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Potbellies, wasp-waists, and super paramagnetism
In magnetic hysteresis

L. Tauxe,* T.A.T Mullender, and T. Pick
Fort Hoofddijk Paleomagnetic Laboratory, Institute of Earth Sciences, University of Utrecht, Utrecht, Netherlands

Abstract. Because the response of a magnetic substance to an applied field depends strongly on
the physical properties of the material, much can be learned by monitoring that response through
what is known as a "magnetic hysteresis loop". The measurements are rapid and quickly becoming
part of the standard set of tools supporting paleomagnetic research. Yet the interpretation of
hysteresis loops is not simple. It has become apparent that although classic "single-domain”,
"pseudo-single-domain” and "multidomain™ loops described in textbooks occur in natural samples,
loops are frequently distorted, having constricted middles (wasp-waisted loops) or spreading middles
and slouching shoulders (potbellies). Such complicated loops are often interpreted in oversimplified
ways leading to erroneous conclusions. The physics of the problem have been understood for
nearly haf a century, yet numerical ssimulations appropriate to geological materials are almost
unavailable. In this paper we discuss results of numerical smulations using the simplest of systems,
the single-domain/superparamagnetic (SD/SP) system. Examination of the synthetic hysteresis
loops |eads to the following observations. (1) Wasp-waisting and potbellies can easily be generated
from populations of SD and SP grains. (2) Wasp-waisting requires an SP contribution that saturates
quickly resulting in a steep initial slope, and potbellies require low initial slopes (the SP contribution
approaching saturation at higher fields). The approach to saturation is dependent on volume hence
the cube of grain diameter. Therefore there is a very strong dependence of hysteresis loop shape
on the assumed threshold size. (3) We were unable to generate potbellies using a SP/SD threshold
size as large as 30 nm, and wasp waists cannot be generated using a threshold size as small as 8
nm. The occurrence of both potbellies and wasp waists in natural samplesis consistent with aroom
temperature threshold size of some 15nm (+/- 5nm).(4)Simulations using a threshold size of 15-20 nm
with populations dominated by SP grain sizes, that is with a small number of SD grains, produce
synthetic hysteresis loops consistent with measured hysteresis loops and transmission electron
microscopic observations from submarine basaltic glass. (5) Simulations and measurements using
two populations with distinct coercivity spectra can also generate wasp-waisted loops. A relatively
straightforward analysis of the resulting loops can distinguish the latter case from wasp-waisting

resulting from SP/SD behavior.

Introduction

Highly sensitive magnetometers for measuring hysteresis prop-
erties of geological materials [e.g., Flanders, 1988] have recently
become commonly available in paleomagnetic laboratories. So-
called "hysteresis|oops" are generated by subjecting asmall sample
to avery large magnetic field -Bmax- Such a magnetometer mea-
sures the magnetization of the sample as the applied field B decays
to zero, approaches -Bpx, then returns through zero to +Bmax-
Many factors in the sample affect its response to the magnetic field,
including but not limited to, mineralogy, particle size and shape,
domain state, and particle interactions. If their individua contri-
butions can be separated, arelatively quick procedure could yield
a tremendous amount of information concerning these variables.
The potential of rapid assessment of domain state, magnetic grain
size, and/or magnetic mineralogy [e.g., Wasilewski, 1973; Day et
al, 1977; Parry, 1980,1982; Dunlop, 1984,1986] has led many to
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incorporate hysteresis loop measurements into the routine battery
of rock magnetic analyses accompanying paleomagnetic studies.

However, the interpretation of hysteresis loops is not simple.
Geological materials (and even many synthetic ones) are composed
of particles with vastly different responses to magnetic fields and
the resulting loops are distorted from the simple textbook examples
suited for casua interpretation. While much progress hasbeen made
in determining the fundamental response of several geologically rel-
evant minerals (magnetite [e.g., Dayetal, 1977; Parry, 1980,1982;
Heideretal, 1987; Worm andMarkert, 1981;Hodych, 1990; Dun-
lop, 1986; Argyle and Dunlop, 1990], pyrrhotite [ Dekkers, 1988],
goethite and hematite [e.g., Hartstra, 1982; Dekkers, 1988], and
the hysteresis response of single crystals [e.g., Enkin and Dunlop,
1987; Enkin and Williams, 1994; Williams and Dunlop, 1989,1995]
very little numerical modeling has been done to simulate hysteresis
behavior resulting from mixtures of various minerals, grain sizes, or
domain states (however see Roberts et al, [1995]). While Sprowl
[1990] did investigate the effect of particle interaction in magnetite,
most numerical modeling of hysteresis behavior has been done
from an engineering point of view [e.g., Jiles, 1992; Walker et al.,
1993g, b; Dellatorre et al, 1994; Basso et al, 1994; Friedman
and May erg oyz, 1992; Ossart and Meunier, 1991] and has not used
geologicaly relevant parameters.

