a given MgO content have lower Sc, Y and
Yb abundances, a result interpreted to reflect a larger
proportion of residual garnet during generation of
Makapuu-stage lavas (Budahn and Schmitt 1985; Frey
et al. 1994; Jackson et al. 1999). This observation is

confirmed by our ICP-MS data of Makapuu-stage lavas
(Fig. 8a, b). Kalihi-stage lavas have higher Sc and Yb
abundances than Makapuu-stage lavas, and overlap with
(Sc) or are on the lower part of (Yb) the fields defined by
Mauna Kea and Mauna Loa lavas (Fig. 8a, b).

The variable presence of a sedimentary component in
Koolau lavas indicates that garnet pyroxenite, formed
from recycled basaltic oceanic crust, may also be a source
component. In subsequent discussion, we use garnet
pyroxenite as a general rock name that includes eclogite.
Hauri (1996) concluded that Makapuu-stage lavas con-
tain a dacitic component derived from partial melting of
quartz-bearing garnet pyroxenite formed from recycled
oceanic crust. More recently, Takahashi and Nakajima
(2002) inferred that Makapuu-stage lavas were derived
from eclogite formed from recycled Fe-rich Archean
basalt, whereas Garcia (2002) argued that picritic sub-
marine lavas from the slope of Koolau Volcano were
primarily derived from partial melting of peridotite.
Hence, the source of Koolau lavas may have been peri-
dotite with embedded garnet pyroxenite heterogeneities.
How does melting of such a mixed source proceed? Since
the solidi of most garnet pyroxenites are lower than those
of peridotite (e.g., Hirschmann and Stolper 1996), one
modeling approach is to fertilize the unmelted peridotite
with partial melt of garnet pyroxenite to form a homo-
geneous modified garnet peridotite source. This process
is consistent with the experiments by Yaxley and Green
(1998) and was used by Sobolev et al. (2000) to model the
origin of melt inclusions in olivine in Mauna Loa lavas.

Koolau data consistent with variable partial melting
of a garnet peridotite source are the correlated variations
in ratios that are controlled by residual garnet, such as
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Mineral Proportions

Olivine orthopyroxene Clinopyroxene garnet
Source Mode* 0.53 0.04 0.38 0.05
Melting Reaction® 0.05 —0.49 1.31 0.13

Partition Coefficients

Olivine orthopyroxene® Clinopyroxene® Garnet?
La 0 0.002 0.008° 0.023¢
Zr 0 0.017 0.027 0.411
Hf 0 0.036 0.049 0.517
Tb' 0 0.046 0.119 1.72
Yb 0 0.092 0.174 5.17
Y 0 0.060 0.165 2.37
Sc 0.14¢ 0.27¢ 1.4 517

Source compositions (abundance in ppm)

Original ~ Guatemala Carbonate = Adding 3% carbonate-rich Ton%a Hydrothermal = Adding 0.25% hydrothermal
source’ Section® sediment into original source  Clay sediment into original source

La 0.67 14 1.1 134 1.0

Nb 0.71 0.79 0.71 2.4 0.71

Zr 10 5.9 10 161 10

Tb 0.085 047" 0.096 4.5 0.096

Yb 0.28 1.6 0.32 14 0.31

Y 3.9 32 4.7 154 4.2

Sc 10.8 4.8 11 13 11

Sr 25 1504 69 822 27

Th 0.047 0.29 0.05 3.6 0.06

Th/La  0.070 0.020 0.050 0.027 0.056

La/Nb  0.95 18 1.5 56 1.4

Sr/Nb 35 1904 98 347 38

La/Yb 24 9.1 3.4 9.4 3.2

Zr/Yb 36 3.8 31 11 33

Sc/Y 2.8 0.15 2.3 0.08 2.6

Tb/Yb  0.30 0.29 0.30 0.31 0.30

“From Table 2 of Salters (1996) We use Dgclinopyroxene/melt — 1 4 i our modeling

bpelivine/melt j¢ 5 ssumed to be zero, except for Sc iDg gametmelt — 1y garnet/melt jo o scumed (e.g., van Westrenen et al.,

“Sample TM 295-5 (2.8GPa and 1540 °C) from Salters and Longhi
1999)

“Sample TM 694-6 (2.8GPa and 1537 °C) from Salters and Longhi

(1999

e c?ino roxene/melt _ clinopyroxene/melt
DL'I Py = DNb Py

D2 meVmet gre assumed

tDTb = (DSYn + DEr)/2 )

gpg olivine/melt oy q g orthopyroxene/melt e calculated using mineral
and melt composition of Sample TM 295-5 (2.8GPa and 1540 °C)
and Equation 39 of Beattie et al. (1991)

g clinopyroxene/melt 1apoes from 0.8 to 3.2 (e.g., Hart and Dunn,
1993; Hauri et al., 1994a; Blundy et al. 1998)

