
Thermodynamic Stability Relations
in Redox Systems
I L I E F I S H T I K *

Department of Chemical Engineering,
Worcester Polytechnic Institute,
Worcester, Massachusetts 01609-2280

Graphical stability relations in redox systems known as
Pourbaix diagrams are analyzed employing the concept of
overall stability of chemical species in multiple chemical
reaction systems recently developed by us (Fishtik, I. J. Phys.
Chem. B 2005, 109, 3851). The overall stability approach
provides a simple and systematic algorithm for generating
thermodynamically and stoichiometrically consistent
Pourbaix diagrams that are referred to as overall Pourbaix
diagrams. The conditions under which the conventional
Pourbaix diagrams coincide with the overall Pourbaix diagrams
are also discussed.

Introduction
Thermodynamic analysis is a valuable and powerful tool in
predicting, comprehending, and rationalizing the stability
relations in redox reaction systems. To simplify the treatment
and, at the same time, enhance the visual factor, the stability
relations are often analyzed employing graphical methods,
i.e., by plotting the stability fields of chemical species as a
function of the variables that determine the position of the
electrochemical equilibrium. Clearly, for redox reaction
systems of special interest is the effect of potential E and
species activities, in particular, pH. Thus, the graphical, 2D
constructions, delineating the stability fields of species in
the coordinates E - pH and known as Pourbaix diagrams
(1), are widely used in various areas, especially in corrosion,
geochemistry, and soil science. The construction of Pourbaix
diagrams as well as their various extensions has been
extensively discussed in the literature (2-8). Several com-
mercial software packages that generate Pourbaix diagrams
are also available (9-11).

Despite the large variety of methodologies employed in
the construction of Pourbaix diagrams, the underlying
thermodynamic principles are always the same. First, the
construction of a Pourbaix diagram employs a simple
thermodynamic principle according to which a redox reaction
is proceeding to the left or to the right depending on its sign
of the Gibbs free energy. More specifically, the products in
a redox reaction are stable if the Gibbs free energy change
is negative. On the contrary, if the Gibbs free energy is positive,
the reactants are stable. Thus, the equilibrium line separates
the stability fields of the reactants and products. This simple
thermodynamic principle valid for one redox reaction is next
generalized to multiple redox reaction systems by applying
it simultaneously to a special set of redox reactions involving
in a combinatorial manner a certain number of species
comprising the system. For instance, for systems com-
prising species of one element, the redox reactions are

generated for all possible pairs of species while the electrons,
hydrogen ions, and water molecules are the species used
to balance the reactions. Finally, a set of rules is formu-
lated aimed to determine the stable lines and triple
points.

At first glance the conventional methodologies of con-
structing the Pourbaix diagrams are both thermodynamically
and stoichiometrically consistent. A closer look at the
problem, however, reveals that in multiple chemical reaction
systems the interrelation between thermodynamic stability
and stoichiometry is not trivial. As far as we are aware, the
exact interrelationship between stability and stoichiometry
in multiple redox reaction systems has never been discussed.
In the meantime, for stability analysis this interrelationship
is crucial. Indeed, stability relations based on an arbitrary
set of redox reactions will inevitably result into arbitrary and,
ultimately, meaningless Pourbaix diagrams. Whereas for
systems comprising species of only one element (besides
electrons, hydrogen, and oxygen) the redox reactions used
to construct a Pourbaix diagram are trivially unique (only
two species are allowed in a reaction apart from electrons,
hydrogen ions, and water), for multi-element systems
the conventional stability analysis formalism does not
stipulate a clear algorithm for generating a unique set of
reactions that should be used to deduce the stability rela-
tions. On a more general level, as well-known, conven-
tional chemical thermodynamics itself does not provide a
means to select a set of reactions out of an infinity of permitted
sets.

Recently (12-13) we developed a general thermodynamic
approach to the stability relations in multiple chemical
reaction systems. Our main finding was a quantitative
measure of stability of chemical species that has the
remarkable property of being partitioned into a sum of
contributions coming from a stoichiometrically unique set
of reactions. These reactions were previously deduced from
chemical thermodynamics and were referred to as response
reactions (RERs) (14). We are thus in a position to formulate
a unique quantitative interrelation between stability relations
and stoichiometry that not only provides a simple algorithm
for generating various types of thermodynamically and
stoichiometrically consistent stability relations but, con-
comitantly, clearly shows the limitations of the conventional
stability analysis. The purpose of this article is to apply this
new approach to the analysis of stability relations in redox
reaction systems, i.e., to the construction of Pourbaix
diagrams.