The importance of numerical modeling of hysteresis loops lies
in the potential payoff: inverting hysteresis loops for the control-
ling grain size, domain state, and mineralogical components. Such
inversions are theoretically possible, and similar types of inver-
sions are carried out routinely in the medical and seismological
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communities. Before inversion is practical, however, a great deal
more must be understood about the forward problem. The phys-
ical principles of the problem are well understood, but numerical
simulation can be tricky and computationally intensive. In the fol-
lowing, we will show results from simulations of combinations of
single-domain (SD) and superparamagnetic (SP) particles. These
simulations model quitewell the distorted hysteresis loops observed
in many natural samples. As an additional benefit the combination
of experimental and simulated data sets may provide constraints on
the SP/SD threshold size.

Numerical Simulations of SP/SD Hysteresis
Behavior: Uniaxial Anisotropy

Magnetic hysteresis loops from geological materials often dif-
fer from typical examples of single-domain (SD), pseudo-single-
domain (PSD), and multidomain (MD) behavior. The loops can
be distorted, making direct physical interpretation in terms of grain
size or domain state difficult or impossible. The two most common
types of distortion are (1) a constriction of the "waist" ("wasp-
waisted") and (2) theless obvious but equally important "potbelly".
Examples of representative loops derived from submarine basaltic
glass (SBG) are showninFigure la-c (see also examplesin avariety
of geological materials by eg., Jackson, [1990], Sun and Jackson,
[1994], McCabe and Channell, [1994], Borradaile et al, [1993],
Channell and McCabe, [1994], Pick and Tauxe, [1993, 1994], Tar-
duno, [1994], Senanayake and McElhinny, [1981], and Roberts et

alL, [1995]). SBG has been shown by Pick and Tauxe [1994] to
have alow-titanium magnetite as the magnetic phase. These loops
can be categorized into four types. paramagnetic (not shown but is
astraight linein thesefields), single-domain (Figure |a), potbellied
(Figure Ib), and wasp-waisted (Figure Ic). Potbellied loops have
not received attention in the literature, athough we frequently see
them in rock magnetic articles. Wasp-waisting, on the other hand,
has been recognized for decades [e.g., Wasilewski, 1973] and can
result from combining two magnetic phases with vastly different
coercivities [Wasilewski, 1973] or combining superparamagnetic
and single-domain behavior [Pick and Tauxe, 1993; Jackson et al,
1993]. To investigate the effect of combining different hysteresis
behaviors on the shape of the resulting loops, Pick and Tauxe[1994]
modeled alinear combination of a population of SD grains with one
of two SP populations of different initial slope. Figure 1d shows the
hysteresis |oop for the SD population (dashed line) plus two approx-
imate SP signals of different initial slope (solid lines). Figure le
(solid line) displays the loop resulting from combining SD plus the
shallow slope (SP1), and Figure If is SD plus the steeper slope
(SP2). This simple model shows that the shape of the composite
curve can indeed be dependent on the initia slope of the super-
paramagnetic population, but determining the actual distribution of
magnetic grain sizes requires a more elaborate inverse modeling
approach. In thefollowing, we will use numerical simulation tech-
niques to study combined superparamagnetic and uniaxial single
domain behavior.

We will be investigating magnetic behavior as a function of an
applied field. When the descending curve (the portion of the loop
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Figure 1. (a), (b), and (c) Characteristic hysteresis loops (uncorrected for paramagnetic slopes) for submarine basaltic
glasses. (d), (e), aand (f) Qualitative models described in text.
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traced between Bmax and 0) and ascending curve (the portion
traced between 0 and Bpax) are the same, there is no magnetic
hysteresis; the treatment is reversible, and there is no magnetic
remanence. Paramagnetic, diamagnetic, and superparamagnetic
behavior are all reversible. We will ignore the strictly linear con-
tributions in the following as these do not lead to the distortions
illustrated in Figure 1. The superparamagnetic fraction, however,
cannot be considered as a simple linear function in fields up to a
Tesla (except for the very smallest particle sizes), and we begin by
modeling the SP contribution to hysteresis loops.

Superparamagnetic Behavior

The starting point for our numerical simulations is an equation
describing the magnetization M as a function of magnetic field
B for a population of randomly oriented, noninteracting, single-
domain particles, whose magnetization remains in thermal equilib-
rium with the applied field. Consider the particle with magnetic
moment m drawn in Figure 2. SP particles, though small, are still
single-domain and have one or more “easy” axes along which the
energy is lower than the intervening “hard” axes. The so-called
“anisotropy energy” (the energy required to change directions of
magnetization from one easy direction to another) can result from
several sources such as details of spin interactions (magnetocrys-
talline anisotropy), particle shape (magnetostatic anisotropy), and
stress (magnetostrictive anisotropy). The simplest case to model
is when there is just one preferred axis (uniaxial anisotropy), and
we will start with this assumption for the numerical simulations
presented here. The particle shown in Figure 2 has an easy axis at
an angle ¢ away from the applied field B. Using polar coordinates
in which « is the angle between B and m and [ is the angle be-
tween m and the plane containing both B and the easy axis. Here,
f, the angle between m and the easy axis, is given by spherical
trigonometry as

cosf = cosacos ¢ + sin a sin ¢ cos 8. (1)