. e
and DLﬂgdmel/ La

La/YDb, Sc/Y and Tb/YDb, in Kalihi-stage and Makapuu-
stage lavas (Fig. 9). The La/Yb-Sc/Y, La/Yb-Zr/Yb and
La/Yb-Tb/Yb trends can be explained by partial melting
of a garnet peridotite, with uniform La/Yb, Sc/Y, Zr/Yb
and Tb/Yb (Fig. 9). These ratios may have been similar
in the sources of Kalihi-stage and Makapuu-stage lavas
because adding a small amount ( <3%) of sediment into
the proposed source for Kalihi-stage lavas has little effect
on these ratios. For example, adding 3% phosphate-
bearing carbonate-rich sediment into the proposed
source for Kalihi-stage lavas markedly increases La/Nb
from 0.95 to 1.5, Sr/Nb from 35 to 98 and decreases Th/
La from 0.07 to 0.05, but only changes La/Yb by <50%,

1999)

JY abundance is taken as the primitive mantle value, and Y/Yb is
assumed equal to the ratio in both Makapuu- and Kalihi-stage
lavas (13.6 £0.8)Other ratios are chosen to fit the trends, and
abundances of La, Nb, Tb, Zr and Sc are calculated based on these
ratios and abundances of Y and Yb

YFrom Table 1 of Plank and Langmuir, 1998

'Tb abundance is calculated assuming Tbpy = (Gdpy + Dypm)/2.
Primitive mantle values are from Hofmann (1988)

and Sc/Y, Zr/Yb and Tb/Yb by <15% (Table 3). In
contrast, La/Yb, Sc/Y, Zr/Yb and Tb/Yb in Makapuu-
stage and Kalihi-stage lavas vary by a factor of >2,
~1.7, >2 and ~1.2, respectively (Fig. 9). We infer that
Makapuu-stage lavas were derived by lower extents of
melting than Kalihi-stage lavas. Consequently, they
equilibrated with a larger amount of residual garnet.
Although we are confident that abundance ratios
sensitive to control by residual garnet were controlled by
the melting process, the simple model of variable extents
of partial melting of garnet peridotite is not suitable.
Eggins (1992) and Wagner and Grove (1998) showed
that the estimated primary magma compositions for
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stage ratios (Figs. 4, 5). Such sediments are CaO- and P,Os-rich
sediments or hydrothermally-derived clays, such as those from the
Tonga trench. Data are from Plank and Langmuir (1998), Patino
et al. (2000) and Plank et al. (2002)

Hawaiian shield lavas, and especially, Makapuu-stage
lavas (Hauri 1996), are not in equilibrium with garnet
peridotite. More complex models are required.

One possibility is mixing of melts derived from
garnet peridotite and garnet pyroxenite. However, La/
Yb is not correlated with Sr—Nd-Pb isotopic ratios;
therefore, the trends formed by Koolau lavas in Fig. 9
are not magma mixing trends. Rather we infer that
Koolau lavas reflect both variable extents of partial
melting and magma mixing processes. That is, the

transition from Kalihi-stage to Makapuu-stage was
accompanied by decreasing melting extent and an
increasing proportion of a garnet pyroxenite melt
component. In this scenario, a complexity is that melts
of garnet pyroxenite are very reactive with peridotite
and require transport in isolated channels (e.g., Yaxley
and Green 1998; Takahashi and WNakajima 2002;
Kogiso et al. 2004). That is, the SiO,-rich melts derived
by partial melting of garnet pyroxenite react with
peridotite and convert olivine to orthopyroxene (e.g.,
Yaxley and Green 1998; Takahashi and Nakajima
2002). It is possible that the orthopyroxene band
formed between SiO,-rich melt and peridotite precludes
further reaction. Consequently, there is a possibility
that SiO,-rich melts ascend to a magma chamber or
even to the Earth’s surface. The presence of adakite,
which is proposed as partial melt of subducting oceanic
crust (e.g., Yogodzinski et al. 1995), provides evidence
for this possibility. A requirement of this hypothesis is
that the garnet pyroxenite body should be large in size,
probably several kilometers, in order to generate suffi-
cient SiO,-rich melt to form isolated channels insulated
from reaction by orthopyroxene bands (Takahashi and
Nakajima 2002). Since melt derived from garnet
pyroxenite has been proposed to be a significant (Hauri
1996) or even dominant component (Takahashi and
Nakajima 2002) for the Makapuu-stage of Koolau, we
ask: is it possible to use trace element abundances to
distinguish between garnet pyroxenite and garnet peri-
dotite as sources for Makapuu-stage lavas?

