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Abstract

First-order reversal curve (FORC) diagrams provide a sensitive means of probing subtle variations in hysteresis behaviour,
and can help advance our understanding of the mechanisms that give rise to hysteresis. In this paper, we use FORC diagram:
to study hysteresis mechanisms in multi-domain (MD) particles. The classical domain wall (DW) pinning model due to
Néel [Adv. Phys. 4 (1955) 191] is a phenomenological one-dimensional model in which a pinning function represents the
interactions of a DW with the surrounding medium. Bertotti et al. [J. Appl. Phys. 85 (1999a) 4355] modelled this pinning
function as a random Wiener-Lévy (WL) process, where particle boundaries are neglected. The results of Bertotti et al. [J.
Appl. Phys. 85 (1999a) 4355] predict a FORC diagram that consists of perfectly vertical contours, where the FORC distribution
decreases with increasing microcoercivity. This prediction is consistent with our experimental results for transformer steel and
for annealed MD magnetite grains, but it is not consistent with results for our MD grains that have not been annealed. Here, we
extend the DW pinning model to include particle boundaries and an Ornstein—Uhlenbeck (OU) random process, which is more
realistic that a WL process. However, this does not help to account for the hysteresis behaviour of the unannealed MD grains.
We conclude that MD hysteresis is more complicated than the physical picture provided by the classical one-dimensional
pinning model. Itis not known what physical mechanism is responsible for the breakdown of the classical DW pinning model,
but possibilities include DW interactions, DW nucleation and annihilation, and DW curvature. © 2001 Elsevier Science B.V.
All rights reserved.
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1. Introduction DW interactions. An understanding of MD hysteresis

in its full range of behaviours is beyond present ca-

Hysteresis in multi-domain (MD) systems is a pabilities. For this reason, MD particle hysteresis has
complex phenomenon that involves domain wall often been modelled in terms of DW pinning alone
(DW) nucleation and annihilation, DW pinning, and (e.g. Everitt, 1962; Schmidt, 1973; Dunlop and Xu,
1994; Bertotti, 1998), following the classical DW pin-
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planar DWSs. Thus, a bulk sample is treated as if it AM

were composed of small, non-interacting grains, each Ha

of which is a two-domain system with one planar :/ }g - M(Hg, Hy)
DW. It is assumed that each DW travels through a ! ! b

one-dimensional DW pinning field, which represents - / H
the interactions of that DW with the surrounding Hp

material in a single grain. This pinning field can be
modelled by a random function, and the behaviour of

a bulk sample can be modelled by taking an average Fig. 1. Example of a major hysteresis loop with reversal point at

over an assemblage of grains (i.e. with a distribution Ha: FORC is the curve that starts B, and proceeds back to
positive saturation. A magnetisation at an applied figidon the

_Of pinning Tield_s)'. Clearly, this DW .pinning model FORC with reversal fieldH, is represented bi(Ha, Hp).
is overly simplistic and some studies have shown

that it is inadequate for representing the natural MD that results when the applied field is increased from
samples encountered in paleomagnetism (HalgedahlH, back to saturation. By repeating this measurement
and Fuller, 1983; McClelland and Sugiura, 1987; for different values of,, one obtains a suite of curves
Shcherbakov et al., 1993). Nevertheless, this model such as those shown in Fig. 2(a). The magnetisation at
has been widely used because it is difficult to devise the applied fieldH, on the FORC with reversal field
a tractable model of MD hysteresis. Hais denoted bW (Ha, Hp), whereHy, > H, (Fig. 1).
First-order reversal curve (FORC) diagrams (see The FORC distribution is defined as the mixed second
below) provide a sensitive means of probing subtle derivative:

variations in hysteresis behaviour. We have used 92M (Ha. Hp)
FORC diagrams to investigate a wide range of magne- p(Ha, Hp) = ——a’b, (1)
tic particle systems (Pike et al., 1999, 2001; Pike and 9 Had Hp

Fernandez, 1999; Roberts et al., 2000). In our previous wherep(Hg, Hp) is well defined forH, > Ha. When a
work, we have adopted a combined experimental and FORC distribution is plotted, it is convenient to change
theoretical approach in developing a framework for co-ordinates from{Ha, Hp} to {H: = (Hp — Ha)/2,
the interpretation of FORC diagrams. The agreement H, = (Ha+ Hp)/2}. A FORC diagram is a contour
between experimental data and theory has demon-plot of a FORC distribution withd, andH. on the ver-
strated the usefulness of FORC diagrams as a meandical and horizontal axes, respectively (Fig. 2H), >
of investigating magnetic hysteresis in fine particle Hj, thereforeH: > 0, and a FORC diagram is con-
systems. In this paper, we extend our work with fined to the right-hand half plane. Th& co-ordinate
FORC diagrams to consider hysteresis mechanisms inis referred to as the microcoercivity.
MD particle systems. Following other workers (Néel, To explain the motivation for calculating this mixed
1955; Dunlop and Xu, 1994; Dunlop and Ozdemir, second derivative and for the change of co-ordinates, it
1997; Bertotti, 1998; Bertotti et al., 1999a), we use is necessary to give a brief introduction to the Preisach
the classical DW pinning model as a starting point and model (Preisach, 1935). Let us begin by defining a
then compare this with experimental FORC diagrams simple mathematical construction, which is referred
for selected synthetic and natural MD samples. to as a hysteron. As shown in Fig. 3, the hysteron
denoted byy.s equals 1 for large values dfl; it
switches to—1 whenH is belowH,, and it remains
2. FORC diagrams at —1 until H passesHg. When the second deriva-
tive in Eq. (1) is taken for the hysteresis behaviour
A FORC diagram is calculated from a class of of yug, the resultinge(Ha, Hp) will have a peak at
partial hysteresis curves known as FORCs (see May- Ha = H, and Hy = Hg, and will equal zero else-
ergoyz, 1986). As shown in Fig. 1, the measurement where, i.e,o(Ha, Hp) will be a point delta function. In
of a FORC begins by saturating a sample in a large H; andH, co-ordinates, the FORC distributigr{Hc,
positive applied field. The field is decreased to a rever- Hy) will consist of a point delta function atl =
sal fieldH,, and the FORC is the magnetization curve (Hg — Hy)/2, Hy = (Hy + Hp)/2. But(Hg — H,)/2
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Fig. 2. (a) A set of 33 FORCs for sample CS911 from the Yucca Mountain ash flow tuff, from southern Nevada (see Eick and Schlinger,