Notation and Definitions
We consider a redox reaction system comprising an ideal
aqueous solution and a given number of pure solid phases.
The aqueous solution is assumed to contain dissolved ionic
and molecular species. For reasons that will become clear
later on it is convenient to consider separately three species,
namely, e- (electron), H+ (aq), and H2O (l). The remaining
species, both dissolved and solid phases, are denoted by Bi

(i ) 1, 2, ..., n). Although our approach to the stability analysis
is general, for simplicity, we assume the species to involve
only four elements whereby “element” means any molecular
or ionic species from which the species may be “built”. To
define the formula matrix we observe that three elements,
namely, e-, H, and O, have already been specified. The
additional element involved in species Bi is denoted by M
and, hence, the formula matrix is
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where εi,e, εi,H, εi,O, and εi,E are the number of e-, H+, O, and
M in the species Bi. Since the element M is present in all
species Bi it is obvious that rank E ) 4.

Next, we define and generate a set of response reactions
(RERs) such that e-, H+, and H2O are always among the
species involved in a RER. Since, by definition (14), a RER
involves no more than rank E + 1 ) 4 + 1 ) 5 species, and
three species, namely, e-, H+, and H2O, are always among
them, to define a RER it is necessary to specify only 2 species
from a total of n species Bi (i ) 1, 2, ..., n). If these 2 species
are Bp and Bq where p and q are integers satisfying the
conditions 1 e p < q e n, the RER is denoted by F(Bp,Bq) and
its general equation is

where

The Gibbs free energy changes of the RERs at specified
temperature T, pressure P, and composition (activities) ae-,
aH+, aH2O, aBi (i ) 1, 2, ..., n) are given by

Introducing the electrode potential E and pH according to

where F is the Faraday constant and taking into account that

the aqueous solution is assumed ideal (aH2O ) 1), eq 3 may
be written as

In generating the RERs and their Gibbs free energy changes
we accept the convention according to which the stoichio-
metric coefficients in RERs are selected as the smallest
integers. In this case, every RER is characterized by a
stoichiometric factor γF (12).

The number of RERs is equal to the number of ways two
species Bi may be selected from a total of n, that is, n(n -
1)/2. Clearly, only n - 1 of them are linearly independent.
Without loss of generality, we choose a subset of linearly
independent RERs as

...

The stoichiometric coefficients of the species Bi in this set
of linearly independent RERs are collected into a separate
stoichiometric submatrix

Finally, we define a vector of the Gibbs free energy changes
of the independent reactions

where t stands for transposition.

Conventional Pourbaix Diagrams
In terms of RERs, the construction of a conventional Pourbaix
diagram may be briefly formulated as follows (1). The stability
fields of two species say, Bp and Bq, in coordinates E - pH
at given T, P and species activities are separated by the straight
line

while the triple points, i.e., the intersection of three lines
separating the stability fields of three species say, Bp, Bq, and
Br, are determined by solving simultaneously a linear systems
of equations

Employing various mathematical and numerical techniques,
eqs 10 and 11 are next analyzed for the evaluation of stable/
metastable lines and intersections. For instance, in computer
software, such as FactSage (10), the construction of the
Pourbaix diagram is based on a numerical procedure called

∆GF ) ∆GF
0(T,P) - zFFE - 2.3hFRTpH + νF,pRTlnaBp

+
νF,qRTlnaBq

(6)

F1 ) F(B1,B2) ) z1e- + h1H+ + w1H2O + ν11B1 +
ν12B2 ) 0

F2 ) F(B1,B3) ) z2e- + h2H+ + w2H2O + ν21B1 +
ν23B3 ) 0

Fn-1 ) F(B1,Bn) ) zn-1e- + hn-1H+ + wn-1H2O +
νn-1,1B1 + νn-1,nBn ) 0 (7)

ν )

B1 B2 B3 ... Bn

F1

F2

...
Fn-1

[ ν11 ν12 0 ... 0
ν21 0 ν13 ... 0
... ... ... ... ...
νn-1,1 0 0 ... νn-1,n

] (8)

∆G ) (∆G1,∆G2,...,∆Gn-1)t (9)

∆GF(Bp,Bq) (E,pH) ) 0 (10)

∆GF(Bp,Bq) (E,pH) ) ∆GF(Bp,Br)
(E,pH) )

∆GF(Bq,Br)
(E,pH) ) 0 (11)

E )

e- H O M

e-

H+

H2O
B1

B2

...
Bn

[ 1 0 0 0

-1 1 0 0
0 2 1 0
ε1,e ε1,H ε1,O ε1,E

ε2,e ε2,H ε2,O ε2,E

... ... ... ...
εn,e εn,H εn,O εn,E

] (1)

F(Bp,Bq) ) zFe- + hFH+ + wFH2O + νF,pBp + νF,qBq ) 0
(2)

zF ) [1 0 0 0 1
-1 1 0 0 0
0 2 1 0 0
εp,e εp,H εp,O εp,E 0
εq,e εq,H εq,O εq,E 0

]hF ) [1 0 0 0 0
-1 1 0 0 1
0 2 1 0 0
εp,e εp,H εp,O εp,E 0
εq,e εq,H εq,O εq,E 0

