ORIGINAL PAPER

Daisuke Takagi · Hiroaki Sato · Mitsuhiro Nakagawa

Experimental study of a low-alkali tholeiite at 1–5 kbar: optimal condition for the crystallization of high-An plagioclase in hydrous arc tholeiite

Received: 25 February 2003 / Accepted: 1 March 2005 / Published online: 13 May 2005 © Springer-Verlag 2005

Abstract We conducted melting experiments on a lowalkali tholeiite (SiO₂ \sim 52 wt%, MgO \sim 6.5 wt%, CaO/ Na₂O~4.4, Al₂O₃/SiO₂ ~0.33) under both H₂O-undersaturated and H₂O-saturated conditions to investigate the effect of H₂O on the Ca-Na partitioning between plagioclase and melt. Experiments were performed in the temperature and pressure ranges of 1,000-1,300°C and 1-5 kbar, respectively, with varying H₂O contents of 0-12wt%. Redox condition was 0-2 log unit above NNO (nickel-nickel oxide) buffer. Temperature-bulk H2O diagrams for the low-alkali tholeiite are constructed at 1, 2, and 5 kbar, and compositions of near-liquidus plagioclase and coexisting melt are determined. To exclude the effect of melt composition $(CaO/Na_2O \text{ and } Al_2O_3/$ SiO₂ ratios) on plagioclase composition and to reveal the effect of H_2O on An (=100×Ca/(Ca + Na)) content and K_D^{Ca-Na} (=(Ca/Na)_{pl}/(Ca/Na)_{melt}), we focused on the composition of near-liquidus plagioclases which crystallized from melts with nearly constant CaO/Na₂O and Al₂O₃/SiO₂ ratios. Our experimental results show that, at each experimental pressure, An content of the nearliquidus plagioclase and the K_D^{Ca-Na} almost linearly increases as H₂O content in melt increases. Each of the An content and the K_D^{Ca-Na} variations in a low-alkali tholeiitic system (CaO/Na₂O~4.0-4.5, Al₂O₃/SiO₂ $\sim 0.27 - 0.33$) can be described by one equation using temperature, pressure, and melt H₂O content as

Editorial responsibility: T.L. Grove

D. Takagi

Graduate School of Science and Technology, Kobe University, Nada-ku Kobe, 657-8501, Japan

H. Sato (\boxtimes)

Department of Earth and Planetary Sciences, Kobe University, Nada-ku Kobe, 657-8501, Japan E-mail: hsato@kobe-u.ac.jp

M. Nakagawa

Department of Earth and Planetary Sciences, Hokkaido University, Kita-ku Sapporo, 060-0810, Japan

Present address: Sanbonmatsu High School, Sanbonmatsu Higashi-Kagawa, 769-2601, Japan

parameters. An content and K_D^{Ca-Na} of liquidus plagioclase increases with increasing melt H₂O and with decreasing pressure, elucidating that nearly H₂O-saturated conditions of 2–3 kbar is optimal for the crystallization of the most An-rich plagioclase (>An₈₈). We suggest this pressure condition of 2–3 kbar, corresponding to depth of 7–11 km, plays an important role for the origin of An-rich plagioclase in H₂O-rich lowalkali tholeiite. At pressures more than ca. 4 kbar, crystallization of liquidus Ca-rich clinopyroxene decreases the CaO/Na₂O ratio of liquid, thus prohibiting the crystallization of high-An plagioclase from hydrous tholeiite.

Introduction

Extremely An-rich plagioclases ($>An_{90}$) are commonly observed in arc basalts ejected at volcanic fronts (e.g. Kimata et al. 1995). Because the origin is expected to provide an important constraint on island arc magmatism, many petrological and experimental studies have been carried out. Early studies suggested that such an An-rich plagioclase could crystallize from melts with high H₂O content (e.g. Arculus and Wills 1980), or unusually high CaO/Na₂O ratio (e.g. Duncan and Green 1987), or high Al₂O₃ content (Beard and Borgia 1989). Sisson and Grove (1993a) determined K_D^{Ca-Na} (=(Ca/ Na)_{pl}/(Ca/Na)_{melt}) \sim 1.7 at 2 wt% H₂O, \sim 3.4 at 4 wt% H_2O , and ~5.5 at 6 wt% H_2O in high-alumina basalt (HAB) compositions, and concluded that such An-rich plagioclases in HAB grew from melts with high H₂O contents up to 6 wt%. Furthermore, high H₂O concentrations in HABs were confirmed by direct measurement of glass inclusion in olivine phenocrysts (Sisson and Layne 1993). Panjasawatwong et al. (1995) suggested that extremely depleted parental magmas (CaO/ Na₂O > 8) with low H₂O contents (1–3 wt%) are required for the crystallization of such An-rich plagioclase.

To discuss the chemical and physical conditions at which An-rich plagioclase crystallized, it is important to evaluate each of the effect of melt composition, temperature, and pressure on plagioclase-melt equilibria. Previous experimental studies have demonstrated that melt CaO/Na₂O and Al₂O₃/SiO₂ ratios, H₂O content, temperature, and pressure are parameters affecting An content of liquidus plagioclase (Housh and Luhr 1991; Sisson and Grove 1993a; Longhi et al. 1993; Panjasawatwong et al. 1995), although these studies included variable melt compositions, H₂O contents, temperatures and pressures, and did not intend to evaluate the effect of one of the parameters on the An content and K_D^{Ca-Na} keeping other parameters constant. In the present study, to exclude the effect of melt composition on plagioclase composition and to reveal the effect of H₂O on An content and K_D^{Ca-Na} , we focus on the compositions of near-liquidus plagioclases which crystallized from nearly constant melt composition (CaO/Na₂O and Al₂O₃/SiO₂) ratios).

Experimental methods

Starting materials

Two starting materials were prepared for the experiments. One is whole-rock powder of a low-alkali tholeiite (sample IWL16) ejected from Iwate volcano, which is a representative Quaternary volcano located in the volcanic front of NE Japan (Nakagawa 1987; Onuma 1962). The sample was selected as representing the highest Mg# (Mg/(Mg+Fe)=0.55) low-alkali tholeiite of the last eruption (A.D. 1732) of Iwate volcano. The rock contains ca. 1 vol% of olivine (Fo74-85), 25 vol% of plagioclase (mainly An_{85-94} , MgO < 0.2 wt%, FeO* < 0.9 wt%), 2 vol% of augite (Mg# \sim 70–85), and 7 vol% of orthopyroxene (Mg# \sim 70–81) as phenocrysts. Maximum An content of the plagioclase phenocrysts is $An_{93,5}$. The whole-rock powder was prepared by crushing with a hammer (pure iron on iron plate) and then pulverized by agate mortar for ca. 1 h. The other is the glass powder made by melting IWL16 at 1,500°C in a one-atmosphere furnace in air for 5 h, and subsequently pulverized. The bulk chemical compositions of the starting materials were obtained by X-ray fluorescence analysis and presented in Table 1. The tholeiite is characterized by intermediate CaO/Na₂O ratio (4.3–4.4) and Al₂O₃/SiO₂ ratio (0.32–0.34) (Fig. 1).

Equipments and run charges

Experiments at 1–2 kbar

The experiments (1–2 kbar) were carried out using the internally heated pressure vessel (IHPV) of KOBELCO installed at Kobe University. The apparatus uses argon as pressurizing medium and attains a maximum pressure

Table 1 Compositions of starting materials

	Yakehashiri lava (IW	/L16)	
	Whole-rock	Glass	
[Wt% ^a]			
SiO ₂	53.09	52.00	
TiO ₂	0.77	0.74	
Al_2O_3	16.88	17.45	
Fe ₂ O ₃ ^b	10.43	10.94	
MnO	0.18	0.17	
MgO	6.53	6.50	
CaO	9.61	9.72	
Na ₂ O	2.22	2.18	
$K_2 \tilde{O}$	0.22	0.21	
P_2O_5	0.08	0.08	
CaO/Na ₂ O	4.33	4.45	
Al_2O_3/SiO_2	0.32	0.34	

XRF analyses, recalculate to 100%

^b Total Fe as Fe₂O₃

of 2 kbar. Pressure is monitored by Heise gauge and maintained to ca. 3% of the nominal values. The experimental charges were placed near the tip of thermocouples, where a homogeneous temperature was maintained. The lower part of the vessel is at low temperature enough to quench the charges (< 300°C; Sato et al. 1999). After each run, the charges were dropped to

Fig. 1 Plots of CaO/Na₂O vs. Al₂O₃/SiO₂ weight ratios of plagioclase saturated melts obtained by hydrous experiments from literatures (open circle), bulk compositions of aphyric low-alkali tholeiitic basalt (solid circle), and starting materials in our experiments (crossed square). Compositional range of melt coexisting with near-liquidus plagioclase obtained in this study is also shown as large open square. Data sources for hydrous experiments; Baker and Eggler (1987), Housh and Luhr (1991), Sisson and Grove (1993a, 1993b), Panjasawatwong et al. (1995), Metrich and Rutherford (1998), Moore and Carmichael (1998), Martel et al. (1999), and Scailet and Evans (1999). Data sources for low-alkali tholeiitic basalts; Fiji arc (Gill and Whelan 1989), Mariana arc (Bloomer et al. 1989), Kurile arc (Avdeiko et al. 1991) and Izu-Ogasawara arc (Tsukui and Hoshino 2002; A-Miyasaka and Nakagawa 2002). Note that hydrous experiments on low-alkali tholeiitic composition have been sparsely carried out

the cooler part of the vessel by electrically cutting the molybdenum wire hanging the charge, and quenched. Experimental temperature was measured with a W-Re5/26 thermocouple positioned in the hottest part of the pressure vessel, and controlled by an automatic regulator. Temperature at the sample site was calibrated against melting point of copper and gold at the pressure (Mirwald and Kennedy 1979). Uncertainties on temperature determinations are $\pm 5^{\circ}$ C.