Based on experiments in the CMAS (CaO, MgO,
Al,O5 and SiO,) system, van Westrenen et al. (2001; see
their Fig. 5d) proposed that Zr/Yb can be used to dis-
tinguish between melts derived from garnet pyroxenite
and garnet peridotite. This discriminant arises because
Dy gametmelt > 1 for the Ca-rich garnet in garnet
pyroxenite, and consequently Dy, is similar to Dy, but
Dzrgarnet/melt<Dngarnet/melt for the Mg-rich garnet in
garnet peridotite. However, recent experimental results
for more complex compositional systems, notably
including Ti, show that Zr is not compatible in Ca-rich
garnet (Pertermann et al. 2004). Rather than Zr/YDb,
Pertermann et al. (2004) propose Zr/Hf as a discrimi-
nant for distinguishing residual eclogite (high clinopy-
roxene/garnet ratio) from residual garnet peridotite (low
clinopyroxene/garnet ratio). The suitability of Zr/Hf as
a discriminant arises because: (1) (Kp)zur for clinopy-
roxene/melt is ~0.5 whereas it is ~1 for garnet/melt; (2)
the very different clinopyroxene/garnet ratios for eclog-
ite and garnet peridotite used by Pertermann et al.
(2004). However, clinopyroxene/garnet ratios in peri-
dotite are very dependent upon pressure and tempera-
ture (e.g., Walter 1998), and may overlap with the ratios
in eclogite; therefore, we suggest that Zr/Hf is not a
reliable discriminant. Moreover, Fig. 10 of Pertermann
et al. (2004) is misleading because as Koolau lavas they
include data from both tholeiitic Koolau shield stage
lavas and highly alkalic rejuvenated stage lavas erupted
onto the Koolau shield (i.e., the Honolulu Volcanics).
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panels, requiring a component with low Ce/Pb, Th/La and high La/
Nb, Ba/Th. Glass data are from Haskins and Garcia (2004) and
Norman et al. (2004)

Relative role of garnet pyroxenite/eclogite
and peridotite as sources for Koolau lavas:
major element constraints

An early hypothesis for explaining the distinctive major
element composition of Makapuu-stage lavas, i.e., rela-
tively high SiO, and low total iron and CaO contents,
was melt segregation at relatively low pressure (Frey
et al. 1994; Putirka 1999). However, Hauri (1996) noted
problems with this interpretation. Namely the high SiO,
content of Makapuu-stage lavas requires melt segrega-
tion at depths of 30—45 km, less than the thickness of
Hawaiian lithosphere (Li et al. 2004). Also at low pres-
sure, the experimental total iron contents are lower than
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Fig. 8 MgO versus Sc, Yb and Ni for Makapuu-stage and Kalihi-
stage lavas. Fields for Mauna Kea, Mauna Loa and Kilauea lavas
shown for comparison. Relative to Kalihi-stage, Mauna Loa,
Mauna Kea and Kilauea lavas, Makapuu-stage lavas have lower Sc
and Yb and higher Ni abundances. For Ni also see Garcia (2002)
and Fig. 1 of Sobolev et al. (2005). Data sources: Kalihi-stage lavas
(MgO-Ni: Haskins and Garcia, 2004; Sc-Yb: this study); Mak-
apuu-stage lavas (MgO-Ni: Frey et al., 1994; Sc-Yb: this study);
Mauna Kea: (MgO-Ni: Rhodes, 1996; Rhodes and Vollinger, 2004;
Sc-Yb: Huang and Frey 2003); Mauna Loa (Garcia et al. 1995a;
Rhodes 1995, 1996; Rhodes and Hart 1995; Cohen et al. 1996;
Rhodes and Vollinger 2004); Kilauea (Garcia et al. 2000)

observed (Fig. 2 of Hauri 1996). He proposed an alter-
native hypothesis that the distinctive Makapuu-stage
composition reflects SiO,-rich partial melts derived from
a garnet pyroxenite component in the plume.

Based on melt-peridotite reactions first discussed in
Kelemen (1986), a third alternative for generating rela-
tively high SiO, content was proposed by Stolper et al.
(2004) for the High-SiO, Group Mauna Kea lavas
recovered in Phase 2 of the Hawaii Scientific Drilling
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Fig. 9 La/Yb versus Sc/Y, Zr/Yb and Tb/Yb for Makapuu-stage
and Kalihi-stage lavas. Fields for Mauna Loa and Makapuu-stage
lavas defined by XRF and INAA data are also shown for
comparison. Since Tb data obtained by INAA are not very precise
(Fig. A5 of Huang and Frey 2003), the fields for Makapuu-stage
lavas and Mauna Loa lavas defined by INAA data are not plotted
in panel ¢. Only lavas with 2.2>K,0/P,05>1.2 and L.O.1. <0.8%
are plotted. As discussed in the text, the source of Makapuu-stage
lavas included a recycled sedimentary component. We consider this
complexity in modeling. First, we calculate the trends formed by
Makapuu-stage and Kalihi-stage lavas using a common garnet
peridotite source; i.e., with the same La/Yb, Sc/Y, Zr/Yb and Tb/
YD ratios. These are the melting trajectories labeled as “‘original
source”. Input values for the calculation are in Table 3. Then we
add 3% carbonate sediment to this “original source” (Table 3).
The melting trajectories labeled as ‘‘original source + 3%
carbonate sediment” are calculated using this sediment enriched
source. Less than 3% sediment is sufficient to explain the distinctive
features of Makapuu-stage lavas, such as high Sr/Nb, low Th/La
and their Nd-Hf isotopic ratios. The effect of adding 0.25%
hydrothermal clay to the “‘original source” is similar to that of
adding 3% carbonate sediment (Table 3); consequently, we do not
show modeling trends for this case