]
wF ) [1 0 0 0 0

-1 1 0 0 0
0 2 1 0 1
εp,e εp,H εp,O εp,E 0
εq,e εq,H εq,O εq,E 0 ]νF,p ) [1 0 0 0 0

-1 1 0 0 0
0 2 1 0 0
εp,e εp,H εp,O εp,E 1
εq,e εq,H εq,O εq,E 0

]
νF,q ) [1 0 0 0 0

-1 1 0 0 0
0 2 1 0 0
εp,e εp,H εp,O εp,E 0
εq,e εq,H εq,O εq,E 1

]
∆GF ) ∆GF

0(T,P) + zFRTlnae- + hFRTlnaH+ +
wFRTlnaH2O + νF,pRTlnaBp

+ νF,qRTlnaBq
(3)

E ) -RT
F

lnae- (4)

pH ) -log aH+ (5)
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Gibbs energy minimization (not to be confused with the
evaluation of the chemical equilibrium via the direct
minimization of the Gibbs free energy). Within this method
a subset of linearly independent RERs, eq 7, is selected such
that the species B1 is the most stable allotropic form of the
element M under standard conditions. The Gibbs free energy
changes of these reactions are next numerically evaluated as
a function of E and pH. At a particular point in the plane E
- pH, the species involved in the reaction with the lowest
Gibbs free energy change is considered to be stable.

It should be noted that the conventional Pourbaix
diagrams are subject to a serious thermodynamic limitation.
Namely, when constructing a Pourbaix diagram it is tacitly
assumed that the activities of e-, H+, and H2O are equal to
their equilibrium values. In other words, these species are
ruled out from the thermodynamic analysis (12). While for
dilute aqueous solutions the amount of H2O remains
constant, this is certainly not the case for e- and H+. Our
approach is general and does not require any assumptions
concerning the activities of species. In what follows, however,
we will assume that the activities of e-, H+, and H2O are
equal to their equilibrium values. This is done only for the
purpose of obtaining Pourbaix diagrams that are compatible
with the conventional ones.

Overall Stability of the Species
We present next a succinct review of our overall stability
approach. For details the reader is referred to our previous
publications (12, 13). The main idea of the overall stability
analysis is to define a quantitative measure of the stability.
Let Gh e-, Gh H+, Gh H2O, Gh Bi (i ) 1,2,...,n) be the partial Gibbs free
energies of the species in the initial state of the system, while
the same quantities in the equilibrium state will be Gh e-

eq, Gh H+
eq ,

Gh H2O
eq , Gh Bi

eq (i ) 1,2,...,n). Now, it appears that a natural choice
of the stability measure of the species is just the difference
between the partial Gibbs free energy of a species in the
initial and equilibrium state. We, therefore, define an overall
stability for every species as

According to this definition a species is considered stable if
its overall stability is negative. On the contrary, if the overall
stability is positive, a species is unstable. If the overall stability
is equal to zero a species is at equilibrium. To generate
stability diagrams that are compatible with the conventional
Pourbaix diagrams we further assume that the overall
stabilities of e-, H+, and H2O are equal to zero and, thus, the
analysis is focused only on the overall stability of the species
Bi. Based on our previous results, it may be shown that under
these conditions the overall stabilities of the species Bi are
given by

where ν and ∆G are given by eqs 8 and 9 and Σ is the overall
stability vector

The overall stabilities have the important property of being
uniquely partitioned into contributions coming from RERs
as follows

where

The summation in eqs 18 and 19 runs over a complete set
of RERs. Since the RERs are stoichiometrically unique, the
independence of the overall stability vector Σ in eq 16 on the
choice of ν is self-evident.

Overall Pourbaix Diagrams
The overall stability approach may be regarded as an exact
and quantitative formulation of the stability relations in redox
reaction systems. Concomitantly, the overall stability ap-
proach provides an algorithm to generate thermodynamically
and stoichiometrically consistent Pourbaix diagrams. In what
follows, the Pourbaix diagrams generated based on the overall
stabilities of the species are referred to as overall Pourbaix
diagrams. Since the overall stabilities of the species may be
evaluated numerically at any point in the plane E - pH the
construction of an overall Pourbaix diagram is straightforward
and is based on the following considerations:

(a) A species, say Bp, is dominant in a certain region of
the plane E - pH if its overall stability ∑Bp(E,pH) in this region
is nonpositive and lower than the overall stability of any
other species.