The experimental charges were prepared as follows. The double capsule method was used to buffer oxygen fugacity with solid Ni-NiO (9: 1) assemblage. A tube $(2-3/2.0 \text{ mm}\phi)$ and 1.4 cm long), which consists of metal material (Pt, Ag₇₀Pd₃₀, Ag₅₀Pd₅₀, Au₇₀Pd₃₀, and Au₇₅Pd₂₅), was welded on one end and weighed. Distilled water was injected with a micro syringe and the capsule was weighed. Then, ca. 30 mg of powder starting material was inserted and weighed, and then welded shut on the other end and weighed. The weight loss during welding was very small (generally < 0.00003 g) compared with the amount of water added. The sealed capsule was kept at 120°C in an oven for several tens of minutes, and reweighed to ensure good sealing of the capsule (leak check). Prepared sample capsule was put into the outer capsule (Au, Pt; $5.0/4.7 \text{ mm}\phi$ 1 and 4.0 cm long) with distilled water and Pt capsule $(3.0/2.7 \text{ mm}\phi)$ 1 and 2.0 cm long) which contains distilled water and powder of Ni-NiO and was not welded but only shut. And then, the outer capsule was welded, weighed and leak checked again. Only capsules that did not leak were run at elevated pressure and temperature. The double capsule method we used is slightly different from that of Sisson and Grove (1993a) in the point that the latter authors did not weld shut the inner sample capsule, which facilitated more effective buffering of the system.

Following quenching, the experimental charges were weighted to measure volatile loss and punctured to verify the presence of water. The double capsules, which verified the presence of water, were opened, and sample capsules and buffer capsule were taken from the charges. Buffer capsule were prepared for buffer check and sample capsules, which were considered successful, were mounted in epoxy resin, polished on one side, and analyzed by electron microprobe.

Experiments at 5 kbar

The experiments (at 5 kbar) were carried out using a solid media 0.5-inch piston cylinder apparatus installed at Kobe University. Talc-Pyrex outer sleeves and fired pyrophyllite inner sleeves with graphite heater were used in the furnace assembly. The hot piston-out method was employed. Temperature was measured and controlled with Pt/PtRh₁₃ thermocouples without correction for the effect of pressure on the emf. Temperature at the sample site was calibrated against melting point of copper at pressure (Mirwald and Kennedy 1979). Temperature gradient within the furnace assembly was determined by repeatedly using two thermocouples and

the results show the gradient was $< 30^{\circ}$ C/sample capsule (ca. 8 mm). Accuracy in the temperature determination is believed to be in $\pm 10^{\circ}$ C. Pressure correction was also conducted against the melting point of NaCl at 5 kbar (Akella et al. 1969) and quartz-coesite phase boundary (T. Kawasaki, personal communication), and 17.5% correction for friction was applied. Uncertainty in the

5 kbar. Starting materials (ca. 10 mg) with desired water contents were sealed in an Au₇₅Pd₂₅ sample capsule (2.3/ 2.0 mm ϕ 1 and 8 mm long) to avoid Fe loss to sample container (Kawamoto and Hirose 1994). The method to make sample capsule is the same as that described in the previous section. Runs were quenched at run pressure by cutting the power to the furnace, and then the run charge was opened and the sample capsule was mounted in epoxy resin, polished on one side, and analyzed by electron microprobe.

pressure determination is considered to be $\pm 5\%$ near

Run procedures

Three experimental procedures were employed, (1) *melting experiments with the whole-rock powder as starting material*, (2) *crystallization experiments with the whole-rock powder as starting material, and* (3) *crystallization experiments with the glass as starting material*. In the experiments of (1) and (3), 1–2 charges were heated and held at a constant temperature for a prescribed period. In the experiments of (2), charges were firstly heated to a higher temperature (above 20–50°C of the run temperature) for 0.5–1 h, and then cooled down to the run temperature in ca. 1 min, and kept at that temperature for a prescribed period. Experimental durations varied between 17 h to 65 h, generally decreasing with increasing temperature to approach equilibration (Table 2).

All experiments at 1 and 5 kbars were carried out following the run procedure (3). However, in the early stage of this study (experiments at 2 kbar), run procedures of (1) and (2) were also performed. In microprobe analyses for run products obtained by the procedure (1), it is difficult to distinguish between the newly crystallized phase and the relict crystals. Therefore, the run products given by the procedure (1) were only used to determine phase stabilities, whereas the phase compositions were not used for discussions below. Run products given by the procedure (2) and (3) were mainly used for discussions below.

Analytical methods

Electron microprobe analyses were performed with JEOL JXA-8900 at the Venture Business Laboratory of Kobe University, under 15 kV acceleration voltage and 12 nA sample current using ZAF correction. Counting time of 20 s (10 s for Na₂O) with a focused beam was

FeO (%)'	$\begin{array}{c} 16.6 \\ 6.4 \\ 2.2 \\ 1.0 \\ 2.1 \\ 11.7 \\ 0.2 \\ 0.2 \\ 0.2 \end{array}$	2.9 3.3 2.3	s starting
$\mathbb{E}\mathbf{R}^{2h}$ Δ	8.28 5.0 <	0.20 - 0.03 0.01 - 0.06 0.01 - 0.06 0.01 - 0.01 0.01 0.01 0.01 0.01 0.01 0.	e glass a
Δ NNO ^g	$\begin{array}{c} \begin{array}{c} & & & & & \\ & +1.3/+0.5* & & & \\ & +1.3/+1.6* & & \\ & +1.8/+1.6* & & \\ & +1.8/+1.6* & & & \\ & & & & \\ & & & & \\ & & & & & $		riments with the
$K_{D_{ol-melt}}^{Fetot-Mg}$	- 0.23 0.20 0.20 0.22 - 0.23 0.23		ization expe
H ₂ O by difference ^f	0.7 2.94 2.94 1.6 4.1 6.7 7.5 4.1 6.7 7 6.7	1.6 2.8 3.7 3.3	; (3) crystall
H ₂ O melt (wt%) ^e	0.3 3.3 3.3 2.5 4.2 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.0 3.3 2.0 3.3 2.0 3.3 2.0 3.3 2.0 3.3 2.0 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3	0.0 2.1 3.5 3.6	ng materials;
Phases ^d	gl(98), pl(2) gl(95), ol(1), pl(4) gl(80), ol(4), pl(13), mt(3) gl(88), ol(3), pl(6), mt(3) gl(96), pl(4) gl(96), pl(4) gl(93), pl(2) gl(93), ol(3), pl(2), mt(2) gl(97), ol(4), pl(16), cpx(6), onx(2), mt(5)	gl(91), pl(9) gl(75), pl(17), opx(5), mt(3) gl(85), pl(8), opx(2), mt(5) gl(85), pl(8), opx(3), mt(5)	iosphere furnace at 1,550°C tural rock powder as startir
Duration (h)	18.5 20.20 25.5 25.5 25.5 221 21 21 1/22 27 27 27 27 27	25 30 39.5	th one-aton ats with na
(0°C)	1200 1150 11150 11100 11100 11150 11150 11150 11100 11100 11000 1050 1030	1250 1180 1150 1100	prepared wi
Run procedure ^c	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\omega \omega \omega \omega$	Glass:glass crystallizati
H ₂ O in ^b (wt%)	0.3 5.1 5.1 1.5 2.2 7 2.2 7 2.2 7 2.2 7 2.2 7 2.2 7 2.2 7 2.2 7 2.2 7 2.2 7 2.2 7 2.2 8 2 2.2 8 7 8 2 2.2 8 7 8 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8	0.0 1.6 3.1	of IWL16; capsule ments; (2)
Capsule	Au ₇₅ Pd ₂₅ Ag ₅₀ Pd ₅₀ Ag ₅₀ Pd ₃₀ Ag ₇₀ Pd ₃₀ Ag ₇₀ Pd ₃₀	Au ₇₅ Pd ₂₅ Au ₇₅ Pd ₂₅ Au ₇₅ Pd ₂₅ Au ₇₅ Pd ₂₅	ck powder nto sample lting experii
Starting material ^a	Glass Glass Glass Glass Glass Glass WR-powder Glass WR-powder	Glass Glass Glass Glass	vder:natural ro itent injected ii ocedure (1) mei
Charge#	<i>I kbar</i> # 133 # 133 2 <i>kbar</i> 2 <i>kbar</i> # 103 # 103 # 103 # 103 # 66	5 kbar # P4 # P15 # P9 # P16	^a WR-pov ^b H ₂ O cor ^c Run pro