Project (HSDP). Specifically, melt generated from peri-
dotite (relatively low SiO, content) reacts with an over-
lying residual peridotite by assimilating orthopyroxene,
clinopyroxene and crystallizing olivine thereby increasing
the SiO, content in the melt. This reaction is similar to the
models proposed by Eggins (1992) and Wagner and
Grove (1998) to explain the high MgO Kilauea glasses.
No attempt has yet been made to explain incompatible
element abundance and isotopic ratios of HSDP lavas by
this process. In addition, since Ni is much more com-
patible in olivine than other phases, this process will
simultaneously increase SiO, content and decrease Ni
content. Using mineral and melt compositions given
in Table 3 of Stolper et al. (2004) and Equation 39 of

Beattie et al. (1991), we obtain Dy*Vine/melt=6 .59 and
DN‘orlhopyroxene melt __ 1.92. Since DN'clinopyroxene/orlhopyroxene
i L.

<0.5 (e.g, Table 2 of Seitz et al. 1999), we take
Dy clinopyroxene/melt — () 96 49 3 maximum estimate. Con-
sequently, the reaction (Fit A) given in Table 3 of Stolper
et al. (2004) predicts that Ni content in high-SiO, Mauna
Kea group lavas should be ~70% of that in low-SiO,
Mauna Kea group lavas. However, this is not observed in
HSDP2 whole rocks (Fig. 5f of Huang and Frey 2003).
With respect to Koolau lavas, the reaction proposed
by Stolper et al. (2004) does not significantly affect CaO
and Al,O; contents (see their Fig. 18). Therefore, this
process does not explain the low CaO and high Al,O3/
CaO of Makapuu-stage lavas (Fig. 11 of Frey et al.
1994; Fig. 10 of Haskins and Garcia, 2004). In addition,
Garcia (2002) noted the unusually high Ni contents of
olivine in Koolau lavas and in detail Makapuu-stage
lavas have higher Ni contents than Kalihi-stage lavas
(Fig. 8c). Consequently, the melt-peridotite reaction
fails to explain important compositional features (low
CaO and high Ni) of Makapuu-stage lavas. Therefore,
this model is not suitable for explaining the SiO, dif-
ference between Makapuu-stage and Kalihi-stage lavas.
To further evaluate the role of melt derived from
garnet pyroxenite in controlling major element compo-
sitions of Koolau lavas, the Makapuu-stage and Kalihi-
stage lavas, with K,O/P,O5>1.2 and MgO > 6.5%, were
adjusted to be in equilibrium with Fogq olivine, which is
the highest Fo olivine found in Makapuu-stage lavas
(Norman and Garcia 1999; Garcia 2002), by adding or
subtracting equilibrium olivine in 0.1% steps assuming
(Fe/Mg)otivine/(Fe/Mg)mere = 0.30. After this adjustment,
there is still considerable variation in major element
composition of Makapuu-stage and Kalihi-stage lavas
(Figs. 10, 11). Surprisingly, SiO, content does not dis-
tinguish Makapuu-stage and Kalihi-stage lavas. Some
Kalihi-stage lavas, Units 6 and 9, also have high SiO,
content (Fig. 10). These two units, along with samples
from Units 4, 5, 10 and 12 which are not plotted in
Fig. 10, also have the distinctive high Sr/Nb, a charac-
teristic of Makapuu-stage lavas (Fig. 3c). The best
major element discriminant between Makapuu-stage
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See captions of Figs. 5 and 8

and Kalihi-stage lavas is CaO content (Fig. 11b; Fig. 5
of Haskins and Garcia; 2004). We argued earlier that
Makapuu-stage lavas sampled more of a recycled
phosphate-bearing carbonate-rich or hydrothermal sed-
imentary component. Since only small amounts (<3%)
of a sedimentary component is required to explain the

569

72
regressed line

~ of Koolau lavas
(Makapuu- and

64 t @ \\\ °
A \\ / Kalihi-stages)

68 |

X 60| <
~ A S
(@] 56 | S
N AR A S
52 | AR
A
8 Hawailan Shields:
44 . adjusted to Fo90
b A