(b) The stability fields of two species, say Bp and Bq, are
separated by a straight line, called predominance line, such
that the overall stabilities of Bp and Bq at each point on this
line are nonpositive and equal, i.e., ∑Bp(E,pH) ) ∑Bq(E,pH).
A predominance line separating the stability fields of two
species Bp and Bq is stable if their overall stabilities on the
predominance line are nonpositive, equa, and lower than
the overall stabilities of any other species.

(c) The stability fields of three species, say Bp, Bq, and Br,
intersects at a point, called the triple point, such that the
overall stability of the species Bp, Bq, and Br at this point are
nonpositive and equal, i.e., ∑Bp(E,pH) ) ∑Bq(E,pH) ) ∑Br(E,-
pH). A triple point is stable if the overall stabilities of the
species Bp, Bq, and Br at this point are nonpositive, equal,
and lower than the overall stabilities of any other species.

The easiest way to construct an overall Pourbaix diagram
is to generate first the stable triple points. The latter may be
found by checking for stability all possible triple points, i.e.,
solving the equations ∑Bp(E,pH) ) ∑Bq(E,pH) ) ∑Br(E,pH) for
all possible combinations of 3 species from a total on n.
Once the location of the stable triple points is known, the
final topology of the stability fields of the species may be
deduced by determining the stable predominance lines.
Alternatively, one can plot the overall stabilities of all species
as planes in a three-dimensional space ∑Bi - E - pH and
bearing in mind that on a 3D overall Pourbaix diagram only
the planes with the lowest value of the overall stability should
be present.

Conventional vs Overall Pourbaix Diagrams
We are now in a position to formulate the interrelation
between the conventional and overall Pourbaix diagrams.
From the above developments it follows that within the
overall stability analysis a species Bi is stable in a certain

ΣBi )
1

D
∑

F

γF
2νF,i∆GF (18)

D )
1

n - 1
∑

F
∑
i)1

n

γF
2νF,i

2 (19)

Σe- ) Gh e- - Gh e-
eq (12)

ΣH+ ) Gh H+ - Gh H+
eq (13)

ΣH2O ) Gh H2O - Gh H2O
eq (14)

ΣBi ) Gh Bi - Gh Bi
eq; (i ) 1,2,...,n) (15)

Σ ) νT(ννT)-1∆G (16)

Σ ) (ΣB1
,ΣB2

,...,ΣBn
)t (17)
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region of the plane E - pH if its overall stability ∑Bi(E,pH)
satisfies the conditions

According to the conventional stability analysis a species is
considered stable if eq 20 is satisfied. However, within the
conventional approach the species stabilities are subject to
a more restrictive condition. Namely, every term in eq 20 is
required to be nonpositive. Since γF

2 and D are positive, the
conventional stability analysis requires

On the basis of this analysis we conclude the following.
If the ratio εp,E/εq,E (1 e p < q e n) is equal to one for all pairs
of species Bp and Bq, or, more restrictively, if all entries in the
stoichiometric submatrix ν are equal to (1, the conventional
and overall Pourbaix diagrams coincide. On the contrary, if
the ratio εp,E/εq,E (1 e p < q e n) is different from one at least
for one pair of species Bp and Bq, the conventional and overall
Pourbaix diagram may differ. A more concise and general
formulation of the second part of the above statement is
hardly possible because of the complexity of the stoichi-
ometry. The proof of the first part, although elementary, is
very cumbersome and is omitted. Rather, we will illustrate
the above findings with the help of an example.

An Example
As an example illustrating the theoretical developments
presented above we consider the stability relations in the

system e- - H - O - Fe. The list of species along with their
Gibbs free energies of formation is presented in Table 1.
First, we consider the subsystem e-(aq) - H+(aq) - H2O(l)
- Fe(s) - Fe2+(aq) - Fe3+(aq) - Fe(OH)2(s) - Fe(OH)3(s). As
can be seen, for this subsystem εi,Fe ) 1 for all Fe species and,
consequently, the conventional and overall Pourbaix dia-
grams should coincide. The conventional Pourbaix diagram
is constructed based on the analysis of a complete set of
RERs. These may be generated according to eq 2 and are
presented in Table 2 (first 10 RERs). Since the construction
of the conventional Pourbaix diagram (Figure 1) is well
documented we consider here only the construction of the
overall Pourbaix diagram.