The magnetic energy F, per unit volume of the magnetic parti-
cle shown in Figure 2 is governed by two competing sources [e.g.,
Stoner and Wohlfarth, 1948]: the anisotropy energy (here assumed
uniaxial with anisotropy constant X,,) which encourages alignment
of T with the easy axis and the magnetostatic energy equal to m- B,
acting to align m with B. Since m = Mv, where M is satu-
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Figure 2. Sketch of particle with easy axis making an angle ¢ with
the applied magnetic field B. The moment 71 has polar coordinates
of o and 3.

ration magnetization and v is volume, we calculate energy per unit
volume

Epm = Kysin?0 — MsBcos(). (2)

In SP grains, E,,v is balanced with thermal energy k7" (where
k is Boltzman’s constant and T is absolute temperature). Given N
grains with known grain volume (here assumed for simplicity to be
d®, where d is the diameter and . is the number of grains with orien-
tations within a given patch interval dev, d(3), the population within
each patch will be proportional to the patch size (dda sin o) and
also to the Boltzmann factor exp(— Ep,v/kT'). Thus

n(a, B)dadf o e sin adadp. )

The magnetization contributed to the “hysteresis” loop by grains
within this interval is M un(a, ) cos o. And the total magneti-
zation is

T 27
AAZS :no/O /0 n(e, B)dp cos ada, (4)

where n, is a proportionality factor taking into account the fact that
integration over all n( a)da should equal IV or

kg m ’
/ n(a)da = N = 21rn0/ (M BvCOs ) /kT iy oy,
0

0
, (5)
In the special case where the anisotropy energy is less than the
thermal energy, it can be neglected eliminating the dependence on

(3. Following Chikazumi and Charap [1978], ( 3) then reduces to

MzBvCOS o

n(a)da = 2rn,el T ) sinada. (6)
The total magnetization contributed by the /N moments is now
™
% = / cos an(a)do. (M
s 0

Combining ( 5) and ( 7) we get

M Nfow n(a) cos ada

M~ fy n(a)da
Nf: e(MsBv €08 o) /KT coq (y sin aud

foﬂ' e(M;Bvcos @) /kT ¢in adoy

By substituting M Bv/kT = -y and cos o« = x, we write

—1
M e xdr e’+e 7 1
e
s Ji erdx er—e v
and finally -
M 1 :
= N(cothy — —). 9
o, = N(cothy 7) (9)

Our end result, ( 9), is called the “Langevin” function and also
describes the magnetization of a paramagnetic gas; hence the term
“superparamagnetic” for such particles [e.g., Stacey and Banerjee,
1974].

The contribution of SP particles for which the Langevin function
is valid with given M and d is shown in Figure 3a. The field at
which the population reaches 90% saturation By occursaty ~ 10.
Assuming particles of magnetite (M = 4.5 x 10° A/m) and room
temperature (I' = 300°K), Bgq can be evaluated as a function of
d (see Figure 3b). The maximum size for SP behavior is generally
taken to be ~ 30 nm [Dunlop, 1973], at which Bgg is a few
milliTesla. Because of its inverse cubic dependence on d, By rises
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Figure 3. (a) The contribution of a population of SP particles with saturation magnetization M and cubic edge
length d. Here, « = BM,v/kT. There is no hysteresis as both the ascending and descending loops are identical.
The field at which the magnetization reaches 90% of saturation (Bgg) is reached when Md® /kT =~ 10. (b) Bgg as a
function of d using appropriate values for magnetite at room temperature is shown (see text). (c) The SP contribution
to hysteresis loops for grains with d = 25 nm and several values of ¢ done by numerical integration are shown. d) The
contribution of an assembly of randomly oriented grains with various values of d to the hysteresis loop (solid lines) is
shown. The Langevin solution for the same d values (dashed lines) is also shown.

sharply with decreasing d and is hundreds of Tesla for particles a
few nanometers in size, approaching paramagnetic values.

For our first approximations we have neglected anisotropy energy
in the SP grain sizes. In fact, for SP grains near the SD threshold
size there may be significant anisotropy energy, and the resulting
curves will be somewhat “flatter” than those predicted by purely
Langevin behavior. Numerical integration of ( 3) for a given value
of d = 25 nm and various values of ¢ give the curves shown in
Figure 3c.

We generate synthetic “hysteresis" loops for a large population
of particles of a given d, with easy axes uniformly distributed in
space in the following manner. First, we draw values for ¢ from a
uniform spherical distribution using the method outlined by Fisher
et al. [1987]. That is, three random numbers (R;, Ry, R3) are
drawn from a Gaussian distribution. (We use the subroutine GAS-
DEYV from Press et al. [1986] to generate Gaussian distributions.)

Orientation of the easy axes are then given by
1 B3

v/ R} + R + R}

We perform the numerical integration of ( 3) shown in Figure 1
and sum the contributions of many randomly oriented grains. Syn-
thetic curves for three grain sizes are shown in Figure 3d. Also
shown is the Langevin solution for the particular grain size. The
numerical and Langevin curves superpose for grains as small as 5
nm. Since anisotropy energy is equal to thermal energy for grains of
about 7 nm, this should come as no surprise. For grains much larger
than about 8 nm we see a deviation from the Langevin function (see
curves for 10 and 25 nm), with the inclusion of anisotropy energy
acting to slow the approach to saturation. The initial slopes, how-

¢ = cos” (10)
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ever, are similar. In our simulations we use the Langevin approxi-
mation for grains smaller than 8 nm and the numerical integration
for grains between 8 and the SP/SD threshold. At this threshold we
assume that the grains are no longer in thermal equilibrium with the
field and that thermal energy is unimportant. We now describe our
treatment of SD grains.