* ARS8

S .
o & .’ Koalau
9 A ? L O KSDP
O 4lm ..’ O Makapuu]
< A anhydrous melts
> from eclogite
° @ endmembers from;
0 Hauri (1996)
0 10 20
- MgO (%)
: . : ~
c
A A
62 A 1
59 AA
S Ag@ A
~ L
o 56 A % ﬁAA Koolau
»n 2 A O KSDP
531 . z)@fA O Makapuu]
Koolau \ anhydrous melts
50 [ lavas from eclogite ]|
A
47 ! X X
0 2 4 6 8 10

Na20+K20 (%)

Fig. 11 MgO versus SiO, and CaO; and SiO, versus Na,O + K,O.
Makapuu-stage (squares) and Kalihi-stage (open circles) lavas (with
2.2>K,0/P,05>1.2 and MgO>6.5%) are adjusted to be in
equilibrium with Fogg olivine. The Hawaiian shield field is defined
by olivine adjusted (to be in equilibrium with Fogy olivine)
compositions (only lavas with 2.2>K,0/P,Os>1.2 and
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(triangles, Takahashi et al. 1998; Yaxley and Green 1998;
Takahashi and Nakajima 2002; Pertermann and Hirschmann,
2003). Dashed line in Panel a is regression trend for Koolau
(Makapuu-stage and Kalihi-stage) lavas which intersects the
experimental melt trend at >64% SiO,; in Panel b, the “?”
indicates that Koolau lavas do not define a trend. Hawaiian shield
data used in this figure are: Koolau (Frey et al. 1994; Haskins and
Garcia 2004); Mauna Loa (Garcia et al. 1995a; Rhodes 1995, 1996;
Rhodes and Hart 1995; Rhodes and Vollinger 2004); Mauna Kea
(Rhodes 1996; Rhodes and Vollinger 2004; Stolper et al. 2004);
Kilauea (Chen et al. 1996; Garcia et al. 2000; Quane et al. 2000);
Loihi (Frey and Clague 1983; Garcia et al. 1993, 1995b 1998;
Norman and Garcia 1999); Kahoolawe (Fodor et al. 1992; Leeman
et al. 1994; our unpublished data).
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Fig. 12 Lomb normalized periodograms of Sr/Nb and La/Yb for
KSDP lavas. Only unaltered lavas (1.2<K,0/P,05<2.2 and
L.0.1.<0.8) are included in the analysis. Two confidence level
lines (at 50% and 95%) are shown for comparison. Lomb
normalized periodograms of Al,O3/CaO, Th/La and La/Nb (not
shown) are similar to that of Sr/Nb, i.e., two peaks, and that of Tb/
Yb (not shown) is similar to that of La/Yb, i.e., only one peak
at ~30 times resurfacing time. The procedure is given by
Press et al. (1992, pp 575-579), and Matlab script Lomb.m
(http://mathforum.org/epigone/comp.soft-sys.matlab/hangdiher/
34CED3BF. BOSE25AF @spectral-imaging.com) was used

distinctive trace element geochemical signatures of Ma-
kapuu-stage lavas (Table 3), the sedimentary component
has negligible effect on the major element content, such
as CaO, of Koolau lavas.

Olivine adjusted SiO, content in Koolau lavas is
correlated with Nd-Hf-Pb isotopic ratios (Fig. 10).
Therefore, the large variations in olivine adjusted major
element contents are not artifacts of olivine adjustment.
In the olivine adjusted SiO,—'**Nd/'**Nd plot
(Fig. 10b), the averages for different Hawaiian shields
(from Table 1 of Hauri 1996) largely overlap with
Koolau lavas (Makapuu-stage and Kalihi-stage lavas),
implying that a single shield (Koolau) may sample all the
source components contributing to Hawaiian shields.
Reiners (2002) also noted correlations between compo-
sition and isotopic ratios in individual sequences of
basaltic eruptives, and he argued for mixing of melts
derived from pyroxenite and peridotite. In detail,
Makapuu-stage and Kalihi-stage lavas form subparallel
trends in Fig. 10. A possible interpretation for these
trends is that both Makapuu-stage and Kalihi-stage la-
vas contain varying proportions of a SiO,-rich compo-
nent derived from garnet pyroxenite but that the
Makapuu-stage lavas contain more of an isotopically
distinctive sedimentary component.

The calculated dacitic magma of Hauri (1996) has an
unusual composition in having quite high MgO (6%) for
its high SiO; content (64%). No experimentally derived
melt of eclogite/garnet pyroxenite has these character-
istics; in fact, Pertermann and Hirschmann (2003a)
concluded that “no eclogitic partial melt has been
identified that is capable of explaining all of composi-
tional features of the exotic Koolau component”. We
ask—Is the 6% MgO-64% SiO, a robust estimate? A
concern about the Hauri compilation of shield lava
composition is SiO, mobility during alteration. A sig-

nificant fraction (26%) of lavas in Hauri‘s data compi-
lation have K,O/P,Os < 1, and Frey et al. (1994)
showed that SiO, contents are commonly lower in such
altered lavas. However, using our alteration discrimi-
nant (2.2 > K,0/P,05 > 1.2) leads to similar averages for
Makapuu-stage lavas.