Our starting point is a set of linearly independent reactions
that we arbitrarily select as the first four RERs from the list
of RERs (Table 2)

Assuming, for simplicity, that the activities of Fe2+ and Fe3+

are equal to one, the Gibbs free energy changes of these
reactions are

Thus, the stoichiometric submatrix ν and the Gibbs free
energy changes vector ∆G are

TABLE 1. List of Species and Their Gibbs Free Energy of
Formation at Standard Conditions in the System E- - H - O
- Fe (Data from Ref 11)

species ∆Gf
0 kcal/mol

1. e(aq) 0.00
2. H+(aq) 0.00
3. H2O(l) -56.68
4. Fe(s) 0.00
5. Fe2+(aq) -21.88
6. Fe3+(aq) -4.11
7. Fe(OH)2(s) -116.39
8. Fe(OH)3(s) -166.46
9. Fe3O4(s) -242.65

TABLE 2. Complete List of RERs, Their Stoichiometric Factors, and Gibbs Free Energy Changes at Standard Conditions for the
System the e- - H - O - Fe

RERs γj
2 ∆Gj/F

F1 ) 2e- - Fe + Fe2+ ) 0 1 -0.949-2E
F2 ) 3e- - Fe + Fe3+ ) 0 1 -0.178-3E
F3 ) 2e- + 2H+ - 2H2O - Fe + Fe(OH)2 ) 0 1 -0.131-0.118pH - 2E
F4 ) 3e- + 3H+ - 3H2O - Fe + Fe(OH)3 ) 0 1 0.155-0.177pH - 3E
F5 ) e- - Fe2+ + Fe3+ ) 0 1 0.771 - E
F6 ) 2H+ - 2H2O - Fe2+ + Fe(OH)2 ) 0 1 0.817-0.118pH
F7 ) e- + 3H+ - 3H2O - Fe2+ + Fe(OH)3 ) 0 1 1.104-0.177pH - E
F8 ) e- - 2H+ + 2H2O + Fe3+ - Fe(OH)2 ) 0 1 -0.047 + 0.118pH - E
F9 ) 3H+ - 3H2O - Fe3+ + Fe(OH)3 ) 0 1 0.333-0.177pH
F10 ) e- + H+ - H2O - Fe(OH)2 + Fe(OH)3 ) 0 1 0.287-0.059pH - E
F11 ) 8e- + 8H+ - 4H2O - 3Fe + Fe3O4 ) 0 1 -0.691-0.473pH - 8E
F12 ) 2e- + 8H+ - 4H2O - 3Fe2+ + Fe3O4 ) 0 1 2.156-0.473pH - 2E
F13 ) e- - 8H+ + 4H2O + 3Fe3+ - Fe3O4 ) 0 1 0.156 + 0.473pH - E
F14 ) 2e- + 2H+ + 2H2O - 3Fe(OH)2 + Fe3O4 ) 0 1 -0.297-0.118pH - 2E
F15 ) e- + H+ - 5H2O + 3Fe(OH)3 - Fe3O4 ) 0 1 1.157-0.059pH - E

F1 ) 2e- - Fe + Fe2+ ) 0

F2 ) 3e- - Fe + Fe3+ ) 0

F3 ) 2e- + 2H+ - 2H2O - Fe + Fe(OH)2 ) 0

F4 ) 3e- + 3H+ - 3H2O - Fe + Fe(OH)3 ) 0

∆G1 ) ∆G1
0 - 2FE

∆G2 ) ∆G2
0 - 3FE

∆G3 ) ∆G3
0 - 2 × 2.3RT pH - 2FE

∆G4 ) ∆G4
0 - 3 × 2.3RT pH - 3FE

ν ) [-1 1 0 0 0
-1 0 1 0 0
-1 0 0 1 0
-1 0 0 0 1

]; ∆G ) [∆G1

∆G2

∆G3

∆G4
]

ΣBi
(E,pH) )

1

D
∑

F

γF
2νF,i∆GF(E,pH) e 0 (20)

ΣBi
(E,pH) e ΣBj

(E,pH) (j ) 1,2,...,i - 1,i + 1,...,n) (21)

ΣBi
(E,pH) )

1

D
∑

F

γF
2νF,i∆GF(E,pH) e 0 (20)

νF,i∆GF(E,pH) e 0 for all F involving Bi (22)
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Substituting these into eq 16 and performing the matrix
operations gives

Now, employing these overall stabilities it may be easily
shown that the overall and conventional Pourbaix diagrams
for this subsystem coincide. Consider several examples. Thus,
according to the conventional approach the predominance
fields of Fe and Fe2+ are separated by the line ∆G1(E,pH) )
0. According to the overall stability approach the predomi-
nance fields of Fe and Fe2+ are separated by the predominance
line ∑Fe(E,pH) ) ∑Fe2+ (E,pH), or, ∑Fe(E,pH) - ∑Fe2+ (E,pH) )
0. Solving this equation gives precisely ∆G1(E,pH) ) 0.
Similarly, the predominance line separating the stability fields
of Fe and Fe(OH)2 according to the conventional approach
is given by ∆G3(E,pH) ) 0. Equating the overall stabilities of
Fe and Fe(OH)2 results in exactly the same equation. It is
further obvious that the triple point Fe - Fe2+ - Fe(OH)2 is
determined within both approaches by simultaneously
solving the system ∆G1(E,pH) ) 0 and ∆G3(E,pH) ) 0.
Continuing this procedure over stability fields and their
intersections for the remaining species it may be shown that
for this system the overall and conventional Pourbaix
diagrams coincide.