Single-Domain Behavior

The modeling of stable single-domain (SD) behavior is similar
to our treatment of larger SP particles [see Stoner and Wohlfarth,
1948; Friedman and Mayergoyz, 1992; Walker et al., 1993a, b].
The essential mathematics describing the energy of a particle with
uniaxial anisotropy in the presence of a magnetic field was worked
out by Stoner and Wohlfarth [1948] (see also O’Reilly [1984]).
Consider a particle with uniaxial anisotropy whose easy axis makes
an angle ¢ with the magnetic field B (see Figure 2). The magnetic
moment m is drawn away from the easy axis, making an angle #
with the easy axis. Because thermal energy is insignificant, m is
constrained to lie within the plane containing B and the easy axis
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(8 = 0). The component parallel to +B (which contributes to
the net magnetization of the hysteresis loop) is given by m) =m
cos(), where &« = ¢ — . The energy of this particle is given by
2).
( ;n the following, we are interested in the § which corresponds to
an energy minimum, as well as the B sufficient to cause a reversal
in magnetization along the easy axis. Thus we need to determine
the 6 for which dE/df = 0 and the B at which both dE/df =0

and d> F/df? = 0. The relevant equations are

d
—E = 2Ksinfcosf — M Bsin(a)

70 (11)

d’E

E—OE = 2KuCOS(20) + MSBCOS(CY). (12)
Setting K, to 1.4 x 10* Jm~3 and normalizing by the saturation
magnetization of magnetite (4.5 x 10> Am™1, we calculate the
variation of E and its first and second derivatives (expressed per
unit magnetic moment) as a function of 6.
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Figure 4. (a) The component of m parallel (m|) to +Bmax for various values of ¢. The intrinsic coercive field is
marked by B b) Sum of 10,000 individual curves similar to those shown in Figure 4a, for ¢ drawn from a uniform
distribution on a sphere is shown. The saturation remanence M., bulk coercivity B,, and coercivity of remanence
B, are indicated. The reversible portions of loops are drawn as solid lines and the irreversible portions are dashed.
(c) The AM curve of the data shown in Figure 4b is indicated. (d) The derivative of the curve shown in Figure 4c is

indicated (see text).



576

When the easy axis is aligned parallel to the field (¢ =0), the
moment temains undisturbed (with # = 0) and the component of
m parallel to B m| equals m (square loop in Figure 4a). The
moment remains unchanged until the field, increasing along — B,
is sufficiently large to cause the moment to flip suddenly; the con-
tribution to. the hysteresis loop (m|) is now -m. This “flipping
field” (By) can be evaluated as the field for which both d E/ /do
and d? E /d6? are zero. By solving ( 11) and ( 12) for B and using
some trigonometric trickery, we get
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- 2]‘1;“ (1= w?+ )31+ u?),

El

By = (13)

where w = tanqﬁ%. For ¢ = 0 (w = 0), we define the flipping
field to be the intrinsic coercivity B’. Returning to Figure 4 and
following the ¢ = 0 curve from — B_, to — Bmax and thento B = 0,
there is no change in 7| through -Bmax, back to zero. On its final

approach to +Bmax the moment will again flip at + By, and mj/m
=l,orm = M.
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Figure 5. Examples of synthetic hysteresis loops using the methods described in the text. (a) and (b) Results from
lognormal (solid lines) and uniform distribution (dashed lines) using an SP/SD threshold size (d) of 30 nm are shown.
(c) and (d) show results as in Figures 5a and 5b, but with d, = 8 nm.
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The calculation of ascending and descending loops for ¢ other
than 0 is more difficult. The contribution of a particular particle to
the descending loop is given by m| = cos (a) Msv. We require
the value of § that results in a minimum in £ or equivalently results
in ( 11) being 0 and ( 12) being positive. We do this numerically.

Normalizing by M and substituting in d, we get m ||/m = cos

(a)d®. The descending loop is evaluated for values of B from
Bmax to 0. The ascending loop is calculated in two parts. We begin
with | = -cos () Md®, evaluating m| for B = 0 to Bmax
until the flipping field B is reached. (The sign of magnetization is
negative because this is the remanent magnetization resulting from
initial exposure to —Bmax). At this point the ascending curve
jumps to the descending curve and is evaluated as before. See
Figure 4a (¢ = 22°and 70°) for examples.

In the case of ¢ = 90°, the “loop” reduces to a line. Starting
with B = +Bmax, the moment is entirely “bent” into the field
direction, and m)/m = 1. However, when B is less than the
intrinsic coercivity, the moment begins to relax back into the easy
direction, and § is zero in zero field. Thus m| is zero. Between 0
and B é m”/m is a linear function of B, as shown in Figure 4a.