The mismatch between the 6% MgO-64% SiO,
composition with partial melts of eclogite/garnet
pyroxenite is apparent in Fig. 11a. This discrepancy can
be avoided by choosing a more SiO,-rich (~66%)
component with ~2% MgO. Although such a dacitic
component is consistent with experimentally determined
melts of eclogite/garnet pyroxenite, Pertermann and
Hirschmann (2003a) suggest that there are two problems
with this interpretation:

1.Low degrees of melting of garnet pyroxenite are
required to create a SiO»,-rich melt; hence a relatively
low temperature is inferred. In contrast, high MgO-low
Si0O, picritic magma requires partial melting of perido-
tite at higher temperature. Generally, garnet pyroxenite
melts to a very high extent (60%) at the peridotite soli-
dus temperature (e.g., Fig. 4 of Pertermann and Hir-
schmann, 2003b). Consequently, Pertermann and
Hirschmann (2003a) suggest that “dacitic partial melts
could form from eclogite in the deeper portions or the
cold periphery of the plume, with peridotite partial
melting predominantly in the hot core”; therefore, they
conclude that dacitic and picritic melts are unlikely to be
in close proximity. We argue, however, that mixing of
such melts is consistent with a physical model for the
Hawaiian plume. For example, the radius of the
Hawaiian plume is ~50-70 km and the potential tem-
perature in the center of the plume may be ~300-400 °C
higher than ambient mantle (Ribe and Christensen 1999;
Zhang and Watt 2002). Consequently, there is a large
horizontal temperature gradient within the Hawaiian
plume (Figs. 4a and 5a of Ribe and Christensen 1999).
Since a Hawaiian volcano captures magma generated
over a circular area (magma capture area) with radius
ranging from 20 to 35 km (DePaolo and Stolper 1996;
Ribe and Christensen 1999), the magma capture area
can include melts derived over a large temperature
range. Using Fig. 4 of Pertermann and Hirschmann
(2003b), a temperature difference less than 200 °C is
required to generate low extent (10-20%) partial melts
of garnet pyroxenite and high extent (~20%) partial



melts of peridotite. Since Makapuu-stage lavas formed
as Koolau shield volcanism waned, i.e., when the shield
was moving off the plume, the magma capture area in-
cluded lower temperature dacitic melts.

2.Referring to Norman and Garcia (1999), Perter-
mann and Hirschmann (2003a) argue that the trace
element features created by residual garnet, e.g., high Sr/
Y and Sm/Yb, are absent in Koolau lavas. However, in
Figs. 2, 8 and 9 we provide evidence for garnet as an
important residual phase for Makapuu-stage lavas.
Moreover, Fig. 6¢ of Haskins and Garcia (2004) also
shows that a relatively high Sr/Y in Makapuu-stage la-
vas is consistent with a dacitic component.

Finally, Hawaiian shield lavas define a clear inverse
MgO-SiO, trend with Makapuu-stage lavas as one ex-
treme (Fig. 11a), but the MgO-CaO plot is scattered
(Fig. 11b). Nevertheless, Makapuu-stage lavas are offset
to low CaO at a given MgO, and this result is consistent
with a low CaO, dacitic component in these lavas
(Fig. 11b). Additional evidence in favor of a dacitic
component is the positive SiO, versus Na,O + KO trend
for Koolau lavas (Fig. 11c). This trend can be explained
by mixing low SiOj-low (Na,O + K,0) picritic melt and
high SiO,-high (Na,O + K,0) dacitic melt. If the picrite
endmember has 48% SiO, and 16% MgO, and the da-
cite endmember has 66% SiO, and 2% MgO (Fig. 11a),
the maximum amount of dacite endmember in Koolau
lavas is ~20%.

Relative role of garnet pyroxenite/eclogite
and peridotite as sources for Koolau lavas:
Ni constraints