The advantage of the overall stability approach is that
one can determine directly whether a certain triple point is
stable or not. As an example, consider the stability of the
triple point Fe - Fe2+ - Fe(OH)2. Employing the numerical
values of Gibbs free energy changes and, for simplicity,

dividing the overall stabilities by the Faraday constant we
obtain

At the triple point Fe - Fe2+ - Fe(OH)2 we have ∑Fe(E,pH)
) ∑Fe2+ (E,pH) ) ∑Fe(OH)2(E,pH). The solution of this system
of equations is E ) -0.47 and pH ) 6.92 while the overall
stabilities of the species at this point are equal to

As can be seen, the overall stabilities of Fe, Fe2+, and Fe(OH)2

at the triple point are negative, equal, and lower than the
overall stabilities of the remaining species. Hence, this triple
point is stable. The methodology of construction of overall
Pourbaix diagrams may be best illustrated by plotting the
overall stabilities in a three-dimensional space as illustrated
in Figure 1.

Let us now add Fe3O4(s) to the above subsystem. For this
species εFe3O4,Fe ) 3 and the overall and conventional Pourbaix
diagrams may differ. The conventional Pourbaix diagram
constructed based on the analysis of the RERs given in Table
1 is presented in Figure 2. To construct the overall Pourbaix

FIGURE 1. Pourbaix diagram for the system e-(aq) - H+(aq) - H2O(l) - Fe(s) - Fe2+(aq) - Fe3+(aq) - Fe(OH)2(s) - Fe(OH)3(s). The overall
Pourbaix diagram is presented in a three-dimensional space.

ΣFe ) 1/5(-∆G1 - ∆G2 - ∆G3 - ∆G4)

ΣFe2+ ) 1/5(4∆G1 - ∆G2 - ∆G3 - ∆G4)

ΣFe3+ ) 1/5(-∆G1 + 4∆G2 - ∆G3 - ∆G4)

ΣFe(OH)2
) 1/5(-∆G1 - ∆G2 + 4∆G3 - ∆G4)

ΣFe(OH)3
) 1/5/(-∆G1 - ∆G2 - ∆G3 + 4∆G4)

ΣFe(E,pH) ) 0.221 + 0.059pH + 2E

ΣFe2+ (E,pH) ) -0.728 + 0.059pH

ΣFe3+ (E,pH) ) 0.043 + 0.059pH - E

ΣFe(OH)2
(E,pH) ) 0.089 - 0.059pH

ΣFe(OH)3
(E,pH) ) 0.376 - 0.118pH - E

ΣFe ) -0.32 Σ Fe(OH)2
) -0.32

ΣFe2+ ) -0.32 ΣFe(OH)3
) 0.03

ΣFe3+ ) 0.93
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diagram we first select from Table 1 a set of linearly
independent RERs, say

The Gibbs free energy changes of these RERs are

This gives the following stoichiometric submatrix ν and the
Gibbs free energy changes vector ∆G

Substituting these matrixes into eq 16 and performing the
respective matrix operations we obtain

or, employing the numerical values of the Gibbs free energies
and dividing the overall stabilities by Faraday constant

Now, following the algorithm presented above, the con-
struction of the overall Pourbaix diagram is straightforward.
Consider first the predominance line separating the stability
fields of Fe and Fe2+. Equating the overall stabilities of these
two species gives ∆G1 ) 0 and, consequently, this line
coincides with the predominance line predicted by the
conventional approach. Next, consider the predominance
line separating Fe and Fe3O4. Solving ∑Fe ) ∑Fe3O4 gives ∆G1

FIGURE 2. Conventional Pourbaix diagram for the system e-(aq) - H+(aq) - H2O(l) - Fe(s) - Fe2+(aq) - Fe3+(aq) - Fe(OH)2(s) - Fe(OH)3(s)
- Fe3O4(s).

F1 ) 2e- - Fe + Fe2+ ) 0

F2 ) 3e- - Fe + Fe3+ ) 0

F3 ) 2e- + 2H+ - 2H2O - Fe + Fe(OH)2 ) 0

F4 ) 3e- + 3H+ - 3H2O - Fe + Fe(OH)3 ) 0

F11 ) 8e- + 8H+ - 4H2O - 3Fe + Fe3O4 ) 0

∆G1 ) ∆G1
0 - 2FE

∆G2 ) ∆G2
0 - 3FE

∆G3 ) ∆G3
0 - 2 × 2.3RT pH - 2FE

∆G4 ) ∆G4
0 - 3 × 2.3RT pH - 3FE

∆G11 ) ∆G5
0 - 8 × 2.3RT pH - 8FE

ν ) [-1 1 0 0 0 0
-1 0 1 0 0 0
-1 0 0 1 0 0
-1 0 0 0 1 0
-3 0 0 0 0 1

]; ∆G ) [∆G1

∆G2

∆G3

∆G4

∆G11

]

