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Abstract

We present a Monte Carlo based method for the determination of errors associated with frequency spectra produced by
the CLEAN transformation of Roberts et al. (1987). The Monte Carlo procedure utilises three different types of simulation
involving a data stripping operation and the addition of white and red noise to the analysed time series. The simulations are
tested on both synthetic and real data sets demonstrating the ability of the procedures to extract coherent information from time
series characterised by the low signal-to-noise-ratio that is typical of many palaeoclimatic records. Significance levels derived
for the Monte Carlo spectra of four time series from the Vostok ice core are utilised in the study of eccentricity components
contained within the palaeoclimatic archive since∼420 ka. Inversion of the Vostok frequency spectra into the time domain
reveals the differing influence of orbital parameters in the palaeoclimatic proxy records as well as the relative magnitudes of
the eccentricity components contained in the time series of greenhouse gas concentration, ice volume and local temperature.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In many cases palaeoclimatic data sets are unevenly
sampled in the time domain. This is often a product of
the non-linear relationship that commonly exists be-
tween depth and time, resulting in the transformation
of a sampling regime that is equidistant in the depth
domain into a non-uniformly spaced series in the
time domain. Many palaeoclimatic investigations not
only analyse data in the depth and time domains, but
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also in the frequency domain. A considerable number
of spectral analysis techniques, however, are based
on the discrete Fourier transform (DFT), which re-
quire evenly sampled data and irregularly spaced time
series must therefore undergo preprocessing before
investigation of frequency content can be undertaken.
The simplest form of this preprocessing is to linearly
interpolate the dataset onto an evenly spaced time
array. Unless performed carefully such an interpo-
lation procedure can lead to aliasing of the signal
(Schulz and Stattegger, 1997; Smith, 1997) resulting
in the introduction of spurious components that may
influence or even dominate the signal in the frequency
domain.
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Roberts et al. (1987) developed the CLEAN algo-
rithm to address the problem of distortion of frequency
spectra caused by the incomplete sampling of effec-
tively continuous signals. Their procedure utilised
knowledge of the sampling function to perform an
iterative deconvolution of the spectral window in the
frequency domain (see Roberts et al., 1987; Baisch
and Bokelmann, 1999 for derivations of the algo-
rithm). Using generated time series, Roberts et al.
(1987) demonstrated the robustness of their CLEAN
procedure in the analysis of unevenly sampled se-
quences and data sets containing missing values.

Baisch and Bokelmann (1999) tested the algorithm
further using both synthetic signals (with a 31% noise
contribution) and real seismological data sets. In addi-
tion, the studies of Roberts et al. (1987) and Baisch and
Bokelmann (1999) both showed that through the use
of the inverse Fourier transform (IFT), a “CLEANed”
signal could be successfully reconstructed in the time
domain from the CLEAN frequency spectra.

A disadvantage of the CLEAN technique is that,
unlike some other spectral techniques designed for
unevenly spaced time series (i.e. the Lomb–Scargle
periodogram, Lomb, 1976; Scargle, 1982, 1989;
Schulz and Stattegger, 1997), there is no simple
calculation to determine the significance of the fre-
quency peaks contained within the spectrum. Here, we
present a technique for assessing the significance lev-
els of CLEAN spectra based upon a series of Monte
Carlo simulations. We demonstrate the Monte Carlo
process using both synthetic and real data and show
that reconstruction of signals in the time domain from
frequency components above specified significance
levels can provide important insights into palaeocli-
matic time series. The Monte Carlo CLEAN software
(and user manual) written to perform the analyses
presented in this paper can be freely downloaded
from http://www.geo.uu.nl/∼forth/software/soft.html.
The software is aMATLAB GUI and utilises modi-
fied versions of theclean.m function of Baisch and
Bokelmann (1999).

2. Monte Carlo simulations

The previously demonstrated robustness of the
CLEAN algorithm in the treatment of unequally
spaced (Roberts et al., 1987) and noisy (Baisch and

Bokelmann, 1999) signals makes it suitable for use in
Monte Carlo simulations. We employ three simulation
procedures involving data stripping and the addition
of noise (white and red) to the input time series.

2.1. Data stripping procedure

The power of the CLEAN algorithm in the analysis
of unevenly spaced data allows it to be used in a data
stripping procedure where datasets become inherently
unevenly sampled in time. In order to perform the
stripping procedure a random sample ofr data points
was taken from the total dataset of lengthN. Using
such a method producesN !/[r!(N−r)!] different data
combinations, each of which can be processed with
the CLEAN algorithm.

The stripping of data points from the input signal
will introduce artificial gaps into the dataset, the size
of which will be controlled by the relative magnitudes
of N andr. To investigate the effects of the stripping
procedure on the input data sets we produced a 500
point equally-spaced time array that could be stripped
to a specified level and the characteristics of the resul-
tant gaps analysed. For each analysed value ofr the
data set was stripped 1000 times and the mean length
of the point spacing in the series was calculated. This
procedure demonstrated that the mean lengths of the
artificial gaps follow the path expected, i.e. approxi-
mating toN/r. Analysis of the maximum gap length
throughout all 1000 iterations indicates that in some
of the runs gaps approximately an order of magnitude
greater than the mean were produced (Fig. 1).

The data stripping process can be repeated for
a specified number of loops, Iter, with a CLEAN
frequency spectrum being produced from the newly
selectedr data points in each cycle. This results in
Iter different spectra of modulus verses frequency for
which confidence intervals and significance limits can
be calculated.