80 100

1990; Worm, 1999). These FORCs are a subset of the 99 FORCs used for the following FORC diagram. Units Msarefan? and

mT for H. (i.e. An? = the m is squared). (b) A FORC diagram for sample CS911, which indicates that the magnetic particles are in a

non-interacting single domain state (SP2).

is the half-width ofy.g, which corresponds to its
coercivity, and(H, + Hg)/2 is the horizontal offset of
vap Which we refer to as its bias. Hence, on a FORC
diagram, theH; andH, co-ordinates of the point delta
function give the coercivity and bias, respectively, of
this simple hysteron.

Similarly, for a collection of hysterons with a
distribution of coercivities and biases denoted by

M
1
coercivity '
€--=---=-- 1 H
Ha —>E <« Hg >
bias
-1

Fig. 3. The hysterory .4 equals 1 for large values &, switches
to —1 whenH falls below H, and remains at-1 until H rises
aboveHg. The half-width of the hysteron is its coercivity, and the
horizontal offset of its centre is its bias.

P(Hc, Hy), it can be shown that the FORC distri-
bution p(H¢, Hy) will be equivalent toP(H¢, Hy).
This type of mathematical hysteresis system, which
consists of a collection of hysterons, is known as the
Preisach model (Preisach, 1935), and the distribu-
tion of coercivities and biase®(Hc, Hu), is known

as the Preisach distribution. In cases where a mag-
netic particle system can be rigorously represented
by a collection of hysterons, the FORC and Preisach
distributions will be equivalent.

The Preisach model of hysteresis was first sug-
gested as a model of interacting single domain par-
ticles. In this model, each hysteron represents an
individual particle in the assemblage. The coercivity
of a hysteron corresponds to the coercivity of a single
domain particle if it were magnetically isolated from
other particles. The bias of a hysteron corresponds to
a fixed interaction field, which represents the magne-
tostatic interaction of an individual particle with the
surrounding assemblage of particles. The Preisach
distribution therefore corresponds to the distribution
of particle coercivities and interaction fields.

The original motivation in taking the second deriva-
tive in Eqg. (1) was that, for single domain particle
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systems, the FORC distributign(H¢, Hy) would be 3. FORC diagrams and the classical
equivalent to the Preisach distribution, and to a dis- DW pinning model
tribution of particle switching and interaction fields.
However, in practice, the hysteresis of an interacting  In the phenomenological DW pinning model of
single domain particle system is more complex and Néel (1955), a bulk sample is treated as an assemblage
rich than can be described by a simple superposi- of small grains each of which contains one planar
tion of hysterons. Therefore, the Preisach model is DW, where the DWs are completely non-interacting.
only a phenomenological construction for modelling Let us consider one such grain. For simplicity, let us
hysteresis in an approximate way, and the Preisachassume that the DW passes through the cross-section
distribution is not a unique and well-defined quantity. of the grain which has cross-sectional arkaand
In contrast to a Preisach distribution, the FORC distri- |engthL. Let us assume that the DW moves through
bution p(Hc, Hy) is defined using only magnetisation a one-dimensional energy function, which takes into
data from FORCs, a second derivative, and a changeaccount all the interactions of that DW with the sur-
of co-ordinates. Therefore, it remains a well-defined rounding medium. Let us represent a grain by a line
quantity regardless of whether a single domain parti- segment of length., with end points at 0 andl. If
cle system is consistent with the Preisach model. The the DW is located ak, then the magnetisation be-
FORC distribution is also a well-defined quantity for tween 0 andk will be positive and the magnetisation
magnetic systems other than single domain particle betweenx and L will be negative. The total mag-
assemblages, for which the Preisach model might netic moment of the grain is¥ (x) = AMs(L — 2x),
have no apparent physical justification. We there- where Mg is the spontaneous magnetisation per unit
fore distinguish a FORC distribution from a Preisach volume. Let us denote the energy of the DW as a
distribution. As shown below, FORC diagrams pro- function of position byE,(x). The demagnetisation
vide a useful empirical means of probing hysteresis field Hqe will be approximated by the uniform field
behaviour. —NM, whereN is the demagnetisation factor for this
Our FORC measurements were made using a grain (rather than for the bulk sample) amlis the
Princeton Measurements Corporation alternating gra- magnetic moment of the grain. The demagnetisation
dient magnetometer. The details of data acquisition field in this grain is unaffected by the positions of
and analysis involved in obtaining a FORC distribu- the other DWs, as must be the case if the DWs are
tion have been described in detail elsewhere (Roberts non-interacting. The demagnetisation enefgythen
gtgl., 2000).Acertain ampunt ofnumericglsmoothing becomesfoM — (oHge) dM = fOMMONM dM = po
is inherent in the calculation of a FORC diagram from 2. The total energyEr will be the sum ofEy,
experimental d_ata: this is quantified by a smopthlng Ege and the Zeeman energyuoMH, whereH is the
factor (SF), which can vary between 2 for the highest applied field. So,
quality data and 5 for poor quality data. In Fig. 2(b), we
show the FORC diagram calculated (SFR2) from the
data in Fig. 2(a). The FORC distribution in Fig. 2(b) is
narrowly confined to the centre horizontal axis, which = Ew(x) — noAMs(L — 20)H
is characteristic of a collection of non-interacting sin- +%M0NA2M52(L — 2x)2. (2)
gle domain particles. Magnetostatic interactions cause
increased vertical spread of the contour loops about This expression has been used by Dunlop and Xu
the peak (Pike et al., 1999; Roberts et al., 2000), while (1994) and others in studies of DW pinning.
thermal relaxation of fine single domain particles shifts ~ The hysteresis of this model is governed by the
the FORC distribution to lower coercivities (Roberts requirement that the DW will always reside in a min-
et al., 2000; Pike et al., 2001). Before considering the imum of Et(x, H), with respect tax. As the applied
manifestations of MD behaviour on FORC diagrams, field H is increased or decreased, the DW will move
it is instructive to consider the FORC diagrams ex- and follow the local energy minimum in which it re-
pected for the classical DW pinning model of Néel sides. If the minimum in which it resides vanishes with
(1955). changingH, then the DW will make a discontinuous