‘We generate a synthetic hysteresis loop as before, drawing 10,000
random values of ¢ and summing the contribution to the loop. B é is
related to the uniaxial anisotropy in our models by B., = 2K, /M,
where M is the saturation moment/unit volume (saturation mag-
netization). We have taken what at first seems the paradoxical
approach of assuming a value for the uniaxial anisotropy equal to
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the magnetocrystalline anisotropy constant K7 of magnetite. In
fact, the magnetocrystalline anisotropy in magnetite at room tem-
perature is cubic (not uniaxial) and has four easy axes parallel to
the body diagonals of the magnetite crystal. We choose this value
simply because it is the minimum value possible for magnetite
and seems in many cases appropriate for the SBG data we are at-
tempting to explain. Perhaps for unexplained reasons one of the
four axes is slightly preferred thus behaving uniaxially with nearly
magnetocrystalline anisotropy values.

Setting K, to the magnetocrystalline anisotropy and M = 4.5
x 10° A/m, we calculate an intrinsic coercivity of about 62 mT.
Summing the contributions of 10,000 particles with uniform d and
B!, and with easy axes uniformly distributed on a hemisphere,
we get the curve shown in Figure 4b. The so-called “saturation
remanence” (M) is the y intercept of the descending curve. The
theoretical value for uniaxial SD particles is M, /M is 0.5. The
bulk coercivity B, is the x intercept of the ascending loop. Its
theoretical value is 0.48 of the intrinsic value, or about 29 mT. These
values were duplicated in our numerical simulation. The value of
the field necessary to remagnetize half the moments aligned at M.,
thus reducing the net magnetization to 0, is termed the “coercivity
of remanence” and is theoretically 1.09 B,. For cubic anisotropy
the appropriate values for ¢ are not uniformly distributed on a
hemisphere but can be no more than 55° away from the applied field.
Thus the value for M. /M is much higher, having a theoretical
value of 0.87.
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Figure 6. Plots of M./ M on B,/ B, from simulations using lognormal distributions. (a) Simulations assumming
d . =30nm are shown as triangles, those with d, = 15 nm are circles, and those with d. = 8 nm are shown as squares.
We used the theoretical minimum value of B/, = 62 mT (B,min) and a value twice that (B,max). The results for
B,max are shown as open symbols and those for the minimum are solid. Regions for each d.. are stippled on the
. diagram. (b) The stippled areas from Figure 6a are shown again and labeled with the assumed threshold size (in
nanometers). Results from SBG data are plotted as plus signs. The power law trend for MORB from Gee and Kent

[1995] shown as a dashed line.
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The reversible portions of the single-domain hysteresis loop are
drawn as solid lines in Figure 4b. Along these lines, application and
removal of a field results in the magnetization traveling along the
line. The portions of the loop with irreversible behavior are shown
as dashed lines. In these regions, removal of the field results in the
magnetization traveling along a different trajectory. For example,
application of — B, results in the magnetization traveling along
the trajectory toward zero. The descending and ascending loops
therefore have different shapes, and the difference between the two
is not simply one of cumulative remanence as suggested by Jackson
etal. [1990].

We plot the difference between the ascending and descending
loops for B > 0 of Figure 4b in Figure 4c. This curve we term the
“AM curve”. The difference between the two reversible parts of
the loop is plotted as a solid line. Note that despite the fact that the
behavior is entirely reversible, the AM curve decays slowly. The
irreversible portion of the ascending loop (dashed in Figure 4b) is
quite steep and the difference between this and the ascending curve
(dashed in Figure 4c) decays rapidly to zero, when the descending
and ascending loops join and the behavior is again reversible.

The derivative of the AM curve (here called dAM/dB) is
shown in Figure 4d. The wiggles in the region 0-20 mT and 40-
100 mT result from “noise”. In our numerical simulations, the
“noise” stems from the fact that we have used a finite number of
“particles” (10,000); noise in real data is mostly instrumental. The
large hump centered on approximately Be, (~ 30 mT) reflects the
single coercivity of the population. The rise from about 22 mT to
the peak (solid line) results from purely reversible behavior, as this
is lower than the smallest flipping field of approximately 31 mT (for
¢ = 45°).

Simulations of Populations of Mixed SP/SD
Particles

We are now in a position to calculate synthetic hysteresis loops,
if we define a distribution of grain sizes and the limit of SP behavior
(the SP/SD threshold size or d.). We first consider the case thought
to be most reasonable for crystallization during quenching of a glass:
lognormal distributions. We generate a simulated sample of particle
sizes by drawing from a lognormal distribution of given mean d and
standard deviation o (using the function GASDEV of Press et al.
[1986]). Choosing a value for d, we calculate the contribution of
the fraction of the sample at each particle size, by first determining if
it is SP or SD and then evaluating the volume contribution (scaling
by d3) using the methods outlined in the previous section. Two
examples are shown as solid lines in Figure 5 for d. = 30 nm
(Figures Sa and 5b) and 8 nm (Figures 5c and 5d).