Table 2 Experimental conditions and results of selected runs

materials

^d Phase proportions in weight percent are given in parentheses, calcurated by mass balance. Abbreviations of the phases: gl, glass; ol, olivine; pl, plagioclase; cpx, high-Ca pyroxene; opx,

low-Ca pyroxene; mt, magnetite; Ti-mt, Ti-rich magnetite $^{\circ}$ H₂O content in melt estimated by mass balance assuming H₂O is perfectly incompatible for mineral phases. *Italic* shows H₂O-saturated runs and the H₂O content is calculated by H₂O-solubility model of Moore et al. (1998) for 1, 2 kbar and by Pele software (Boudreau 1999) for 5 kbar f H₂O content in melt obtained by difference of the epma analyses of glass $^{\circ}$ Experimental logfO₂ - logfO₂of the NNO buffer calcurated at P and T (Chou 1987). Experimental fO₂ was calculated with olivine-plagioclase oxygen barometers (Sugawara 2001) for those mineral-bearing run products and/or calculated from Fe³⁺/Fe²⁺ ratio in melt estimated from olivine-melt equilibrium (see text). *A NNO estimated from olvine-melt equilibria

^h Sum of residuals for the mass balance calculations ^A FeO is apparent loss or gain of FeO calculated as (wt%) 100*(FeO_{surving material})/FeO_{surving material}. For crystal-bearing run products, FeO_{calc} is concentration of FeO (total

Fe as FeO) in the run product calculated by mass balance

employed for mineral phases. For glass analyses, 4-8 s counting time for Na₂O and beam sizes of 20-30 µm (rarely 5 µm for run products with small abundance of glass) were employed to avoid Na loss during the analyses. Incremental analyses on hydrous glass were also conducted to check Na loss during analyses (cf. Nielsen and Sigurdsson 1981), and the result indicates that only small Na loss (< 5% in relative) occurs under the analytical condition described above. Mass balance calculations were performed on all major oxide to estimate the proportions of phases in a given charge and evaluate the extent of Fe loss or gain. Melt H₂O contents were not analyzed directly in the present study. For H₂O-saturated charges, melt H₂O contents were calculated by H₂O solubility model of Moore et al. (1998). H₂O contents of melts in H₂O-undersaturated charge were checked for the by difference method (Devine et al. 1995).

Buffer check and determinations of fO₂

After each run at 1–2 kbar, the presence of both NiO and Ni was examined (buffer check). Buffer check of some runs at 2 kbar was conducted by powder method using the X-ray diffractometer, RINT2000 (Rigaku), installed at Department of Chemistry, Kobe University. The results show that buffer was maintained except for the runs which were carried out on low temperature $(\sim 1,000^{\circ}\text{C})$ and long run duration (~ 45 h). These failed runs are not used in this study. Buffer check of the other runs was conducted under a microscope, indicating that the oxygen fugacity might be successfully controlled near the NNO buffer in the double capsule experiments. However, because Chou and Cygan (1990) indicated that presence of a redox buffer assemblage did not necessarily mean that equilibrium redox condition was achieved, the actual oxygen fugacities in sample capsules during runs were calculated with an oxygen barometer of Sugawara (2001), which reported computer software to calculate oxygen fugacity from known chemical compositions of coexisting olivine-plagioclase at given temperature and pressure. Oxygen fugacities of some run products, which are saturated with olivine and plagioclase, were examined by this software (Table 2). The results range between NNO+0.8 and NNO+1.8 log unit, and the average is $NNO + 1.3 \log$ unit. Although the estimated fO_2 is much lower than that of NNO+4 log unit estimated by Sato et al. (1999), whose experiments were carried out with the same apparatus without controlling the oxygen fugacity, the estimated NNO + 1 \pm 1 log unit is slightly oxiding condition compared with NNO buffer. This failure of maintaining fO_2 at NNO buffer may be due to the high rate of hydrogen leakage through the Pt outer capsule (Chou and Cygan 1990) and usage of pure Ar as a pressure medium. Sisson and Grove (1993a, 1993b) who succeed in maintaining fO₂ at NNO used outer capsule of Au and a pressure medium of mixed Ar and methane and their non-welded

sample capsule ensured the attainment of redox equilibrium.

In the experiments at 5 kbar, oxygen fugacity was not controlled to a particular buffer (e.g. iron-wustite, nickel-nickel oxide etc.), and was not calculated from the phases of run products due to absence of olivine at 5 kbar. However, both sample capsule materials and furnace assemblies used in our experiments are similar to those used in Kawamoto and Hirose (1994), who determined that the fO_2 in their experiment is $NNO + 1.3 \log$ unit. Only their Alsimag inner sleeves are different from our fired pyrophyllite inner sleeves. Therefore, we believe the oxygen fugacity is about NNO+1±1 log unit and is similar to that of the experiments at 1-2 kbar. The oxygen fugacity of NNO+1 \pm 1 log unit, the redox conditions of experiments in this study, are thus similar to the estimated values for arc basaltic-andesitic magmas (Δ NNO = $0\sim2$, Hasenaka and Carmichael 1987; Sugawara 2001).

Results

Run products and attainment of equilibrium

Experiments were performed in the temperature and pressure ranges of $1,000-1,300^{\circ}$ C and 1-5 kbar, respectively. Experimental conditions and results of representative runs are detailed in Table 2. Run products consisted of fluid, glass, and mineral phases. Plagioclase, low-Ca pyroxene, high-Ca pyroxene, and magnetite were observed systematically in experiments at 1-5 kbar. Olivine was only observed in experiments at 1-2 kbar and Ti-rich magnetite was only recognized in experiments at 5 kbar, respectively. The crystallinity of the run products increases as bulk H₂O content decreases at a certain temperature. Back-scattered electron images of representative run products are shown in Fig. 2, and experimental phase assemblages are listed in Table 2.

Experimental plagioclase obtained in procedure (2) and (3) is euhedral and the length is $\sim 10-80 \ \mu\text{m}$. Size of plagioclase becomes smaller ($\sim 10 \ \mu\text{m}$) as the temperature decreases. High-Ca and Low-Ca pyroxenes are mostly euhedral and their size is mostly $10-50 \ \mu\text{m}$. High-Ca pyroxene sometimes exhibits sector zoning in terms of alumina. Olivine is mostly euhedral. However, olivine rarely shows round shape in experiments at 2 kbar, H₂O-rich conditions (#99 and#98). Magnetite is euhedral and the average size is $\sim 10 \ \mu\text{m}$. In some run products, magnetite is very small size (< 5 μ m), making the analyses difficult (Table 3).

In the early stage of this study (experiments at 2 kbar), the attainment of equilibrium was examined by utilizing both melting experiments (procedure 1) and crystallization experiments (procedure 2–3) at two run conditions (#103 versus#105,#106 versus#110; detail of the conditions of all the runs are available upon request). Runs#106 and#110 have the same phase assemblage (gl+pl+opx), and their plagioclase, which is slow

Fig. 2 Back-scattered electron images of representative run products obtained in crystallization experiments with glass as starting material (run procedure 3). **a** 1,100°C and H₂O-saturated conditions at 1 kbar (#149). **b** 1,250°C and dry conditions at 5 kbar (#P4). **c** 1,100°C and H₂O = 3.1 wt% at 5 kbar (#P16). The *horizontal black scale* is 50 µm in length. Abbreviations are *Gl*, glass; *Pl*, plagioclase; *Ol*, olivine; *Opx*, low-Ca pyroxene; *Mt*, magnetite

mineral to equilibrate, also have nearly the same composition (An₈₇), indicating that these runs attained equilibrium. Therefore, run duration about 27 h is enough for attainment of equilibrium at 1,100°C with H₂O content of 1.0 wt%. However, plagioclase compositions of run#103 and#105 at 1,150°C, which have the same phase assemblage (gl+pl), are not the same (An₇₇ for#103 and An₉₀ for#105). This may be due to difficulty

in distinguishing between relict crystal and newly crystallized phase. The highly calcic composition of plagioclase in#105 may be derived from relict plagioclases of natural-rock powder, indicating that it is very difficult to check attainment of equilibrium by this method. In the later stage of this study (experiments at 1 kbar and 5 kbar), only procedure (3) was emplyed. It is well known that crystallization experiment are less prone to equilibration problems than melting experiment (Sisson and Grove 1993a; Martel et al. 1999; Scaillet and Evans 1999), and run durations in our experiments are systematically longer than those in Sisson and Grove (1993a, 1993b). Furthermore, all phases in run product obtained by procedure (2), (3) are homogeneous in composition (Table 3) and the mineral phases have euhedral shapes (Fig. 2), suggesting that chemical equilibrium was closely approached.