Et(x, H) = Ew(x) — poM (x) H + 31.0NM(x)?
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drop in energy to the next energy minimum of lower a random Wiener—Lévy (WL) process, which is bet-
energy. This is a Barkhausen leap. Rather than work- ter known as Brownian motion in one dimension. In
ing directly with Ey(x, H), it is convenient to work  their mathematical treatment, these authors ignored
with its gradient, which is referred to as the pin- the particle boundaries at= 0 andL, and letx range

ning field: Hp(x) = —(1/210AMs)(AEw(x, H)/dx). over the real line. After averaging over a distribution
This pinning field is the critical input that governs the of pinning fields, Bertotti et al. (1999a) obtained an
hysteresis behaviour of the model. analytical solution for the Preisach (and equivalently

As discussed earlier, for systems that can be rigoro- the FORC) distribution. Their result can be written as
usly represented by a collection of hysterons, the
FORC distribution and Preisach distributions will M (Ha, Hp) = Hax + ¢x
be equivalent. Bertotti et al. (1999a) showed that (Hp — Hy) x
the above-described one-dimensional, non-interacting + (X(Hb — Ha) COth( ) B 2¢X) ’
DW pinning model, after averaging over a distribution (3)
of pinning fields, can be rigorously described by a
Preisach distribution. Hence, the FORC and Preisach where
models are equivalent in this case. (ldHp[?)

Néel (1955) modelledtp(x) as a collection of equi- X = NAMZ and ¢ = “odr
spaced “saw-tooth” pinning sites, where the height ) o
of the “teeth” was a normally distributed random This gives the Preisach or FORC distribution:
n_um_ber._ Néel (1_955) inv_est_igated the Preisach (;935) 2 Hecoth(Hex/¢) — 1
distribution of this DW pinning model at low applied ©(Hc) = @/ 12 Pl
fields (i.e. the Rayleigh region) by neglecting the X SInf*(Hex /)
effects of demagnetisation energy. He found that the Hence, the Preisach (and equivalently the FORC)
Preisach (and equivalently the FORC) distribution distribution is a decreasing function &fc, and is
has a constant value near the origin. Bertotti et al. independent oHy; this implies that the FORC dia-
(1999a) and Magni et al. (1999) generaliség(x) to gram for the DW pinning case will consist of vertical

“4)

b
(@) M (b)
A 2

p(He)
o
~

Fig. 4. Results for a distribution of one-dimensional, non-interacting DWs in a WL random process pinning field, from equations given by
Bertotti et al. (1999a). (a) A set of FORCs calculated using Eqg. (3) with = 1. Note that since Bertotti et al. (1999a) neglected finite grain
boundaries, these FORCs continue indefinitely in the upper right-hand quadrant withystefde (b) A FORC diagram, calculated using

Eq. (4) and the same parameters as above, which consists entirely of vertical contours. (c) Cross-section of the FORC distribution in (b).
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contours. To first order i, the function in Eq. (4)
has a constant value neHr, = 0, which is consistent
with the result of Néel (1955). In Fig. 4, we show a
set of FORCs generated using Eg. (3) withy = 1;

we also show the resulting FORC distribution, and a
cross-section of the FORC distribution At, = O.
Note that since Bertotti et al. (1999a) ignored parti-
cle boundaries, the FORCs in Fig. 4(a) will continue
indefinitely into the upper right-hand quadrant, with
slope x = 1. Later in this paper, we try to give the
reader a more intuitive explanation for the predicted
vertical contours on a FORC diagram.