As a means of demonstrating that wasp-waisting and potbel-
lying do not depend on having a lognormal distribution, we also
considered an unrealistic opposite extreme: a uniform distribution.
Uniform distributions were simulated using the RAN1 function of
Press etal. [1986]. Results from two examples are shown as dashed
lines in Figure 5.

It is interesting to note that in hundreds of simulations with dif-
ferent samples of lognormal and uniform distributions in no case
were potbellied loops generated using d. = 30 nm; they were all
either SD-like or wasp-waisted. In contrast, no loops generated
using d . = 8 nm were wasp-waisted; they were all either SD-like or
potbellied. This can be understood by remembering the strong de-
pendence of initial slope (controlled by Bgg) on d. The qualitative
model of Pick and Tauxe [1994] suggests that steep slopes make
wasp waists (see Figure 1). Steep slopes require small Bgg, which
in turn require larger grain sizes (see Figure 2). Potbellies are gen-
erated by more gentle slopes, requiring larger Bggs hence smaller
grain sizes. Because the contribution of each size fraction is scaled
by volume (d®), the loops are dominated by the largest grain sizes.
More than a few tenths of a percent SD (with a lognormal distribu-
tion) results in loops being indistinguishable from SD (M, ~ 0.5
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and B./B’, ~ 1). For samples just crossing the threshold size,
the SP contribution is dominated by the largest SP grains. Thus the
effective SP initial slope is just less than d,. and only wasp waists
are seen with large d.. For small d there are no SP slopes steep
enough to produce wasp-waisting and only “potbellies” appear.

In order to represent a large number of loops on a single diagram,
we plot the hysteresis ratios M,./M; on B,/ B, from hundreds
of simulated loops (using different lognormal distributions) in Fig-
ure 6a. Also shown are results using d, = 15 nm.

Data from SBG are shown as plus signs on Figure 6b. These lie on
top of the region defined by using d. = 15 nm. Although the results
from d. = 30 using the larger value of B, partially overlap the field
defined by using a d, = 15, the SBG data fall mostly outside the
d. = 30 field, and none of the d, = 30 nm loops were potbellied.
In nature there is presumably a narrow SP/SD threshold size range
for amore or less homogeneous population of particles, and yet both
potbellies and wasp-waisted loops are observed. We are attempting
to model the results from SBG, partly because we understand a
few things about this material (see Pick and Tauxe [1993, 1994]
for a detailed description): (1) Curie temperatures, blocking tem-
peratures, and transmission electron microscope (TEM) pictures all
suggest that the material is relatively homogeneous and consists of
low-titanium magnetite. 2) TEM pictures show that the maximum
observed particle size is about 20 nm, yet it carries a stable re-
manence. (3) Low-temperature isothermal remanent magnetization
(IRM) experiments suggest that there is a substantial SP fraction in
the studied SBGs. 4) The particles appear to be equant (suggest-
ing that the anisotropy energy is dominated by magnetocrystalline
anisotropy). (5) The minimum values of B, measured are about 30
mT, consistent with this observation. Last, the intercept values of
M, / M are ~ 0.5 (see Figure 6b), consistent instead with a uniax-
ial anisotropy. For the moment we argue that for unknown reasons
one of the four possible easy axes is preferred thus giving uniaxial
behavior with close to magnetocrystalline values of coercivity.

We return now to the strange observation that both wasp waists
and potbellies are observed in nature and remember that apparently
20 nm particles of magnetite contribute to the stable remanence
(less than the preferred estimate of SP/SD threshold size of ~ 30
nm according to Dunlop [1973]). Simulations using a threshold
size of 15 nm are shown in Figure 6a and as a shaded region
on Figure 6b. For comparison, we plot the data obtained from
SBG glasses as solid symbols. Both potbellied and wasp-waisted
loops can be generated using a threshold size of some 15 nm. The
particular loop generated depends sensitively on the exact grain size
distribution. We suggest that both numerical simulation and TEM
observations of SBG support a threshold size for SP/SD behavior
of substantially less than 30 nm (most likely less than 20 nm).

A second interesting observation from Figure 6 is that the sim-
ulated data using each set of parameters follow a power law de-
pendence of the ratios. This is reminiscent of data from marine
limestones [Jackson, 1990; McCabe and Channell, 1994; Chan-
nell and McCabe, 1994]. In fact, their “Maiolica Limestone” trend
would plot within the cloud of data (simulated using d. = 15 nm
and observed in SBG) shown in Figure 6. The loops from the
Maiolica are potbellied (see Channell and McCabe [1994], Figure
3b right-hand side for a good example). The loops from Tren-
ton, Onondaga, and Knox carbonates are markedly wasp-waisted.
These latter plot along a power law trend with a different y in-
tercept. Jackson (1990) suggested that the y intercept of ~ 0.89
pointed to a cubic anisotropy, while Jackson et al. [1993] found
hints of pyrrhotite in the elevated M. / M ratios. However, in no
case were measured values of M,./M, in pyrrhotite higher than
0.5 [Dekkers 1988]; elevated values appear only after “correction”
for “magnetite”, so we view the case stronger for cubic anisotropy
than for contamination by pyrrhotite (particularly in the absence of
other conclusive evidence for pyrrhotite).