Olivine and whole rocks from Koolau Volcano have
unusually high Ni content (Fig. 4 of Garcia, 2002;
Fig. 8c). Sobolev et al. (2005) noted that Ni/MgO and
SiO, (both corrected for olivine fractionation) are pos-
itively correlated in Hawaiian shield lavas, with Mak-
apuu-stage lavas defining the high SiO, and Ni/MgO
endmember. Earlier, we used the relatively high Ni
content to argue against a melt-mantle reaction model
for explaining high SiO,. Based on major element con-
tents, we inferred that the high SiO, component in
Koolau lavas is a dacitic melt; however, dacitic partial
melts of eclogites formed from recycled oceanic crust are
expected to have low Ni content. In contrast, Sobolev
et al. (2005) suggest that high Ni/MgO may be associ-
ated with SiO,-rich melt. They argue that partial melt of
garnet pyroxenite reacts with peridotite, replaces olivine
with pyroxene, and generates olivine-free, secondary
garnet pyroxenite (e.g., Yaxley and Green 1998; Ta-
kahashi and Nakajima 2002). Partial melts of this sec-
ondary olivine-free, garnet pyroxenite have high Ni and
SiO, content; therefore, their model accounts for the
previously unexplained relatively high Ni and SiO, in
Makapuu-stage lavas. We note, however, that several
aspects of their model need testing. Specifically, can
partial melting of olivine-free, secondary garnet pyrox-
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enite generate melts with ~15% MgO and >49% SiO,
(Table 1 of Sobolev et al. 2005) The high MgO content
of this melt is required to keep the bulk-solid/melt par-
tition coefficient for Ni ~1 (Table S2 of Sobolev et al.
2005) rather than > 10 for partial melting of MORB-like
eclogite (see Table 9 of Pertermann et al. 2004). Finally,
a characteristic of Makapuu-stage lavas is relatively low
CaO content (Fig. 5 of Haskins and Garcia, 2004 and
Fig. 11b, this paper), but low CaO is inconsistent with
the relatively high CaO of the calculated melt derived
from secondary garnet pyroxenite (Table 1 of Sobolev
et al. 2005). Consequently, the model proposed by
Sobolev et al. (2005) needs testing and refining before it
can be accepted as a suitable model for Makapuu-stage
lavas. We agree, however, that mixing of partial melt
derived from peridotite and dacitic melt derived from
garnet pyroxenite formed from MORB cannot account
for anomalously high Ni abundance.

Summary of evidence for ancient recycled oceanic crust
in the Hawaiian plume

We have used major and trace element abundances and
isotopic data to evaluate garnet pyroxenite as a source
component for Koolau lavas. These data show that as
Koolau Volcano migrated away from the plume and
reached the end of shield building, garnet became
increasingly important as a residual phase, the extent of
melting decreased and up to 20% of a dacitic melt, with
relatively high SiO, and low MgO and CaO, contributed
to the late shield (Makapuu-stage) lavas. The distinctive
trace element and isotopic characteristics of Makapuu-
stage lavas, i.e., relatively high La/Nb, Sr/Nb and low
Th/La, relatively low '**Nd/"*Nd, but high ""°Hf/'""Hf
at a given " *Nd/"**Nd, and relatively high *’Sr/**Sr and
208pp* 296ph*  can be explained by <3% of a sedi-
mentary component, either ancient recycled phosphate-
bearing carbonate or perhaps sediment with an abun-
dant hydrothermal component, in the source. The evi-
dence for a small amount of ancient recycled sediment in
the source of late shield Koolau lavas coupled with up to
20% of a dacitic melt derived from garnet pyroxenite are
consistent with recycled oceanic crust in the Hawaiian
plume. The mixing of high temperature MgO-rich
melts required by olivine with Fogg oy (Garcia, 2002)
with low temperature dacitic melts is plausible in the
Hawaiian plume setting, especially at the end of shield-
building, when melts are captured from a region that
includes the high temperature plume core and the cooler
plume periphery (See Fig. 1 of DePaolo and Stolper
1996).

Temporal geochemical variations within the KSDP core
The relative age of lava flows recovered from the KSDP

core is constrained; hence, it is possible to use the time-
dependent geochemical variations to constrain temporal
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changes in process and the spatial distribution of geo-
chemical heterogeneity. In order to avoid complications
caused by alteration, we consider only unaltered lavas
(1.2<K,0/P,05<2.2 and L.O.1.<0.8) in a time series
analysis; in particular, we do not consider the bottom of
the core where altered lavas are dominant (Fig. 3). We
follow the assumption of Blichert-Toft et al. (2003) that
the resurfacing time was constant, i.e., the time differ-
ences between lava flows were equal. Using the Mauna
Kea portion of the Phase 2 of the Hawaii Scientific
Drilling Project (HSDP2) core as an analogy for late
shield growth of Koolau, we estimate ~1,400 years for
resurfacing time (~410 ka for ~300 lava flow units in
the Mauna Kea section, Sharp and Renne, 2005). Note
that this estimate of resurfacing time exceeds that of
350 years inferred by Blichert-Toft et al. (2003) who
erroneously assumed ~1,000 Mauna Kea flow units in
the HSDP?2 core.

Following the method described in Press et al. (1992,
pp 575-579) for time series analysis of an unevenly
sampled system, we calculate the Lomb normalized pe-
riodograms for Al,03/Ca0O, Th/La, Sr/Nb, La/Nb, La/
Yb and Tb/Yb (Fig. 12). There are two peaks in these
periodograms for Al,O3/CaO, Th/La, Sr/Nb and La/
Nb: one is at very low frequency (unlabeled) and the
other is at ~21 times resurfacing time (Fig. 12). These
peaks are significant at the 95% confidence level. The
low frequency peak reflects the long-term secular trend
shown in Fig. 3. In contrast, there is only one peak at
~30 times resurfacing time (significant at 95% confi-
dence level) in the Lomb normalized periodograms for
La/Yb and Tb/Yb.