4. Results — FORC diagrams for synthetic
and natural MD samples

We have studied several MD materials in order to
compare experimental results with theoretical pre-
dictions. M80 steel is an extremely soft magnetic
material, with coercivity<1l mT. The magnetisation
of the M80 sample is almost entirely reversible, and
the irreversible signal is weak. It is therefore difficult
to determineM,/Ms for this sample. We have also
investigated a limited range of natural MD particles,
including a small hand-picked single grain of mag-
netite that was broken off a large crystalline sample

which had crystal faces up to 20mm across. The
grain was equant and about 2mm in size. We anal-

C.R. Pike et al./Physics of the Earth and Planetary Interiors 126 (2001) 11-25

(a) M (104 Am2)
21\
H (mT)
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Fig. 5. Major hysteresis loops for two of the analysed samples:
(@) a 2mm magnetite grain before annealing; and (b) api25
magnetite grain. On this scale, the loop in (b) appears to be closed.
Hysteresis parameters for these samples are given in the text.

drilling program (ODP) Hole 887BH. = 5.9mT,
M,/Ms = 0.056) from the North Pacific Ocean (see
Roberts et al., 1995, 2000).

M80 transformer steel was selected as an example
of classical DW pinning hysteresis. The weakness of

ysed this sample before and after annealing (before the irreversible signal makes measurement of a FORC

annealingH. = 7.5mT, M;/Ms = 0.078; after
annealingH; = 1.7mT, M;/Ms = 0.013). The hys-

diagram difficult, however, using a 3mm 0.5mm
rectangular piece of M80, with the long direction

teresis loop measured before annealing is shown in parallel to the applied field, we acquired the FORC

Fig. 5(a); annealing substantially lowers the coerciv-

diagram shown in Fig. 6(a) (S 3). This dia-

ity and remanence ratio. Annealing was achieved by gram consists of vertical contour lines and a FORC

heating the sample to 1200 for 12h in evacuated

distribution that decreases with increasiHg. This

(10~ mm Hg) quartz glass ampules. The furnace was behaviour is opposite to that of the horizontally elon-

then slowly cooled at 5@ steps, with a waiting time
of 1h at each step down to 500. The cooling rate
was about 0.25-0°&/min. The furnace was then
switched off and cooled slowly to room temperature
over a 5h period.

We also studied a smaller single grain of magnetite
(He = 1.9mT, M;/Ms = 0.019), with dimensions
of roughly 125.m from the 150-10@um fraction of
sample HM4 (Fig. 5(b)), as studied by Hartstra (1982).
Finally, we analysed a clay-rich late Pleistocene bulk

gated contour loops exhibited by the non-interacting
single domain sample shown in Fig. 2(b).

FORC diagrams were acquired after and before an-
nealing for the 2 mm magnetite sample (Fig. 6(b) and
(c)). We also acquired a FORC diagram for the 125
magnetite from sample HM4 (Fig. 6(d)). In Fig. 7, we
show a typical MD result from bulk sediment from
ODP Hole 887B (see Roberts et al., 1995, 2000). We
refer to this type of FORC distribution as a diverging
contour pattern because the contours diverge from the

sediment with abundant ice-rafted detritus from ocean H, = 0 axis and intersect th&. = 0 axis. Similar
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Fig. 6. FORC diagrams (SE 3) for (a) a sample of M80 transformer steel; (b) a 2mm grain of magnetite, after annealing; (c) the same
2mm grain of magnetite before annealing; and (d) a i26magnetite grain (no annealing) from sample HM4 (see Hartstra, 1982).

contour patterns have also been observed in Preisach The measured FORC diagram for our M80
diagrams for natural MD samples (e.g. Mullins and transformer steel sample (Fig. 6(a)) is consistent with
Tite, 1973; Ivanov et al., 1981; lvanov and Sholpo, the analytical result of Bertotti et al. (1999a) for DW
1982; Zelinka et al., 1987; Hejda and Zelinka, 1990; pinning with a WL process (Fig. 4(b)). That is, the
Dunlop et al., 1990; Fabian and von Dobeneck, 1997). diagram consists of vertical contours, with a FORC
Roberts et al. (2000) showed, empirically, that natural distribution function that decreases with increasing
samples located further in the MD direction on a Day H¢. This result indicates that the simple classical
plot (Day et al., 1977) have FORC distributions with model, although it is based on a dubious physical pic-
larger degrees of divergence. ture, somehow captures the physics of the hysteresis
mechanisms in this sample. The FORC distribution
for the 2mm-sized magnetite grain after annealing

100 (Fig. 6(b)) also has vertical contours consistent with
those of the transformer steel and the result of Bertotti

50 et al. (1999a). However, the FORC diagram for the

2 mm grain before annealing (Fig. 6(c)) is inconsistent

[ with the result of Bertotti et al. (1999a) and the FORC

EO diagram for the 12hm magnetite (Fig. 6(d)) is in-

T termediate between the results for the annealed and
-50 unannealed 2 mm magnetite sample. The inconsis-
tency between the results for the annealed and unan-
100 nealed samples implies that stress might be responsible

for the deviation. Exactly how stress gives rise to this
pattern is unknown. We suggest that in the annealed
state, the pinning sites are homogeneously distributed
Fig. 7. FORC diagram (SE: 4) for an assemblage of MD particles ~ throughout the sample in a manner that is consistent
in sample ODP 887B-2H-6-70 from the North Pacific Ocean (see With a random process. In the unannealed state, how-
Roberts et al., 1995). ever, with stress present, “pinning” might occur on