A third point concerning the data in Figure 6b is that the ratios
from SBG behave rather differently than those from mid-ocean
ridge basalts (MORB) [see Gee and Kent, 1995]. The hysteresis
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ratios from the latter plot along the power law trend indicated by the
dashed line. Their data include many points with M./ M ratios
considerably higher than the maximum of 0.5 observed in SBG
and have a different slope. Moreover, the magnetic mineralogy
of MORB is dominated by titanomagnetite (TM60) as opposed
to the low-titanium magnetite observed in SBG. The reasons for
the marked differences between MORB and the sister glass are at
present under investigation but could result from initial differences
relating to differences in cooling rate and oxygen fugacity, or from
differences in sea floor alteration of the two types of materials.

The so-called “Day plot” [Day et al., 1977] of ratios of hystere-
sis parameters shown in Figure 6 is a very crude description of a
hysteresis loop. A single point corresponds to an infinite number
of different loop shapes. Yet some compact form of loop rep-
resentation is desirable because typically a loop is composed of
hundreds of individual measurements. In order to partially over-
come the limitations of hysteresis loops, Jackson et al. [1990] drew
from the engineering literature [Josephs et al., 1986] and proposed
Fourier analysis of hysteresis loops. The principle attractions are
(1) a loop can be adequately characterized by far fewer numbers
(some 15-30) than the original measurements (hundreds), (2) data
can be smoothed by truncating the Fourier terms to some specified
degree, and (3) perhaps shapes can be described by the phase and
amplitudes of the Fourier terms.
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In Figure 7a we show representative “SD” (solid lines), “wasp-
waisted” (dashed lines), and “potbellied” (short-dashed lines) sim-
ulated hysteresis loops. In Figure 7b we “unfold” the simulated
loops as described by Jackson et al. [1990] and Josephs et al.
[1986]. First, all loops are truncated at 99.9% of M ;. The unfolded
loop starts at the point when the descending curve intersects the
y axis (M,). From B = 0 — —Bpax, B is mapped linearly
to radians B’ = 0 — «/2. From B = —Bmax — 0, B is
mapped to B’ = 7/2 — 7. From B = 0 — +Bmax, we map
Bto B’ = — 3m/2, and finally, for B = +Bmax — 0, B
is converted to B’ = 3w /2 — 27. This transformation has the
definite advantage that a given value of B’ gives a unique value of
M / M . The different shapes also are readily observed, although
the source of the terms “potbelly” and “wasp waist” are no longer
obvious. The transformed curves from the wasp-waisted loops fall
entirely “outside” the SD curve, having a more “square” waveform,
whereas the corresponding potbellied loop, maps to a curve that
crosses the SD loop and is more “cone-headed”. ‘ '

The AM curves (see Figure 4c) for our simulated loops are
shown in Figure 7c. For the SD loop, because M,./Ms ~ 0.5,
the difference between the positive y intercept (descending) and
the negative ¥ intercept (ascending) is about 1 (see solid line in
Figure 7c). Because M, is depressed in the loops with significant
SP fractions in them, those A M curves start at lower values. How-
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(a) Representative simulated hysteresis loops from SD (solid lines), wasp-waisted (dashed lines), and

potbellied (short-dashed lines) distributions. (b) Loops in Figure 7a are transformed to radians as described in the
text. (c) The AM curves from Figure 7a obtained by subtracting the ascending loop (see caption for Figure 4 for
definition) from the descending loop are shown. Curves normalized to unity initial value superpose exactly. (d) The
dAM/dB of curves shown in Figure 7c is indicated. One hump means one coercivity fraction in the loop.
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ever, because the A M curve only reflects the fraction with nonzero
y intercepts (the remanent fraction), when normalized to unity, all
three superpose. The derivative of the AM curve (dAM/dB)
as shown in Figure 7d should reveal much about the distribution
of coercivities contributing to the remanence and as expected, all
curves show a single “hump”.

Turning now to our experimental data from SBG, consider Fig-
ure 8. The data from SBG shown in Figure 1a-c are plotted as A M
curves in Figures 8a, 8c, and 8e and as dA M /d B in Figures 8b,
8d, and 8f. These data suffer somewhat from instrumental noise
and have been moderately smoothed using the Fourier truncation
technique (they were truncated to the first 29 terms). The single
“hump” in the derivatives is heartening, supporting our claim that
the magnetic behavior of SBG is controlled by a single population
of particles spanning the SP/SD threshold size [see Pick and Tauxe,
1993, 1994].

Two Single-domain Populations With Distinct
Coercivity Spectra

The AM curve suggests a method whereby some of the dif-
ferent causes of wasp-waisting may be sorted out. Wasilewski
[1973] showed that wasp-waisted loops could result from mixtures
of hematite and magnetite. We have shown that they may also
result from mixtures of SP and SD magnetite. How can these be
distinguished? In order to address this issue, we first attempted nu-
merical simulation of the problem. In this case we picked randomly
oriented grains with coercivities drawn from one of two normal
distributions. We vary the means and standard deviations of two
lognormal populations of B, and the fraction of grains drawn from
each distribution. One typical result is shown in Figure 9. The A M
curve shown in Figure 9c does not decrease in a monotonic fash-

Single Domain

Wasp—waisted
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ion but behaves more like a “roller coaster”. The derivative of the
A M curve shows two distinct humps reflecting the two coercivity
fractions.