Phase relations and plagioclase compositions

The phase relations, which are constructed from the experimental data in Table 2, are represented in temperature-bulk H₂O diagrams at each pressure (Fig. 3). The phase relations at 1 kbar experiments are shown in Fig. 3a. With the increase of H_2O content, the liquidus temperature gradually decreases from 1,220°C (dry) to 1,120°C (H₂O-saturated). The liquidus phases are plagioclase at $H_2O < 1$ wt% and olivine and plagioclase at $H_2O > 1$ wt%, respectively. Olivine is stable only within 20–50°C of the liquidus at $H_2O > 1$ wt%, whereas plagioclase is observed in all the subliquidus run products. Saturation curves for low-Ca pyroxene and high-Ca pyroxene are 20-40°C and 60°C lower than the liquidus, respectively, and gradually decrease with increasing H₂O content to the H₂O-saturation. Magnetite crystallizes in all run products below 1,100°C.

The phase relations at 2 kbar experiments are shown in Fig. 3b. The liquidus temperature gradually decreases from 1,230°C (dry) to 1,090°C (H₂O-saturated) as bulk H₂O content increases. At H₂O < ~3 wt%, the liquidus phase is plagioclase, followed by low-Ca pyroxene and magnetite. High-Ca pyroxene crystallizes only below 1,050°C at this pressure. At H₂O > ~3 wt%, on the other hand, magnetite is the liquidus phase, followed by olivine, plagioclase, high-Ca pyroxene, and low-Ca pyroxene. Saturation curves for silicate minerals generally decrease (150–200°C) with increasing H₂O from dry to H₂O-saturated condition (~4.5 wt%).

The phase relations at 5 kbar experiments are shown in Fig. 3c. The liquidus temperature gradually decreases from 1,280°C (dry) to 1,120°C (H₂O-saturated) as bulk H₂O content increases. The saturation curve for plagioclase decreases with increasing H₂O content, and no plagioclase crystallizes at the conditions of H₂O > 7wt% and > 1,000°C. Saturation curves for low-Ca and high-Ca pyroxenes, which also decrease with increasing H₂O content, intersect that for plagioclase at H₂O ~3– 4 wt%. At H₂O-saturated condition, only high-Ca

Table 3	Phase	compositions	of	selected	experiments
---------	-------	--------------	----	----------	-------------

Sample Phase	#	SiO ₂		TiO ₂		Al ₂ O ₃		FeO ^{* 1}	b	MnC)	MgO		CaO		Na ₂ C)	K ₂ O		Cr ₂ O	3	Total
1 kbar																						
# 133	gl ^a (5)	54.96	(24)	0.74	(3)	16.94	(9)	8.43	(35)	0.18	(2)	6.82	(14)	9.53	(7)	2.14	(8)	0.26	(1)			99.32
	pl(4)	50.55	(90)	0.09	(4)	30.42	(94)	1.32	(36)	0.01	(2)	0.74	(25)	15.47	(34)	2.36	(21)	0.04	(1)			100.98
# 129	gl(5)	54.17	(37)	0.73	(2)	16.77	(16)	9.50	(59)	0.18	(2)	6.70	(7)	9.57	(11)	2.13	(10)	0.24	(1)			97.62
	ol(5)	40.74	(28)	0.02	(2)	0.11	(10)	14.07	(53)	0.23	(3)	42.39	(52)	0.24	(4)	0.01	(1)	0.00	(0)			98.43
11 1 4 9	pl(5)	49.36	(56)	0.02	(3)	32.67	(59)	1.26	(8)	0.02	(2)	0.27	(9)	16.81	(53)	1.80	(16)	0.02	(0)			102.22
# 148	gl(/)	56.66	(39)	0.78	(3)	16.5/	(15)	8.29	(22)	0.20	(2)	5.56	(18)	9.27	(22)	2.36	(25)	0.31	(3)			97.05
	OI(7)	41.13	(21)	0.00	(1)	0.42	(53)	15.4/	(34)	0.31	(4)	45.05	(68)	0.45	(33)	0.03	(2)	0.00	(0)			100.80
	pl(5)	49.31	(83)	0.00	(5)	32.20	(85)	1.55	(32)	0.01	(2)	0.40	(21)	10.81	(38)	1.85	(12)	0.03	(1)	0.71	(5)	102.21
// 140	mt(4)	0.22	(3)	2.09	(7)	17.25	(7)	72.34	(104)	0.21	(2)	5.99	(13)	0.30	(1)	0.08	(4)	0.00	(1)	0.71	(3)	89.39 06 27
# 149	gI(7)	33.93	(33)	0.71	(2)	17.55	(21)	12 42	(20)	0.18	(3)	3.82	(14)	9.70	(0)	2.30	(10)	0.28	(1)			90.27
	n(7)	41.50	(20)	0.01	(1)	22.80	(1) (21)	12.42	(11)	0.20	(2)	40.92	(02)	0.21	(2)	1.62	(2)	0.00	(0)			101.57
	pi(3) mt(5)	40.32	(40)	1 77	(5)	32.09 8.62	(31)	72.00	(14)	0.02	(1)	0.25	(15)	0.32	(24)	0.04	(17)	0.02	(1)	1.00	(34)	01 / 8
2 khar	$\operatorname{IIII}(3)$	0.22	(-)	1.//	(3)	0.02	(\mathcal{I})	72.00	(00)	0.20	(0)	/.10	(10)	0.52	(2)	0.04	(1)	0.00	(1)	1.07	(54)	71.40
± 103	gl(7)	53 61	(38)	0.72	(3)	16 70	(20)	10.00	(30)	0.18	(3)	6 57	(20)	9.61	(6)	2 34	(16)	0.26	(1)			98 24
# 105	pl(5)	50.40	(67)	0.06	(3)	30.73	(20) (78)	1 22	(33)	0.01	(1)	0.43	(20)	15.65	(48)	2.52	(32)	0.04	(1)			101.07
# 107	gl(7)	53.56	(15)	0.71	(4)	17.30	(15)	9.52	(12)	0.17	(4)	6.37	(13)	9.87	(3)	2.26	(13)	0.25	(1)			98.41
11 - 0 .	pl(8)	49.08	(59)	0.06	(3)	31.53	(106)	1.36	(29)	0.02	(2)	0.52	(26)	16.65	(58)	2.10	(19)	0.03	(1)			101.35
# 66	gl(9)	54.51	(18)	0.77	(2)	17.00	(12)	8.87	(22)	0.17	(4)	6.65	(12)	9.48	(11)	2.22	(10)	0.27	(3)			95.89
	pl(8)	47.43	(32)	0.01	(2)	32.21	(27)	1.06	(10)	0.01	(2)	0.15	(3)	16.95	(33)	1.63	(11)	0.03	(1)			99.47
# 109	gl(6)	54.42	(34)	0.73	(4)	17.13	(30)	9.06	(20)	0.17	(2)	6.46	(10)	9.65	(6)	2.14	(14)	0.24	(1)			95.53
	ol(6)	40.19	(24)	0.03	(1)	0.13	(15)	13.87	(40)	0.25	(2)	43.33	(52)	0.27	(5)	0.03	(2)	0.00	(0)			99.04
	pl(6)	47.29	(38)	0.02	(2)	33.00	(40)	1.12	(5)	0.02	(2)	0.15	(4)	17.48	(29)	1.38	(12)	0.01	(1)			100.46
	mt(7)	0.18	(7)	1.36	(10)	11.21	(22)	61.65	(178)	0.60	(7)	7.35	(25)	0.29	(2)	0.10	(6)	0.00	(0)	7.00	(168)	89.74
# 116	gl(5)	55.07	(75)	0.70	(4)	17.80	(9)	8.25	(71)	0.13	(7)	5.67	(9)	10.01	(6)	2.13	(37)	0.25	(1)			93.32
	ol(10)	40.22	(40)	0.01	(1)	0.03	(2)	15.64	(90)	0.23	(3)	44.14	(56)	0.21	(3)	0.03	(4)	0.00	(1)			100.51
	pl(3)	46.82	(69)	0.01	(2)	32.97	(37)	1.27	(10)	0.01	(2)	0.16	(3)	17.41	(38)	1.29	(13)	0.02	(1)			99.95
	mt(4)	0.16	(2)	1.75	(13)	8.55	(14)	69.53	(192)	0.29	(3)	6.51	(8)	0.29	(2)	0.00	(0)	0.01	(1)	3.93	(81)	91.01
# 64	gl(9)	59.78	(112)	0.77	(5)	17.22	(71)	6.69	(73)	0.19	(3)	4.38	(45)	8.55	(50)	2.07	(34)	0.34	(4)			95.45
	ol(11)	40.36	(37)	0.01	(1)	0.05	(5)	16.93	(141)	0.36	(3)	43.54	(109)	0.22	(4)	0.01	(1)	0.01	(1)			101.48
	pl(3)	46.47	(47)	0.02	(0)	33.89	(28)	0.78	(8)	0.03	(3)	0.09	(2)	18.22	(27)	1.25	(9)	0.02	(1)			100.76
	cpx(2)	53.96	(13)	0.24	(2)	2.04	(11)	6.79	(35)	0.29	(4)	18.05	(29)	19.38	(83)	0.21	(4)	0.00	(0)			100.96
	opx(7)	54.93	(77)	0.15	(4)	2.10	(90)	10.28	(97)	0.31	(3)	30.03	(108)	1.80	(16)	0.04	(5)	0.00	(0)			99.64
	mt(8)	0.10	(2)	2.25	(19)	5.78	(11)	77.15	(175)	0.28	(3)	6.32	(13)	0.22	(4)	0.06	(10)	0.00	(1)			92.77
5 kbar							(((0)							
# P4	gl(7)	53.82	(17)	0.75	(3)	16.11	(32)	10.26	(22)	0.16	(3)	7.07	(15)	9.41	(8)	2.17	(3)	0.26	(1)			98.39
// D15	pl(9)	51.38	(28)	0.03	(3)	28.68	(27)	1.51	(14)	0.02	(1)	0.27	(7)	14.01	(18)	3.09	(14)	0.06	(1)			99.05
# P15	gl(6)	56.27	(30)	0.81	(2)	15.67	(29)	8.65	(32)	0.21	(3)	6.36	(13)	9.54	(9)	2.20	(6)	0.29	(1)			97.21
	pl(8)	50.93	(45)	0.03	(3)	29.81	(56)	1.88	(25)	0.02	(2)	0.29	(11)	14.74	(34)	2.70	(18)	0.05	(1)			100.45
	opx(4)	52.64	(28)	0.14	(1)	5.94	(37)	9.24	(33)	0.28	(3)	30.09	(28)	1.52	(21)	0.06	(4)	0.01	(0)	0.67	(Ω)	99.91
// D O	mt(6)	0.19	(2)	0.75	(3)	8.58	(3/)	/0.85	(65)	0.32	(4)	9.92	(34)	0.25	(1)	0.05	(6)	0.00	(1)	0.6/	(6)	91.61
# P9	gl(8)	30.54	(47)	0.75	(3)	10.78	(18)	0.85	(31)	0.18	(3)	0.35	(14)	9.95	(7)	2.30	(9)	0.28	(1)			96.25
	pl(12)	49.95	(04)	0.01	(1)	30.03 5.57	(30)	1.03	(11)	0.01	(1)	0.22	(1)	15.41	(30)	2.48	(17)	0.03	(1)			100.39
	opx(4)	0.12	(94)	0.1/	(4)	5.57 0.70	(79)	1.03	(43)	0.20	(3)	30.32	(90)	1.91	(30)	0.03	(4)	0.01	(1)	0.47	(6)	99.04
<i>щ</i> р16	m(3)	0.13	(1)	0.70	(3)	9.70	(70)	08.74	(19)	0.34	(2)	6 16	(3/)	0.25	(3)	0.02	(3)	0.00	(0)	0.4/	(0)	92.02
# P10	gl(3)	20.20 40.17	(20)	0.09	$\binom{2}{2}$	31.06	(13)	1.60	(14)	0.20	(3)	0.10	(10)	9.77	(9)	2.30	(0)	0.27	(1)			90.71
	$p_{1}(f)$	47.1/ 52.02	(32) (15)	0.02	$\binom{2}{2}$	5 00	(33)	8.22	(11)	0.02	(2)	30.70	(2)	1 5 2	(10)	2.17	(11)	0.05	(1)			00.03
	mt(5)	0.18	(13)	0.13	(2)	0.36	(30)	0.23 60 70	(34) (73)	0.23	(2)	10.06	(31)	0.23	(4)	0.03	(3)	0.00	(0)	0.46	(2)	99.77
	m(J)	0.10	(1)	0.78	(4)	9.50	(37)	09.70	(13)	0.54	(4)	10.90	(9)	0.23	(2)	0.04	(3)	0.00	(1)	0.40	(2)	72.04