20 60 100
He (mT)
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length scales comparable with the particle size. Thus, (1999a) neglects particle boundaries. We, therefore,
for example, stress might resist the movement of DWs incorporate particle boundaries into our calculations.
from one end of the particle to the opposite end. In

this case, the result of Bertotti et al. (1999a) would be 5.1, Sinusoidal DW energy

inapplicable. It should also be noted that the results for

the unannealed grain are highly asymmetrical about  The mechanics of DW pinning hysteresis are easier
the central horizontal axis (Fig. 6(c)). This implies {5 conceptualise if we begin by considering a sinu-
that the Erelsach model is no_longer a val|.d model of gnidal DW energy. For the sake of simplicity, laf
hystt_ere5|s f(_)r this sample, WhICh also |_mpI|es that the Ms and o = 1, so that Eq. (2) becomes
non-interacting one-dimensional classical DW model
is no longer valid. It should also be noted that in gi(x, H)=E,(x)—(L — Zx)H—i—%N(L —2x)%. (5)
Fig. 6(c) and (d) the darkest shadings indicate negative
regions of the FORC distribution. This is also incom- Next, let Ey(x) = Ep/157 cos[(L — x)(157/2)] and
patible with the classical model. The results for our L =N =1andEp = 1. In Fig. 8(a), we show the re-
natural MD sediment sample (Fig. 7) are also not con- sulting energy functioir(x, H) nearx = 0 for several
sistent with the Néel (1955) model in any obvious way. applied fields. AtH = 1.85 (i.e. positive saturation),
Et(x, H) has a positive slope everywhere. This implies
that the DW is located at = O, or equivalently, it is
5. Numerical DW pinning model calculations annihilated; the magnetisation is positive everywhere.
WhenH is ramped down to 0.95, a global minimum is
In this section, we attempt to give the reader a still present atx = 0 on the left-hand side of the first
more intuitive conceptual understanding for the re- pinning site; the stable low-energy state of the DW
sult of Bertotti et al. (1999a) (i.e. that the classical will therefore still be atr = 0. To the right of the first
DW pinning model predicts vertical lines on a FORC pinning site is a local minimum, which is a meta-stable
diagram). We also extend the (analytical) result of location of the DW. Whel is ramped down to 0.7, the
Bertotti et al. (1999a) with numerical calculations. minimum on the left-hand side of the first site is now
Bertotti et al. (1999a) assumed that a pinning field only a local minimum (as opposed to a global mini-
can be represented by a WL process. Unfortunately, mum) and the DW is pinned here in a meta-stable lo-
the WL process is not rigorously acceptable as a cation. WherH is ramped down to 0.01, the minimum
representation of the pinning fieldp(x) for the fol- on the left-hand side of the first pinning site vanishes,
lowing reason. If the values of a WL process are and the DW makes a Barkhausen leap to the left-hand
collected over a long interval of, the result will not side of the second pinning site, which is still a local
be a stable distribution of values. Instead, the spread minimum. As the applied fieléH is decreased further
of this distribution will increase wittx, without limit on the major hysteresis loop, the DW will always be
(a random process with this property is referred to as located at the minimum dEr(x, H) closest tax = 0.
a non-stationary process). Therefore, the WL process The location of the DW on the descending hysteresis
should be replaced with an Ornstein—Uhlenbeck (OU) loop will be denoted byl (H) and can be written as
random process, which is essentially a damped version
of the WL process. Over a long enough intervakpf ~ diL(H) =min[x :0<x < L:
the collected values of an OU process will approach a x is a local minimum ofET (x, H)]. (6)
limiting distribution with Gaussian form. This makes
it acceptable as a model Bif,(x). We therefore extend ~ With this sinusoidal DW energy, the descending
the model to an OU process. We note that Bertotti major hysteresis loop will have a Barkhausen leap for
et al. (1999b) obtained an analytical expression for every maximum oEy(X).
p(he) in the case of an OU process, however, the On a FORC, when the applied field is increased
solution is not in closed form and must be numer- from a reversal point, to a field Hp, the location
ically solved. To our knowledge, this has not been of the DW will be denoted bylrorc(Ha, Hp)- It can
done before. In addition, the solution of Bertotti et al. be shown that, on a FORC, the DW will be located
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Fig. 8. (a) Total energy as a function of DW positigrfor various applied field$d calculated with sinusoidal DW energy in Eq. (5) for

Ep =L =N =1. The curly lines on the vertical axis represent breaks where the scale has been changed to emphasise the features on
each curve. (b) A set of calculated FORCs fof = L = N = 1. Calculated FORC diagrams for (Ey =L = N =1, (d) Ep = 1.4, (e)

N =13;and ()L = 1.3.

at the minimum ofEr closest to, but less thamr, = hysterons apart, so that each hysteron has a differ-
dyL (H3y). This can be written as ent bias. Similarly, in the resulting FORC diagram

(Fig. 8(c)) there are 15 peaks present with an even

drorc(Ha, Hp) vertical spacing (although not all the peaks are iden-
=maxfx:0 < x <dy (Ha) : tifiable with the resolution of this diagram). Note that