In order to investigate what might occur in “real” rocks, we mixed
together natural magnetite and hematite. The hematite was taken
from the 15-20 u fraction of sample LH6 separated by Hartstra
[1982]. The hysteresis loop, AM curve, and dAM /dB curves
are shown in Figure 10a, 10d, and 10g, respectively. The magnetite
was a small piece taken from the sample shown in Figure 1a, and
the data are shown in Figure 10b, 10e, and 10h, respectively. Data
for the two measured together are shown in Figure 10c, 10f, and
10i, respectively. Again the two humps reflecting the two vastly
different coercivities are clearly distinguishable in Figure 10i.

A third mechanism for wasp-waisting was suggested by Ozdemir
and Dunlop [1985]. They observed constricted loops in a single
crystal of highly oxidized titanomagnetite. Wasp-waisting in such
crystal presumably results from magnetostatic or exchange interac-
tions, a phenomenon we explicitly ignore here.

Summary and Conclusions

1. Distorted hysteresis loops such as the potbellied and wasp-
waisted loops obtained from SBG (and other materials) can be mim-
icked using linear combinations of SP/SD behavior from specified
grain size distributions.

2. Wasp waists result from large SP particles and potbellies
result from small SP particles. Potbellies are not observed when
the SP/SD threshold size is chosen as large as 30 nm. Wasp waists
are not observed for thresholds as small as 8 nm.

3. Both potbellied and wasp-waisted loops can be generated
using a threshold of about 15-20 nm consistent with TEM/hysteresis
observations of SBG.

Potbellied
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Figure 8. The AM curves (a), (c), and (e) and their derivatives (b), (d), and (f) for data shown in Figure 1a-1c (see

Figure 7 caption and text).
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Figure 9. (a) Simulated hysteresis loop for 1000 randomly oriented grains, 25% were drawn from a normal distribution
having a mean B, of 100 mT and a o of 50. The rest were drawn from a distribution with mean of 600 mT and o of
200. (b) The “unfolded loop” from Figure 9a is shown. (c) The AM curve (see caption for Figure 7) is shown, and

(d) the derivative of Figure 9c is shown.

4. The AM curves from all SP/SD simulations and SBG data
show a monotonic decrease with increasing field. Saturation (zero
difference between ascending and descending loops hence zero
cumulative remanence) is achieved in all cases by less than about
200 mT, consistent with IRM acquisition data. These are suggestive
of a single SD remanent phase.

5. Wasp-waisting resulting from two populations with distinct
coercivities can be distinguished from wasp-waisting resulting from
a population spanning the SP/SD threshold by examining the A M
curves: monotonic decrease can be interpreted as a single popu-
lation of remanence-carrying particles, whereas “roller coasters”
reveal multiple coercivity fractions. The point of zero cumulative
remanence is the point at which saturation is achieved.

6. “Power law” trends can result from subtle differences in
grain size distributions straddling the SP/SD threshold size. Our
simulations look very much like data obtained from certain ma-
rine limestones (e.g., the unremagnetized Maiolica and the (white)
Scaglia Ammonitica Rosso limestones of Channell and McCabe
[1994]). Other limestones (e.g., the Paleozoic carbonates of North
America) also follow power law trends but with different slopes

and may result from two distinct magnetic phases or a different
model of anisotropy (e.g., cubic). We believe that numerical sim-
ulations using various combinations of magnetic phases as well as
allowing cubic anisotropy, when compared with the measured hys-
teresis loops, can be used to distinguish the various possible causes
of the power law trends in the Paleozoic limestones. For exam-
ple, examination of cumulative curves would conclusively identify
multiple coercivity fractions and suggest possible candidates: for
contamination. We note that where one phase (magnetite) is dom-
inant (the white Scaglia Rossa and the Maiolica), the data behave
exactly as our simulations of SP/SD populations in magnetite. The
pink Scaglia rossa and the remagnetized Paleozoic limestones fall
well above the trend, and simulations using parameters suitable for
hematite, goethite, and pyrrhotite could point to one or the other as
plausible candidates for contamination.

7. “Day plots” to determine the grain size of the magnetic
fraction should be used with extreme caution. Careful examination
of the loops for distortions such as potbellying or wasp-waisting
is essential as are other tests for the importance of SP grains (for
example, measuring of loops at colder temperatures).
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Figure 10. (a), (d), and (g) Data from hematite (LH6 15-20 y fraction from Hartstra, [1982]). (b), (e), and (h) Data
from a piece of SBG are shown. (c), (f), and (i) Data obtained from mixing the two are shown. Figures 10a-10c are
hysteresis loops; Figures 10d - 10f are A M curves and Figures 10g - 10i are derivatives of A M curves. Wasp-waisting
is observed, but the derivatives of the AM curves reveal multiple populations of coercivity thus distinguishing this

cause of loop distortion from SP.
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