Abbreviations as in Table 2; Number in parentheses in the phase column gives the number of analyses; Numbers in parentheses in the oxide columns are the standard deviation*100

^a Glass analyses normalized to 100% anhydrous. Unnormalized total is reported

^b FeO* is total Fe as FeO

^c Very small (<5 micron) magnetite. The composition may be contaminated by sorrounding glass during analyses

pyroxene is stable silicate mineral at $\sim 1,000$ °C. Ti-rich magnetite, which crystallizes only at 5 kbar, is stable at low temperature and low-H₂O conditions. No olivine crystallizes at 5 kbar experiments. The stability field of olivine exists only in H₂O-rich regions near the liquidus at 2 kbar (Fig. 3b) and enlarges toward lower-H₂O region as the experimental pressure decreases to 1 kbar (Fig. 3a). This characteristic is consistent with well-

known effects of pressure and H_2O on olivine stability relative to orthopyroxene.

Phase compositions of selected runs are presented in Table 3. Complete table of phase analyses for successful runs are available upon request to the authors. The compositional range of experimental plagioclase is between An_{67} and An_{89} , which decreases with decreasing temperature and H_2O content and increasing pressure.

Discussion

Effect of H₂O content on Ca–Na partitioning between plagioclase and melt

Previous experimental studies of plagioclase-melt equilibria demonstrated that melt Al_2O_3/SiO_2 and CaO/

Fig. 3 Temperature-bulk H₂O sections showing the experimentally determined phase equilibria for a low-alkali tholeiite (IWL16) under oxygen fugacity of NNO + 1 ± 1 log unit. **a** 1 kbar, **b** 2 kbar, and **c** 5 kbar. Large hexagons with black color and small hexagons with gray color are runs of glass- and powder-starting materials, respectively. H₂O-saturation points at the liquidus are roughly estimated for starting composition using H₂O solubility model of Moore et al. (1998) at 1, 2 kbar and Pele software (Boudreau 1999) at 5 kbar. Abbreviations are Ol, olivine; Pl, plagioclase; Cpx, high-Ca pyroxene; Opx, low-Ca pyroxene; Mt, magnetite; Ti-mt, Ti-rich magnetite

Na₂O ratios, H₂O contents, temperature, and pressure affect the An content of plagioclase (Housh and Luhr 1991; Sisson and Grove 1993a; Longhi et al. 1993; Panjasawatwong et al. 1995). Because experiments in this study were performed on only one composition, compositional range of melts coexisting with the liquidus plagioclases is expected to be small. Actually, compositional ranges of CaO/Na2O and Al2O3/SiO2 ratios in the melts are 3.97-4.70 $(4.32\pm0.15\sigma)$ and 0.279-0.323 ($0.305\pm0.011\sigma$), respectively, indicating restricted compositional ranges (Fig. 1, Fig. 5a, b; Table 4). Furthermore, the An-CaO/Na₂O and An-Al₂O₃/ SiO₂ diagrams show no correlation between them (Fig. 5a, b), suggesting that there is not sufficient variation in the melt CaO/Na₂O and Al₂O₃/SiO₂ ratios in the present experiments to affect An in plagioclase. Experimental temperature shows a correlation with An content (Fig. 5c), however, liquidus temperature also decreases with increasing H₂O content (e.g. Danyushevsky 2001). Therefore, variation of An content of plagioclase obtained near the liquidus conditions at

Table 4 An content of plagioclase crystallized near the liquidus conditions, the composition of the coexisting melt, and K_D^{Ca-Na} between plagioclase and the coexisting melt

	Conditions			Plagioclase	Melt	$K_D^{\mathrm{Ca-Na}}$	
Sample#	T (°C) Melt H ₂ O (wt%) Phase		Phases	An (mol%)	CaO/Na ₂ O		Al_2O_3/SiO_2
1 kbar							
# 133	1200	0.3	gl(98), pl(2)	78.4	4.46	0.308	1.5
# 129	1150	2.1	gl(95), ol(1), pl(4)	83.8	4.51	0.310	2.1
# 148	1100	3.3	gl(80), ol(4), pl(13), mt(3)	83.4	3.97	0.292	2.3
# 149	1100	3.3	gl(88), $ol(3)$, $pl(6)$, $mt(3)$	85.6	4.23	0.310	2.6
2 kbar							
# 103	1150	1.0	gl(96), pl(4)	77.4	4.13	0.312	1.5
# 107	1150	1.5	gl(100), pl(tr)	81.4	4.38	0.323	1.8
# 66	1130/1100	2.8	gl(98), pl(2)	85.2	4.28	0.312	2.4
# 109	1100	3.1	gl(94), $ol(1)$, $pl(3)$, $mt(2)$	87.5	4.50	0.315	2.8
# 116	1050	4.2	gl(93), ol(3), pl(2), mt(2)	88.2	4.70	0.323	2.9
# 64	1050/1030	4.9	gl(67), $ol(4)$, $pl(16)$, $cpx(6)$, $opx(2)$, $mt(5)$	89.0	4.12	0.288	3.5
5 kbar	,						
# P4	1250	0.0	gl(91), pl(9)	71.5	4.34	0.299	1.0
# P15	1180	2.1	gl(75), $pl(17)$, $opx(5)$, $mt(3)$	75.1	4.34	0.279	1.3
# P9	1150	3.5	gl(85), pl(8), opx(2), mt(5)	77.5	4.33	0.297	1.4
# P16	1100	3.6	gl(85), pl(8), opx(3), mt(5)	80.1	4.14	0.300	1.8

given pressure depends on the H_2O content in the coexisting melt.