@) the pinning field isHp(x) = EpSin[(L/2 — x)157]
which has a maximum value of 1. The microcoer-
We used Egs. (5)—(7), withp =1 andL = N =1, civity of the above-described hysterons is, to a good
to calculate the FORCs in Fig. 8(b). Note th&}(x) approximation, equal to this maximum pinning field.
has 15 peaks, or pinning sites, between= 0 and Hence, the peaks on the FORC diagram are all located
1. Consistent with this, the hysteresis behaviour in at Hc ~ 1. The fact that the peak in Fig. 8(c) is lo-
Fig. 8(b) can be decomposed into 15 hysterons. The cated at slightly less tha#; = 1 is due to the fact
demagnetisation field has horizontally spread these that the pinning sites have widths of the same order as

xisalocal minimum ofET(x, Hp)].
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L, and, hence, the demagnetisation field changes fromThe derivative o (X, h) is

one side of the pinning site to the other. If the width

of the pinning sites was decreased, while keeping the

maximum pinning field constant, then the distribution
would approachH . = 1 exactly.

WhenE, is increased to 1.4 and the FORC diagram
is recalculated (Fig. 8(d)), the microcoercivity of the

peaks proportionately increases. When the demag-

netisation constani is increased to 1.3 (Fig. 8(e)),
the vertical spread between peaks increases. \ihen
is increased to 1.3 (Fig. 8(f)), the number of peaks

det(x,h)  dew(x)
dx T dx

The scaled pinning field is denoted by(x)=—(1/2)

dew(x, h)/dx. Eqgs. (8) and (9) can be rewritten as

+2h — 2(L — 2x).

(11)

dyL(h) =min[x :0<x < L :h > hp(x)

increases but the spacing between peaks remainsdrorc(ha, fip) = maxf : 0 < x < duL (ha) :

fixed. Hence, increasing the particle size and increas-

ing N both give rise to a greater demagnetisation
field and to greater vertical spread of the FORC dis-
tribution. However, increasindg. also increases the
number of pinning sites in a particle. The above
treatment provides a simplified demonstration of how
the parametersE,, N, and L influence hysteresis
behaviour and the resulting FORC diagram, in a
simple one-dimensional DW pinning model.

5.2. The pinning field

In the previous section, we solved fdg (H) by
numerically locating the earliest local minimumef
(x, H) with increasingx (see Eq. (6)). Alternatively,
we can solve fody, (H) by locating the earliest point,
with increasingx, where the derivative dEr(x, H) is
greater than zero. Hence, Eq. (6) can be rewritten as

dEr(x. H) _ o}

dHL(H):min[x:OngL:
dx

(8)
Similarly, Eqg. (7) can be written as
drorc(Ha, Hp) = maX[x 10<x <duL(Ha):
E H
dE7(x, H) < 0] ) )
dx

At this point it is useful to rewrite Eq. (2) with
the following scaled quantitiesh H /toNAM,
m = M/AMs, ey = Ew/110A>°NMZ, ande; = Et/
noA2NM2. Thene becomes dimensionless:

et(x, h) =ew(x) — hm+ %mz

=ew(x) —h(L — 2x) + 3(L —2)%.  (10)

and
h < hp(x) + (L — 20)], (13)
where hge = —(1/2)dege(x, h)/dx = (L — 2x) is

the demagnetisation field. Hence, rather than working
with the domain wall energy directly, we can work
with its pinning field, which is the approach taken in
most studies of DW pinning hysteresis (Néel, 1955;
Dunlop and Ozdemir, 1997; Bertotti, 1998).

Let us illustrate a simple method of graphically
solving for dy(h) and drorc(ha, hp). In Fig. 9(a),
we have plotted a hypothetica),(x) for 0 < x < L,
whereL = 1. In Fig. 9(b), we plot the sum ad(X)
and the demagnetisation energye = (1 — 2x)2/2.

In Fig. 9(c), we plot the pinning fielt,(x). Note that
the DW energy is made up of parabolic curves, so
that its derivative (i.e. the pinning field) is made up
of line segments. This form diy(x) is referred to as

a saw-tooth function (Néel, 1955). In Fig. 9(d), we
plot the sum ofhp(x) and the demagnetisation field,
hge = (1—2x). The lower branch of the dashed curve
in Fig. 9(d) illustrates the graphical solution of the
upper major hysteresis loop, down to abaut —1.

The upper branch of the dashed curve represents the
solution of a FORC with reversal field at aboutl.
The vertical co-ordinate of this dashed curve is the
applied field,h, while the horizontal co-ordinate is
the position of the domain wall as a function of app-
lied field. Where this dashed curve is horizontal, a
Barkhausen leap occurs. Similar diagrams are found
in Néel (1955) and Bertotti et al. (1999a).

A more detailed illustration of this graphical
solution method is shown in Fig. 9(e), where we have
expandedip + hge from Fig. 9(d) nearx = 0. To
solve Eq. (12) for the DW position on the upper ma-
jor hysteresis loop, we need to find the earliestich
thath > hp + hge. For largeh, this is justx = 0.
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Fig. 9. (a) Hypothetical domain wall energy, for x = 0 to 1;

(b) sum ofey and the demagnetisation energy; (c) the pinning
field hp; (d) the sum oty and the demagnetisation fieldge. The
lower branch of the dashed line in (d) is a graphical solution of
the DW location on the descending hysteresis loop, with a reversal
field at abouth = —1. The upper branch is a graphical solution
of a FORC. A more detailed illustration of this graphical solution
method is shown in (e), as described in the text.