ΣFe ) 1/14 (-∆G1 - ∆G2 - ∆G3 + ∆G4 - 3∆G11)

ΣFe2+ ) 1/14 (13∆G1 - ∆G2 - ∆G3 + ∆G4 - 3∆G11)

ΣFe3+ ) 1/14 (-∆G1 + 13∆G2 - ∆G3 + ∆G4 - 3∆G11)

ΣFe(OH)2
) 1/14 (-∆G1 - ∆G2 + 13∆G3 + ∆G4 - 3∆G11)

ΣFe(OH)3
) 1/14 (-∆G1 - ∆G2 - ∆G3 - 13∆G4 - 3∆G11)

ΣFe3O4
) 1/14 (-3∆G1 - 3∆G2 - 3∆G3 + 3∆G4 + 5∆G11)

ΣFe(E,pH) ) 0.227 + 0.122pH + 2.429E

ΣFe2+ (E,pH) ) -0.722 + 0.122pH + 0.429E

ΣFe3+ (E,pH) ) 0.049 + 0.122pH - 0.571E

ΣFe(OH)2
(E,pH) ) 0.096 + 0.004pH + 0.429E

ΣFe(OH)3
(E,pH) ) 0.382 - 0.055pH - 0.571E

ΣFe3O4
(E,pH) ) -0.010 - 0.106pH - 0.714E
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+ ∆G2 + ∆G3 - ∆G4 - 4∆G11 ) 0. Clearly, this predominance
line differs from the predominance line predicted by the
conventional approach, i.e., ∆G11 ) 0. Similarly, the coor-
dinates of the triple point Fe - Fe2+ - Fe3O4 differ. Thus, the
coordinates of this triple point within the overall stability
approach are obtained by solving simultaneously the system
of equations ∑Fe(E,pH) ) ∑Fe2+ (E,pH) ) ∑Fe3O4(E,pH). The
result is E ) -0.47 and pH ) 5.50. The coordinates of the
same triple point with the conventional stability approach
are E ) -0.47 and pH ) 6.58. To determine whether this
triple point is stable we evaluate numerically the overall
stabilities at the triple point

Since the overall stabilities of Fe, Fe2+, and Fe3O4 are negative,
equal, and lower than the overall stabilities of the remaining
species this triple pint is stable. The most drastic difference
between the overall and conventional Pourbaix diagram,
however, is that the triple point Fe3+ - Fe(OH)3 - Fe3O4 is
unstable according to the overall approach while the
conventional approach predicts that this triple point is stable.
Indeed, the solution of the system of equations ∑Fe3+(E,pH)
) ∑Fe(OH)3(E,pH) ) ∑Fe3O4(E,pH) gives E ) -3.41 and pH )
1.88. The overall stabilities of the species at this point are

It is seen that the overall stabilities of Fe3+, Fe(OH)3, and
Fe3O4 at the triple point, although equal, are positive and
higher than the overall stabilities of the remaining species,
thus, making this triple point unstable. As a result, the overall
stability of Fe(OH)3 is never dominant and this species should

be eliminated from the overall Pourbaix diagram. Continuing
the overall stability analysis over the remaining triple points
we conclude that only two triple points from a total of 15 are
stable, namely, Fe - Fe2+ - Fe3O4 and Fe2+ - Fe3+ - Fe3O4.
The coordinates of the second of these two triple points lie
in the negative region of pH and, therefore, this triple point
is not shown on the final overall Pourbaix diagram presented
in Figure 3. Comparing Figures 2 and 3 it can be seen that
the two types of Pourbaix diagrams are topologically different.

A Graph-Theoretical Interpretation of the Overall
Stability
The overall stability approach may be given a natural graph-
theoretical interpretation in terms of directed bipartite graphs
(15). According to the bipartite graph formalism a chemical
reaction is described by two sets of vertexes. One of them
depicts the chemical reaction itself. This vertex is connected
via directed edges to another set of vertexes representing
reactants and products. For the particular case of redox
reactions the bipartite graph description is fairly simple since
the electrons, hydrogen ions, and water molecules may be
dropped from the graph. Thus, the bipartite graph of a RER
F(Bp,Bq) involves only two directed edges. Now, eq 18 may
be translated into a bipartite graph network by placing the
n species Bi (i ) 1, 2, ..., n) into a set of n nodes. These nodes
are mutually interconnected via a complete set of n(n - 1)/2
nodes representing the RERs. Further, the edges intercon-
necting the species are appropriately weighted. Namely, the
edge that is incident to species Bp in RER F(Bp,Bq) is weighted
by γF

2νF,p∆GF/D while the edge incident to Bq is weighted by
γF

2νF,q∆GF/D. Additionally, it is specified that the edges are
directed from species Bp to species Bq if γF

2νF,p∆GF/D > 0 and
γF

2νF,q∆GF/D < 0 and, vice versa. The bipartite graph network
interpretation of the overall stability is exemplified in Figure
4 for the system e-(aq) - H+(aq) - H2O(l) - Fe(s) - Fe2+(aq)
- Fe3+(aq) - Fe(OH)2(s) - Fe(OH)3(s) - Fe3O4(s).