Variations of An content of near-liquidus plagioclase and of the $K_D^{\text{Ca-Na}}$ with melt H₂O content are shown in Fig. 6. An content of plagioclase obtained at dry condition (H₂O = 0) decreases with increasing experimental pressure (Fig. 6a), which is consistent with previously demonstrated pressure dependence of plagioclase-melt equilibria at dry condition (e.g. Longhi et al. 1993; Panjasawatwong et al. 1995), and increase of melt H₂O content can make near-liquidus plagioclases more anorthitic up to 7, 12, and 9 mol% at 1, 2, and 5 kbar, respectively (Fig. 6a). It is difficult to discriminate between the individual effects of melt H₂O and temperature on An content and $K_D^{\text{Ca-Na}}$, however, it appears that both An content of the near-liquidus plagioclase and the $K_D^{\text{Ca-Na}}$ almost linearly increase as melt H₂O content increases at each pressure (Fig. 6). These results suggest that, when CaO/Na₂O and Al₂O₃/SiO₂ ratios of the coexisting melt are nearly constant, An content of liquidus plagioclase and the $K_D^{\text{Ca-Na}}$ can be expressed by linear equations containing only melt H₂O content as a variable at given pressure. In order to account for the effects of temperature and pressure, least square regressions (LLSQ of Sugawara 1999) with An content and $K_D^{\text{Ca-Na}}$ variations from our 1–5 kbar experiments as dependent variables were carried out with the following results:

$$\ln \text{An} = 927.91/T(\text{K}) - 0.86298 - 0.02693 \\ \times P(\text{bar})/T(\text{K}) + 0.01674 \times \text{H}_2\text{O} \text{ (wt.\%)} \\ r = 0.966, \qquad (1)$$

Fig. 4 H_2O contents in liquid by two methods; one is estimated by mass balance calculation assuming H_2O is perfectly incompatible for mineral phases, the other is by difference method of epma analyses of glass

initial water content and modal compositions

Fig. 5 Variations of An content of plagioclase obtained near the liquidus condition with a melt CaO/Na₂O, b melt Al₂O₃/SiO₂, and c experimental temperature. Observed variation of An contents of near-liquidus plagioclases does not depend on melt CaO/Na₂O, Al₂O₃/SiO₂ ratios, but on temperature. *Error bars* show one standard deviation

$$\ln K_{\rm D}^{\rm Ca-Na} = 10695/T({\rm K}) - 6.7781 - 0.1009 \times P({\rm bar})/T({\rm K}) - 0.00860 \times {\rm H_2O(wt.\%)} r = 0.969,$$
(2)

where r is the correlation coefficient. The standard deviations (1σ) of An and K_D^{Ca-Na} determined from these equations are 1.4 mol% and 0.19, respectively. We emphasize that these equations cannot be applied to describe plagioclase-melt equilibria outside the compositional range of our experiments for which it is indispensable to include effect of melt composition. However, these formulations will become the basis for subsequent formulations that include effects of melt composition and can be applicable to a wide compositional range.

Because our experimental results indicate that the effect of H_2O on K_D^{Ca-Na} is dependent on the experimental pressure (Fig. 6b), for comparing our results with those of previous studies, we must make the comparison of K_D^{Ca-Na} obtained at the same experimental pressure. Our 1–5 kb data for K_D^{Ca-Na} versus melt H_2O content at 1, 2, and 5 kbar are presented in Fig. 7 together with data of Sisson and Grove (1993a, 1993b), Baker and Eggler(1987) and Panjasawatwong et al. (1995). Although the compiled K_D^{Ca-Na} for HABs compositions are scattered even at given melt H_2O content, the K_D^{Ca-Na} for HABs show systematically higher values than those obtained on low-alkali tholeiite in this study at the same experimental pressure, indicating that there are some compositional effects (e.g. Al_2O_3/SiO_2) on K_D^{Ca-Na} .

Fig. 6 Effect of H₂O on **a** An content of near-liquidus plagioclase and $\mathbf{a}K_D^{\text{Ca-Na}}$ between the plagioclase and the coexisting melt at 1 kbar, 2 kbar, and 5 kbar. *Lines* represent regression line at each pressure. In **a** at 1 kbar; An = 78.3 + 2.0×(H₂O), r = 0.914: at 2 kbar; An = 75.9 + 2.9×(H₂O), r = 0.960: at 5 kbar; An = 71.2 + 2.1×(H₂O), r = 0.959. In **b** at 1 kbar; $K_D^{\text{Ca-Na}} = 1.41 +$ 0.32×(H₂O), r = 0.964: at 2 kbar; $K_D^{\text{Ca-Na}} = 1.04 + 0.50×(H_2O)$, r = 0.967: at 5 kbar; $K_D^{\text{Ca-Na}} = 1.05 + 0.13×(H_2O)$, r = 0.946

Fig. 7 Variations of K_D^{Ca-Na} with melt H₂O content in basaltic composition at 1 kbar, 2 kbar, and 5 kbar from literatures. *Lines* represent regression lines for low-alkali tholeiite at each pressure obtained in this study (Fig. 6b). Melt H₂O content of H₂O-saturated experiments of Sisson and Grove (1993a, 1993b) are determined by H₂O solubility model of Moore et al. (1998)

What conditions does most An-rich plagioclase crystallize?

The An contents and K_D^{Ca-Na} variations for near-liquidus plagioclase with pressure and melt H₂O content are shown on Fig. 8. The variations observed in Fig. 8 are derived mostly from the effects of melt H₂O content, temperature, and pressure as described in Eqs. (1) and (2). Isopleths for An content and $K_D^{\text{Ca-Na}}$ fitted by hand are also drawn on Fig. 8. Both the An content and the K_D^{Ca-Na} increase with increase of melt H₂O content and decrease with the pressure, indicating that the most An-rich plagioclase (~An₉₀, maximum $An_{92,5}$) crystallizes from the low-alkali tholeiitic melt, near the H₂O-saturated pressure of 2-3 kbar. These pressure ranges are also important in terms of the crystallization of olivine or Ca-rich clinopyroxene. At 2 kbar, olivine is the liquidus phase in H₂O-rich compositions, crystallization of which does not affect the CaO/Na₂O ratio of the melt, and An-rich plagioclase may crystallize in the subliquidus conditions, whereas crystallization of Ca-rich clinopyroxene at 5 kbar water-rich conditions may decrease the CaO/ Na₂O ratio of the subliquidus melt, from which less An-rich plagioclase may crystallize. Therefore, pressure ranges of 2-3 kbars are optimal in terms of element partitioning and phase equilibrium relations for the crystallization of An-rich plagioclase.

Panjasawatwong et al. (1995) suggested, based on their H₂O-undersaturated experiments at 5 kbar and H₂O-saturated experiments at 2 kbar of Sisson and Grove (1993a), that the actual achievement of H₂Osaturated conditions exerts a much stronger influence

Fig. 8 Variations of **a** An content and $\mathbf{b}K_D^{\text{Ca-Na}}$ for near-liquidus plagioclase with pressure and melt H₂O content. *Number in square* represents obtained An content and $K_D^{\text{Ca-Na}}$ at the condition. *Solid line* represents H₂O saturation curve for starting composition estimated by the model of Moore et al. (1998). *Dashed lines* are fitted by hand

on plagioclase composition than increasing amount of H₂O in H₂O-undersatureted conditions: plagioclase crystallized from H2O-saturated melt becomes more anorthitic than that from significantly H₂O-undersaturated melt even at the same H₂O content. This idea is thermodynamically irrelevant because saturation/undersaturation do not matter with the equilibrium partitioning between melt and plagioclase as illustrated by nearly linear An and $K_D^{\text{Ca-Na}}$ (Figs. 5, 7a). Danyushevsky et al. (1997) conducted detailed petrological and melt inclusion studies of high-Ca boninite, and suggested that phenocrysts of An-rich plagioclase $(An_{>90})$ crystallized at the last stages of melt evolution from H₂O-saturated dacitic melts (SiO₂ ~64-67 wt%, MgO ~2 wt%, H₂O ~1.5 wt%, and CaO/Na₂O ~3) at the pressure of < 1 kbar. However, such an An-rich plagioclase would not crystallize at pressure of < 1 kbar at least in the tholeiitic composition used in the present study (SiO₂ \sim 53 wt%, CaO/Na₂O \sim 4.2, and $Al_2O_3/SiO_2 \sim 0.3$).