Therefore, the domain wall is located at= 0, and
the magnetisation is positive everywhere. When
passes below about 1.6, the DW starts moving re-
versibly from points (i) to (ii), as labelled in Fig. 9(e).
Whenh passes below about0.3, the DW makes an
irreversible Barkhausen leap from points (i) to (iii),

passing over a pinning site in between. Let us suppose

that the applied field is reversed at abéut —0.3,

and a FORC measurement is started. To solve Eq. (13)

for the DW position on a FORC, we need to find the
greatestx such thath < hp + hge and such that the
DW is to the left of its position at the reversal point.
Hence, ash is increased from the reversal field (at
abouth = —0.3), the DW will travel reversibly from
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(iii) to (iv). Barkhausen leaps will then occur between

(iv) and (v) and between (vi) and (vii). When the DW

reaches (vii), the system will have reached positive
saturation. Hence, a graphical solution of Egs. (12)
and (13) is obtained for the descending major hys-
teresis loop and for a FORC. This graphical solution
method is useful for understanding the hysteresis
behaviours of DW pinning described in the next

section.

5.3. Random pinning function

Next, let us modeh, as an OU process. This is
written as follows:

dhp(x)  hp(x) dW
= — 14
dx £n dx ’ (14)
whereW is a WL process such that
2A,2d
dW =0, (dw[?) = Z2m220 (15)

éh

and wherety, is a correlation length. Thép(x)/én
term in Eq. (14) damphp(x), resulting in a stationary
process. Magni et al. (1999) showed thagenerated
by Eqg. (14-15) has variancéhs.

To numerically generatép(x) let us dividex
{0, L} into N, intervals. Lethp(i) represent the value
of hy at discrete points = i(L/Nr), where 0<i <
Np. Let us replace W/dx in Eq. (14) on each interval
with a constant value. We can treat these intervals as
a type of correlation lengths = L/N, in the random
term dV/dx of Eq. (14). Let the value of W/dx on
the ith interval be given byR$2./(2/&En), whereR
is randomly selected from a normal distribution with
mean zero and variance 1. It can be numerically shown
that for& /&1 values much smaller than 1, the variance
of hy(i) is approximated by22. Eq. (14) becomes

hp(i +1) — hp@@)  hp(i) _ RO i’ (16)
(L/NL) &n &sén
: . &s | 26
h H=h 1-= R | —=, 17
pi +1) p(i) |: 5hi| + & (17)

where the initial conditioimy(0) is randomly generated
from the stationary distribution dfy(i). In Fig. 10(a)
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(a) (b)

(e) (f
0.02 0.01
hy 0 hy 0
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Fig. 10. Pinning fieldh, for x = 0-0.2, generated using Eq. (17) with= 1-20,000, wherex = i(L/N.), L = 1, N, = 100,000,
2 = 0.444064 and (afs/&nh = 0.01 and (b)£s/&n = 0.001. FORC diagrams calculated faR = 0.444064, (C)és/én = 0.01 and (d)
£s/En = 0.001. FORC diagrams calculated fa2 = 0.0111016, (e)¥s/én = 0.01 and (f)&s/£n = 0.001.

and (b), we ploth, as a function ofx = i(L/N.), mately the same variance, the function with larger
fori = 1 to 20,000,L = 1, Ny = 100,000,82 = &4/&n varies more rapidly (Fig. 10a and b).
0.444064, and s/, = 0.01 and 0.001, respectively. In this discretized model, the DW locati@hbeco-

Although the two random functions have approxi- mes an integer between 0 aNg; the magnetisation
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becomes: = L(1—(2d/Ny)), and Egs. (12) and (13)
become

dHL(h)zmin{i:Ogi < Np :h > hp(i)

2i
+L [1 . N—L“ , (18)
and
drorc(ha, hp) = max{i : 0 <i < dy_(ha) :
. 2i
hfhp(z)—i—L[l—N—L]}. (19)

FORCs and FORC diagrams were calculated for
a distribution of grains. We first le2 = 0.444064,
Ny =100 000,L =1, andés/& = 0.01. The result-
ing FORC distribution (Fig. 10(c)) is vertically elon-
gated, which, as demonstrated by the sinusoidal model
(Fig. 8(c)—(f)), is due to the demagnetisation field. The
distribution is peaked at a microcoercivity/af = 1.4,
which we refer to as the dominant pinning fieigl,.
The reason why the distribution is peaked at a domi-
nant pinning field can be explained as follows. First,
let us consider the case where there is no demagneti-
sation field, and only a random pinning fidig, such
as in Fig. 10(a). Suppose, the applied field is increas-
ing and consider a DW that is pinned at a site with
pinning field 7. If the applied field continues to in-
crease, and if the DW becomes unpinned from this site,
then it will pass over all pinning sites with strength
less tham;, until it reaches a site with pinning field
greater than or equal Ig;. Hence, as the DW moves, it
will be pinned by progressively stronger pinning sites
without limit. But, when we superimpose the random
pinning field on the downward drift of a demagnetisa-
tion field hge, as shown in Fig. 11, the above-described
DW can be stopped by a field slightly weaker than
h¥. Thus, as a DW moves with increasing field, it will
initially be pinned at progressively stronger pinning
sites, but this process will rapidly reach a limit and the
strength of the pinning field will converge to a dom-
inant pinning field. As the DW continues to move,
pinning sites weaker thalmyp will be passed over by
the DW, and sites stronger thdmp will occur too
infrequently to pin the wall over a statistically sig-
nificant fraction of its movement. In effect, our treat-
ment of the movement of a DW in the random pinning
field shown in Fig. 10(a) can be simplified by keeping
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Fig. 11. Pinning fieldh, summed with a demagnetisation field
hge for x = 0-0.2. The value ohy(x) is generated using Eq. (17)
with i = 1-20,000, wherec = i(L/Nr), L = 1, N, = 100,000,
£2 =0.0111016, and's/én = 0.001. The value ohge is equal to
N(L — 2x) whereN = 1.

only sites with pinning strength close ligy or —hgp.