The bipartite graph network interpretation of the overall
stability is especially useful in connection with the widespread
availability of computer graphics. Indeed, because the Gibbs
free energies of the RERs ∆GF(E,pH) are analytical functions
of E and pH, each species in a bipartite graph network may
be assigned a color characteristic as a function of E and pH
that is associated to its overall stability. Similarly, the thickness
of directed edges may be linked to ∆GF(E,pH,) thus allowing

FIGURE 3. Overall Pourbaix diagram for the system e-(aq) - H+(aq) - H2O(l) - Fe(s) - Fe2+(aq) - Fe3+(aq) - Fe(OH)2(s) - Fe(OH)3(s)
- Fe3O4(s).

ΣFe ) -0.25 ΣFe(OH)2
) -0.09

ΣFe2+ ) -0.25 ΣFe(OH)3
) 0.35

ΣFe3+ ) 0.99 ΣFe3O4
) -0.25

ΣFe ) -7.83 ΣFe(OH)2
) -1.36

ΣFe2+ ) -1.96 ΣFe(OH)3
) 2.23

ΣFe3+ ) 2.23 ΣFe3O4
) 2.23
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the determination of the RERs that dominate the stability
relations under given conditions of pH and E.

Discussion
Stability relations in multiple redox reaction systems com-
prising one element are conventionally generated on the
basis of the thermodynamic analysis of a certain class of
reactions involving in a combinatorial manner all pairs of
species comprising the system. In fact, this implies that the
stability relations in a complex system are additive in that
the stability relations may be partitioned into a linear sum
of contributions coming from individual redox reactions.
These reactions are stoichiometrically unique and are
identical to RERs that have been deduced from chemical
thermodynamics. Adopting a new quantitative definition of
the stability of the species referred to as the overall stability
and employing the concept of stoichiometric uniqueness in
a complex chemical reaction system we have shown that
stability relations may be indeed partitioned into a sum of
contributions coming from RERs. We thus arrive at an exact
and stoichiometrically unique formulation of stability rela-
tions in multiple chemical reaction systems. This new
fundamental result leads to a simple and thermodynamically
rigorous principle in constructing overall Pourbaix diagrams.
Namely, a species is dominant if its overall stability is
nonpositive and lower than the overall stabilities of the
remaining species. Concomitantly, the overall stability ap-

proach allows a deeper insight into the main assumptions
of the conventional stability analysis in electrochemical
systems. As well-known, according to the conventional
approach a species is stable if the Gibbs free energies of all
reactions involving this particular species are strictly negative.
For systems in which the number of atoms of the element
M is equal to one in every species comprising the system, the
overall and conventional Pourbaix diagrams coincide. If, at
least, in one species the number of atoms of the element M
is different from one, the two types of Pourbaix diagram may
differ.

From the detailed analysis presented in this work it follows
that both the conventional and overall stability analyses
employ essentially the same set of reactions, i.e., RERs. The
two approaches, however, differ in defining the stability field
of a species. In this respect, the conventional approach may
be regarded as more qualitative in that the absolute values
of the Gibbs free energies of the RERs are not important.
Thus, if the Gibbs free energy of at least one RER is not
favorable toward the formation of a given species, the species
is considered unstable regardless of the values of the Gibbs
free energies of the remaining RERs. On the contrary, within
the overall stability approach, a species may be stable even
if the Gibbs free energies of some RERs are thermodynami-
cally not favorable toward the production of this species
provided the Gibbs free energies of the remaining RERs may
overcome the deficit in Gibbs free energy. As a result, the

FIGURE 4. Bipartite graph interpretation of the overall stability in the system e-(aq) - H+(aq) - H2O(l) - Fe(s) - Fe2+(aq) - Fe3+(aq)
- Fe(OH)2(s) - Fe(OH)3(s) - Fe3O4(s).
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overall stability analysis provides a quantitative and ther-
modynamically meaningful criterion for generating the
predominance lines and triple points.

The difference between the overall and conventional
approach is much deeper in systems involving simultaneously
two or more different elements. A detailed analysis of these
systems, however, requires a separate analysis and will be
presented elsewhere.
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