Time series analyses show that the variations of
Al,O3/Ca0O, Th/La, Sr/Nb and La/Nb are highly cor-
related and share a period of ~21 times resurfacing time,
which corresponds to ~29 ka using 1,400 years for
resurfacing time. The correlations among these ratios
are consistent with our inference that high Al,O5;/CaO
arises from partial melting of garnet pyroxenite and the
high Sr/Nb, La/Nb with low Th/La arise from an an-
cient sediment component in this garnet pyroxenite.
These variations reflect horizontal (e.g., DePaolo et al.
2001) or vertical (e.g., see Figs. 12 and 13 of Blichert-
Toft et al. 2003) geochemical heterogeneity in the
Hawaiian plume. Blichert-Toft et al. (2003) note that
plume upwelling velocity is greater than plate velocity;
therefore magma extraction may homogenize horizontal
heterogeneity, thereby, implying that temporal geo-
chemical variations in lavas reflect vertical heterogeneity
within the plume. This implication is valid for piston or
pipe flow where there is an abrupt velocity gradient
between the plume core and rim, but it is less likely if
there is a broad velocity gradient (e.g., Hauri et al.
1994b).

If the observed variations of Al,03/CaO, La/Nb, Sr/
Nb and Th/La in the KSDP core reflect vertical spacing
of a garnet pyroxenite component within the Hawaiian
plume, the spacing is 2.9-29 km given 10 cm/year and
1 m/year as the lower and upper limits of the plume

upwelling velocity (e.g., Ribe and Christensen 1999).
This range encompasses the estimate of Takahashi and
Nakajima (2002), based on the volume of Makapuu-
stage lavas, that entrained eclogite blocks in the
Hawaiian plume “may reach up to 10 km in size or
larger”. The approach of Eisele et al. (2003) for the
HSDP drill core at Mauna Kea calculates the spacing of
Pb isotopic heterogeneities by integrating over a non-
linear ascent path beneath the HSDP drill site (see their
Fig. 13); they infer 21 to 86 km as the minimum length
scale of the Pb heterogeneity. However, this approach
requires information about the distance between the
shield and plume center as a function of time. Such
information is not available for Koolau.

The lack of a significant peak (at 95% confidence
level) at ~21 times resurfacing time in the Lomb nor-
malized periodograms for La/Yb and Tb/Yb implies
that these ratios were not affected by the recycled oce-
anic crust component. That is, La/Yb and Tb/YDb are
controlled by the partial melting process. The variations
of La/Yb and Tb/YD, at a period of ~30 times resur-
facing time which corresponds to ~42 ka, imply that
there was substantial variation in melting extent during
the shield building stage (Figs. 3d, 9). Variable extents of
melting during shield construction have also been in-
ferred for Kilauea (Pietruszka and Garcia 1999), Mauna
Loa (Rhodes and Hart 1995) and Mauna Kea (Stolper
et al. 2004).

Summary

Geochemical and petrographic studies of surface lavas
erupted on the Koolau shield and drill core from the
KSDP show that the shield lavas changed markedly near
the end of shield-building (Frey et al. 1994; Roden et al.
1994; Jackson et al. 1999; Haskins and Garcia 2004; this
paper). Specifically, as shield building ended, tholeiitic
shield basalt changed gradually from a Mauna Loa-like
composition to the well-known geochemical endmember
that characterizes subaerially exposed Koolau lavas (i.e.,
the Kalihi- and Makapuu-stages, respectively of Haskins
and Garcia 2004). This transition, occurring over
~84 ka, was not abrupt; therefore, it was not caused by
a rapid catastrophic event, such as the Nuuanu land-
slide. The transition from Kalihi-stage to Makapuu-
stage lavas reflects changes in source material that oc-
curred as Koolau volcano migrated away from the
plume.

The distinctive geochemical characteristics of Mak-
apuu-stage basalt are manifested in major and trace
element abundances as well as isotopic ratios. Relatively
low abundances of MgO, CaO, Sc and Yb coupled with
high SiO, content are consistent with up to 20% of a
dacitic melt derived from garnet pyroxenite. Distinctive
trace element ratios, such as high La/Nb, Sr/Nb and low
Th/La, which correlate with isotopic ratios of Nd, Hf
and Pb, provide evidence for <3% of ancient recycled
(phosphate-bearing carbonate-rich or hydrothermal)



sediment in the source. The combination of kilometer-
size garnet pyroxenite and a sedimentary geochemical
signature strongly suggests recycled oceanic crust in the
Hawaiian plume as Koolau Volcano entered the late-
stage of shield construction. Mixing of low temperature
dacitic melt formed from garnet pyroxenite and high
temperature melt derived from peridotite is possible at
this stage of volcano growth, because the magma cap-
ture area includes high temperature melts from the
plume center and low temperature melts from the cooler
periphery of the plume.
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