Applications for the crystallization condition of An-rich plagioclase in arc magmas

An-rich plagioclases (> An_{90}) are commonly observed in arc basalts (Bloomer et al. 1989; Avdeiko et al. 1991; Singer et al. 1993; Kimata et al. 1995; Tsukui and Hoshino 2002; A-Miyasaka and Nakagawa 2002). Although the An-rich plagioclases are regarded as xenocrysts in some cases (Kimata et al. 1995; A-Miyasaka and Nakagawa 2002), even the plagioclase xenocrysts should have crystallized from melts with arc-related melt compositions at certain physical conditions. The crystallization pressures and melt H₂O contents as well as melt compositions have remained obscure.

MORB-like low H₂O concentrations (0.21–0.38 wt%) in primary magmas, which are evidence for pressure-release melting, are reported in a few cases (Sisson and Bronto 1998). For the origin of An-rich plagioclase $(< An_{95})$ in such a low H₂O concentration basalts (Gerbe et al. 1992), the high CaO/Na₂O (\sim 5–7) and high Al₂O₃ (18-21 wt%) in melts (Sisson and Bronto 1998) may be responsible as suggested by Panjasawatwong et al. (1995). However, for many cases, it is widely considered that hydrous fluid phase released from subducted oceanic crust and sediment to mantle wedge plays an important role for the origin of high-MgO low-alkali tholeiitic basalts in arc volcanic fronts (Tatsumi 1989; Ishikawa and Nakamura 1994; Shibata and Nakamura 1997). Recent studies for glass inclusions in magnesian olivine phenocrysts show that primary melts of arc tholeiitic magmas (~8-12 wt% MgO) contain at least 2.0-2.5 wt% H₂O (Sobolev and Chaussidon 1996). Starting from the most primitive melt compositions ($\sim 12 \text{ wt}\%$ MgO), 30–50% fractional crystallization of anhydrous minerals lead to form evolved tholeiitic melts with 3.5-5.0 wt% H₂O. In fact, some glass inclusions with evolved arc tholeiitic compositions (\sim 5–7 wt% MgO) in olivine phenocrysts, which coexist with An-rich plagioclases (up to An₉₃), contain H₂O contents of 3-6 wt% at crustal pressure (Roggensack et al. 1997). This is consistent with low MgO content of An-rich plagioclases in arc basalts (~0.03–0.15wt%: Kuritani 1998; Takagi unpublished data). The MgO contents of those plagioclases are systematically lower than those of plagioclase in MORBs (ca. 0.2-0.4 wt%: Kuo and Kirkpatrick 1982; Sato 1989), suggesting that An-rich plagioclase in arc basalt are derived from slightly evolved melts by crystallization of magnesian olivine. From the discussion above, near H₂O-saturated condition at 2–3 kbar, which is an optimal condition for the crystallization of most An-rich plagioclase ($>An_{90}$) suggested by our experiments, are thought to be achieved in some part of crustal magma chamber at 7-11 km depth. Therefore, we believe that An-rich plagioclases observed in low-alkali tholeiite crystallized from tholeiitic melts (CaO/Na2O~3-7, Al₂O₃/SiO₂ ~0.25–0.38) at H₂O-rich part of crustal magma chamber.

For HABs, which are another dominant volcanic products in volcanic front, Sisson and Grove (1993b)

demonstrated experimentally that HABs could have contained H₂O content of 4–6 wt%. This high H₂O content in HABs is confirmed by direct measurement of glass inclusions in olivine phenocrysts from Mt. Fuego HABs (Sisson and Layne 1993). An-rich plagioclase (>An₉₀) can crystallize from such melts under H₂Osaturated conditions at 2 kbar with ~5 wt% H₂O (Sisson and Grove 1993a). For HABs composition, as the case for low-alkali tholeiite, it seems that H₂O-saturated condition at 2–3 kbar is preferable for crystallization of most An-rich plagioclase (Fig. 8). Although further experimental verification is required, we suggest that An-rich plagioclases in HABs crystallized from H₂Orich melt in crustal magma chamber at 2–3 kbar.

Panjasawatwong et al. (1995) suggested the existence of extremely high CaO/Na_2O (>8) melts to account for the presence of An-rich plagioclases $(>An_{90})$ in arc-related tholeiitic basalts. Their hydrous experiments were conducted at 5 and 10 kbar, and may be affected by the lowering of An content of liquidus plagioclase due to the effect of pressure and crystallization of Ca-rich clinopyroxene. The present study demonstrated that the maximum An content of liquidus plagioclase appears at 2–3 kbar near water-saturated conditions for an arc tholeiite, and crystallization of such An-rich plagioclase (An₉₀₋₉₄) does not require anomalously refractory melts. Figure 9 shows the isopleths of An content of plagioclase in terms of partition coefficient, K_D^{Ca-Na} and CaO/ Na₂O ratio of melt. The figure illustrates that An-rich plagioclase (An₉₀₋₉₄) can crystallize from normal arc tholeiite (CaO/Na₂O = 3–7; Fig. 1) at $K_D^{Ca-Na} = 3-4$, which are achieved at H₂O-saturated condition of 2-3 kbar. Therefore, we presume that the An-rich plagioclase (An₉₀₋₉₄) crystallized from hydrous melts rather than anomalously high CaO/Na₂O melt. However, some of arc tholeiites contain extremely An-rich plagioclases (An₉₆₋₉₈; Arakawa et al. 1992; Kimata et al. 1995). Available Ca-Na partition coefficients, as discussed

Fig. 9 Isopleths of An content of plagioclase in terms of partition coefficient $K_D^{\text{Ca-Na}}$ and melt CaO/Na₂O ratio. *Dashed lines* are fitted by hand. See text for discussion

previously, suggest that such extremely An-rich plagioclases are out of partition equilibrium with normal arc tholeiites (CaO/Na₂O = 3-7; Fig. 1) (Fig. 9). Thus, anomalously high CaO/Na₂O (>8) melts might be responsible for the origin of such an extremely An-rich plagioclase as suggested by Panjasawatwong et al. (1995).

Conclusions

We documented the effects of melt H_2O content, temperature, and pressure on the Ca–Na partitioning between plagioclase and low-alkali tholeiitic melt at oxygen fugacities appropriate to subduction zone magmas by keeping melt Ca/Na₂O and Al₂O₃/SiO₂ ratios constant. Main conclusions in the present study are as follows:

- 1. An content and $K_D^{\text{Ca}-\text{Na}}$ variations on liquidus surface of pressure-melt H₂O section are constructed for a low-alkali tholeiite (IWL16). Both of them increase with increasing melt H₂O and decreasing pressure, indicating that nearly H₂O-saturated conditions of 2– 3 kbar is optimal for the crystallization of the most An-rich plagioclase (~An₉₀, maximum An_{92.5}; $K_D^{\text{Ca}-\text{Na}} = 3.8$) in arc tholeiite.
- 2. The variations of An content and K_D^{Ca-Na} described in (2) are expressed successfully by Eqs. 1 and 2 that include temperature, pressure, and melt H₂O content as variables.
- K_D^{Ca-Na} variations obtained in our experiments combined with estimated H₂O content for arc tholeiitic magmas suggest that An-rich plagioclases (An₉₀₋₉₄) in low-alkali tholeiite crystallized from normal tholeiitic melts (CaO/Na₂O~3-7) in H₂O-rich part of crustal magma chamber at a depth of 7-11 km.

Acknowledgements This paper formed a part of D. Takagi's Master thesis at Kobe University, Japan. We thank Dr. Toru Sugawara for valuable discussion and constructive review on an early version of the manuscript. Journal reviews of Prof. John Longhi and an anonymous reviewer, and editorial suggestions by Prof. Tim Grove were of much help to improve the contents of the paper. We are indebted to Profs. K. Uto, K. Suzuki-Kamata and all the members of Volcanology Group at Kobe University for constructive discussions and encouragement throughout this study. The technical assistance of Mr. K. Sangen during high-pressure experiments with piston cylinder and of N. Tomioka during the EPMA analyses are acknowledged. This work was financially supported in part by Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science to H. Sato.