On a FORC diagram, these pinning sites will give
rise to hysterons with microcoercivity op,. Hence,
on a FORC diagram, the distribution will be peaked
athc = hdp.

Whenég/én was decreased to 0.001 and the FORC
diagram recalculated (Fig. 10(d)), we found that the
dominant pinning fielchy, was reduced. This reduc-
tion can be explained as follows. A decreasé iff,
will causehy, to vary more slowly (Fig. 10(b)). If the
variation ofhy is slower, this means that when a DW
becomes unpinned from a site with strengf}) the
probability that it will be stopped at a pinning site
weaker thanh; is increased. Hence, the dominant
pinning field will be reduced.

We next decreased the pinning field strength by de-
creasings2 to 0.0111016, and recalculated the FORC
diagrams forés/&n, = 0.01 and 0.001 (Fig. 10(e)
and (f), respectively). The FORC distribution now
has greater height than width, so we do not show the
entire vertical extent of the distribution. As expected,
a reduction ins2 causes a reduction in the dominant
pinning fieldhgp (compare Fig. 10(e) and (f) with (c)
and (d), respectively). However, f@i/¢, = 0.001,
the FORC distribution appears to have become a de-
caying function for all values dfi; (Fig. 10(f)) in the
neighbourhood of the origin. We argue that, in the
limit of weak pinning fields and fixeéy/¢y,, the FORC
distribution should approach a decreasing function for
all h¢, consistent with the analytical result of Bertotti
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et al. (1999a) (Egs. (3) and (4)) for a WL process
pinning field (Fig. 4(b)). The argument is that, with
a weak pinning field, the idea of a dominant pinning
field for an individual DW, as described above, loses
its validity. But, we are considering a statistical dis-
tribution of DWs. Thus, by the same arguments made
above, as the applied field is increased, a distribution
of DWs will tend to become pinned by a stable statis-
tical distribution of pinning strengths. In the limit of
a weak pinning field, the DWs will reach this stable
distribution after moving only a small distance. It can
be shown from Eqg. (14) that in the limit of small
distances, the OU process is equivalent to a WL pro-
cess. Hence, in the limit of a weak pinning field (and
fixed &¢/&p), pinning with an OU process pinning
field becomes equivalent to pinning by a WL process
field.

6. Discussion

Our numerical modelling demonstrates that a
one-dimensional DW pinning model with an OU
process pinning function and particle boundaries gen-
erates a FORC distribution with a vertically elongated
peak, located ak; = pq, wherepy is the dominant
pinning field. In the limit of weak pinning fields,
pg goes to zero (Fig. 10(f)) and the model becomes
equivalent to the WL process studied by Bertotti
et al. (1999a) (see Fig. 4(b)). The FORC distribu-
tion becomes a decreasing functionhgfonly, with
vertical contours in the neighbourhood of the origin
(Fig. 10(f)). This result is consistent with experimen-
tal FORC diagrams for M80 transformer steel and for
an annealed 2 mm magnetite grain (Fig. 6(a) and (b))
where DW pinning is dominant. However, this result
is inconsistent with empirical FORC distributions for
unannealed 2mm magnetite and other natural MD
particles (Figs. 6(c) and (d) and 7). We, therefore,
conclude that the classical DW pinning model is inad-

equate for explaining hysteresis mechanisms in these

MD samples.
The FORC distribution in Fig. 6(d) is highly elon-
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possibilities include DW nucleation and annihilation,

DW interactions, and DW curvature. Whatever mod-
els might be proposed to describe hysteresis in MD
particles, FORC diagrams will provide a sensitive test
of their validity.

7. Conclusions

The classical DW pinning model, which was the
starting point for this paper, is a highly simplified
one-dimensional model of non-interacting planar
DWs. We have shown that this model is consistent
with hysteresis in bulk transformer steel and in an-
nealed grains of magnetite on the scale of 2mm.
However, in our unannealed grains, where stress is
present, the hysteresis behaviour is inconsistent with
the classical model. The exact cause of this incon-
sistency is unknown: possibilities include DW nucle-
ation and annihilation effects, DW interactions, and
DW curvature.

We have used numerical calculations to extend
the classical DW pinning model beyond the (analy-
tical) result of Bertotti et al. (1999a), to include an
OU process pinning function and grain boundaries.
These extensions give us a better understanding of
the classical model, but have not helped account
for the unexplained hysteresis behaviours observed
in our data. Furthermore, the fact that FORC dia-
grams for our unannealed samples are asymmetrical
implies that the non-interacting one-dimensional clas-
sical DW model is not valid for such materials. It is
therefore likely that a new model, which will prob-
ably also be phenomenological in nature, is needed
to account for experimental data from many natural
MD samples.
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