References

- Akella J, Vaidya SN, Kennedy GC (1969) Melting of sodium chloride at pressures to 65 kbar. Phys Rev 185:1135–1140
- A-Miyasaka M, Nakagawa M (2002) Origin of Anorthite and olivine phenocrysts in island-arc tholeiite: petrological study of 1940 and 1962 ejecta from Miyake-jima volcano, Izu-Mariana arc. J Volc Geotherm Res 117:263–283

- Arakawa Y, Murakami H, Kimata M, Shimoda S (1992) Strontium isotope compositions of Anorthite and olivine phenocrysts in basaltic lavas and scorias of Miyakejima volcano, Japan. J Min Petr Econ Geol 87:226–39
- Arculus RJ, Wills KJA (1980) The petrology of plutonic blocks and inclusions from the Lesser Antilles island arc. J Petrol 21:743– 799
- Avdeiko GP, Volynets ON, Antonov AYu, Tsvetkov AA (1991) Kurile island-arc volcanism: structural and petrological aspects. Techtonophys 199:271–287
- Baker DR, Eggler DH (1987) Compositions of anhydrous and hydrous melts coexisting with plagioclase, augite, and olivine or low-Ca pyroxene from 1 atm to 8 kbar: application to the Aleutian volcanic center of Atka. Am Mineral 72:12–28
- Beard JS, Borgia A (1989) Temporal variation of mineralogy and petrology in cognate gabbroic enclaves at Arenal volcano, Costa Rica. Contrib Mineral Petrol 103:110–122
- Bloomer SH, Stern RJ, Fisk E, Geschwind CH (1989) Shoshoniitc volcanizm in the northern Mariana arc 1. Mineralogic and major and trace element characteristics. J Geophys Res 94:4469–4496
- Chou I-M (1987) Oxygen buffer and hydrogen sensor techniques at elevated pressures and temperature. In: Barnes HL, Ulmer GC (ed) Hydrothermal experimental techniques. John Wiley, New York, pp 61–99
- Chou I-M, Cygan GL (1990) Quantitative redox control and measurement in hydrothermal experiments. In: Spencer RJ and Chou I-M (ed) Fluid-mineral interaction: a tribute to H. P. Eugster. The Geochemi Soc, Special Pub No. 2:3–15
- Danyushevsky LV (2001) The effect of small amounts of H₂O on crystallization of mid-ocean ridge and backarc basin magmas. J Volc Geotherm Res 110:265–280
- Danyushevsky LV, Carroll MR, Falloon TJ (1997) Origin of high-An plagioclase in Tongan high-Ca boninites: implications for plagioclase-melt equilibria at low P(H₂O). Can Mineral 35:313– 326
- Devine JD, Gardner JE, Brack HP, Layne GD, Rutherford MJ (1995) Comparison of microanalytical methods for estimating H₂O contents of silicic volcanic glasses. Amer Mineral 80:319– 328
- Duncan RA, Green DH (1987) The genesis of refractory melts in the formation of oceanic crust. Contrib Mineral Petrol 96:326– 342
- Gerbe MC, Gourgaud A, Sigmarsson O, Harmon RS, Joron JL, Provost A (1992) Mineralogical and geochemical evolution of the 1982–1983 Galunggung eruption (Indonesia). Bull Volc 54:284–298
- Gill J, Whelan P (1989) Early rifting of an oceanic island arc (Fiji) produced shoshonitic to tholeiitic basalts. J Geophys Res 94:4561–4578
- Hasenaka T, Carmichael ISE (1987) The cinder cones of Michoacan-Guanajuato, central Mexico: petrology and chemistry. J Petrol 28:241–269
- Housh TB, Luhr JF (1991) Plagioclase-melt equilibria in hydrous systems. Am Mineral 76:477–492
- Ishikawa T, Nakamura E (1994) Origin of the slab component in arc lavas from across-arc variation of B and Pb isotopes. Nature 370:205–208
- Kawamoto T, Hirose K (1994) Au-Pd sample containers for melting experiments on iron and water bearing systems. Eur J Mineral 6:381–385
- Kimata M, Nishida N, Shimizu M, Saito S, Matsui T, Arakawa Y (1995) Anorthite megacrysts from island arc basalt. Mineral Mag 59:1–14
- Kuo L-C, Kirkpatrick RJ (1982) Pre-eruption history of phyric basalts from DSDP Legs 45 and 46: evidence from morphology and zoning patterns in plagioclase. Contrib Mineral Petrol 79:13–27
- Kuritani T (1998) Boundary layer crystallization in a basaltic magma chamber: evidence from Rishiri Volcano, northern Japan. J Petrol 39:1619–1640

- Longhi J, Fram MS, Auwera JV, Montieth JN (1993) Pressure effects, kinetics, and rheology of anorthositic and related magmas. American Mineralogist 78:1016–1030
- Martel C, Pichavant M, Holtz F, Scaillet B, Bourdier J-L, Traineau H (1999) Effects of fO₂ and H₂O on andesite phase relations between 2 and 4 kbar. J Geophys Res 104:29453–29470
- Metrich N, Rutherford MJ (1998) Low pressure crystallization paths of H_2O -saturated basaltic-hawaiitic melts from Mt Etna: implications for open-system degassing of basaltic volcanoes. Geochim Cosmochim Acta 62:1195–1205
- Mirwald PW, Kennedy GC (1979) The melting curve of gold, silver, and copper to 60-kbar pressure: a reinvestigation. J Geophys Res 84:6750–6756
- Moore G, Carmichael ISE (1998) The hydrous phase equilibria (to 3 kbar) of an andesite and basaltic andesite from western Mexico: constrains on water content and conditions of phenocryst growth. Contrib Mineral Petrol 130:304–319
- Moore G, Vennemann T, Carmichael ISE (1998) An empirical model for the solubility of H_2O in magmas to 3 kilobars. Am Mineral 83:36–42
- Nakagawa M (1987) Geology of Iwate volcanic group, northeastern Japan. J Mineral Petrol Econ Geol 82:132–150 (in Japanese with English abstract)
- Nielsen CH, Sigurdsson H (1981) Quantitative methods for electron microprobe analysis of sodium in natural and synthetic glasses. Am Mineral 66:547–552
- Onuma K (1962) Petrography and petrochemistry of the rocks from Iwate volcano, northeastern Japan. J Mineral Petrol Econ Geol 47:192–204
- Panjasawatwong Y, Danyushevsky LV, Crawford AJ, Harris KL (1995) An experimental study of the effect of melt composition on plagioclase-melt equilibria at 5 and 10 kbar: inplications for the origin of magmatic high-An plagioclase. Contrib Mineral Petrol 118:420–432
- Roggensack K, Hervig RL, Mcknight SB, Williams SN (1997) Explosive basaltic volcanism from Cerro Negro Volcano: Influence of volatiles on eruptive style. Science 277:1639–1642
- Sato H (1989) Fe-Mg partitioning between plagioclase and liquid in basalts of Hole 504B, OPD LEG 111: a study of melting at 1 atm. Proc ODP Sci Res 111:17–26
- Sato H, Nakada S, Fujii T, Nakamura M, Kamata S-K (1999) Groundmass pargasite in the 1991–1995 dacite of Unzen

volcano: phase stability experiments and volcanological implications. J Volc Geotherm Res 89:197–212

- Scaillet B, Evans BW (1999) The 15 June 1991 eruption of Mount Pinatubo. É. Phase equilibria and pre-eruption P-T-fO₂-fH₂O conditions of the dacite magma. J Petrol 40:381–411
- Shibata T, Nakamura E (1997) Across-arc variations of isotopes and trace element compositions from Quaternary basaltic volcanic rocks in northeastern Japan: Implications for interaction between subducted oceanic slab and mantle wedge. J Geophys Res 102:8051–8064
- Singer BS, Pearce TH, Kolisnik AM, Myers JD (1993) Plagioclase zoning in mid-Pleistocene lavas from the Seguam volcanic center, central Aleutian arc, Alaska. Am Mineral 78:143–157
- Sisson TW, Bronto S (1998) Evidence for pressure-release melting beneath magmatic arcs from basalt at Galunggung, Indonesia. Nature 391:883–886
- Sisson TW, Grove TL (1993a) Experimental investigations of the role of H₂O in calc-alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol 113:143–166
- Sisson TW, Grove TL (1993b) Temperatures and H₂O contents of low-MgO high-alumina basalts. Contrib Mineral Petrol 113:167–184
- Sisson TW, Layne GD (1993) H₂O in basalt and basaltic andesite glass inclusions from four subduction-related volcanoes. Earth Planet Sci Lett 117:619–635
- Sobolev AV, Chaussidon M (1996) H₂O concentrations in primary melts supra-subduction zones and mid-ocean ridges: Implications for H₂O storage and recycling in the mantle. Earth Planet Sci Lett 137:45–55
- Sugawara T (1999) Experimental techniques to minimize Fe and Na losses in one atmosphere gas mixing furnace. J Mineral, Petrol Econo Geol 94:425–441
- Sugawara T (2001) Ferric iron partitioning between plagioclase and silicate liquid: thermodynamics and petrological applications. Contrib Mineral Petrol 141:659–686
- Tatsumi Y (1989) Migration of fluid phases and genesis of basalt magmas in subduction zones. J Geophys Res 94:4697–4707
- Tsukui M, Hoshino K (2002) Magmatic differentiation of Hachijo-Nishiyama volcano, Izu Islands, Japan. Bull Volc Soc Japan 47:57–72 (in Japanese with English abstract)