The calculation of 95% confidence limits for the
modulus distributions at each frequency value allows
a confidence interval to be displayed about the mean of
the frequency spectrum (using [x̄ −1.96σ/

√
Iter, x̄ +

1.96σ/
√

Iter]). Sorting the power levels across all
frequencies from all spectra allows a significance
limit, α, to be determined for the mean spectrum.
For example, if the Monte Carlo CLEAN proce-
dure outputs 1000 spectra composed of 250 points
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Fig. 1. Analysis of the length of the gaps introduced into an
equally-spaced 500 point time series by the procedure utilised in
the data stripping analysis. The black line shows the mean gap
length determined over 1000 simulations at each value ofr. The
shaded regions represents the full range of gap lengths produced
by the procedure.

each (yielding a total of 250,000 modulus val-
ues) determining the point below which 95% of
the sorted modulus array occurred would provide
theα95 value.

2.2. White noise addition

Through the addition of white noise it is possible to
reduce the signal-to-noise ratio of a data set and test
further the robustness of any frequency content con-
tained within the time series. White noise has a flat fre-
quency spectrum and was constructed in this study by
producing a pseudo-random data array sampled from
a normal distribution (using a table lookup algorithm,
with a mean of zero and variance equal to one). The
random data set was then scaled to the maximum and
minimum values of the input time series before being
multiplied by a predefined coefficient in order to con-
trol the amplitude of the white noise signal with re-
spect to the amplitude of the input time series. Finally,
the noise array was added to the original time series
and the composite signal was processed by CLEAN
(no stripping was involved in this procedure). After
repeating the procedure a total of Iter times with a
new noise array for each iteration, a mean spectrum,
confidence limits and significance level (α) could be
calculated for the frequency-modulus matrix.

2.3. Red noise addition

To generate a discrete finite red noise series we
utilised a first-order autoregressive process (hereafter
referred to as the AR(1) process, Mann and Lees,
1996). A normally distributed white noise array (ωn)
was constructed and scaled to have the same variance
as the input time series. The magnitude of the initial
white noise series therefore remained constant for all
iterations in a simulation and a red noise model could
be constructed with a predefined lag-one autocorrela-
tion coefficient,ρ (where 0< ρ ≤ 1), according to

rn = ρrn−1 + ωn (1)

wheren = 1, . . . , N and represents the sampling in-
crement (�t) of an evenly sampled time vector. Mann
and Lees (1996) show that the characteristic noise de-
cay time scale of the series can be determined as

τ = − �t

logρ
(2)

Therefore the dominant periodicity in the red noise
spectrum can be controlled usingρ. Once a red noise
series had been generated, the principles of the Monte
Carlo simulation followed those of the white noise
addition procedure. The constructed noise was added
to the original (non-stripped) data series and the com-
posite signal was analysed. Again a mean spectra,
confidence limits, and significance level (α) were cal-
culated after the procedure had been repeated a total
of Iter times.

2.4. Randomisation test

For each of the three methods described above
an additional randomisation test was performed dur-
ing the individual iterations of the Monte Carlo
procedures. The test involved the randomisation of
the data array (stripped or containing introduced
noise) whilst the time array remained unchanged.
The CLEAN transformation is then performed upon
the randomised series. This procedure produces Iter
spectra for the input data arrays and Iter spectra for
the randomised data arrays at the end of each sim-
ulation, α significance levels can then be calculated
for the two sets of spectra. If theα95 modulus value
of the mean spectrum obtained from the randomised
data arrays was found to be greater than that of the
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non-randomised data then it was taken as an indica-
tion that the frequency peaks contained within the
Monte Carlo CLEAN spectrum were unstable.

2.5. Inversion of the mean spectrum

Performing an IFT on the mean CLEAN spectrum
allows reconstruction of a CLEANed signal in the
time domain (see Roberts et al., 1987, for a detailed
methodology). Such an inversion can also be per-
formed using only the frequencies of the spectrum
above the definedα significance. In practice this
was achieved by performing the IFT on a modified
spectrum in which the power levels of the significant
frequencies remained unchanged whilst those of the
non-significant frequencies were reduced to zero. By
reconstructing the time series at different values ofα

it becomes possible to identify how specific periodic
components of the input signal behave in the time
domain.

3. Analysis of a synthetic time series

To investigate the applicability of our Monte Carlo
simulations to the analysis of palaeoclimatic data, we
produced a synthetic time series based upon the 65◦N
insolation data (0–500 ka) of Laskar (1990). The syn-
thesis procedure involved the construction of a new
time array consisting of 400 randomly distributed ages
between 0 and 500 ka, onto which the original La90
insolation curve could be interpolated. A normally dis-
tributed white noise data set was generated and scaled
to the same variance as the La90 series. The synthetic
palaeoclimatic record was formed by addition of the
La90 and white noise arrays to produce a time series
that thus was known to be 50% signal and 50% noise.
The record was then analysed using the Monte Carlo
CLEAN procedure to investigate if the original La90
insolation curve could be successfully extracted from
the noise contribution.

3.1. Data stripping simulations

The first task of the analysis was to determine a
magnitude for Iter (the number of loops in the simu-
lation), which would be sufficient to produce a repre-
sentative sample of all the possible data combinations

Fig. 2. Progress of a Monte Carlo CLEAN simulation involving
the stripping of a 400 point synthetic palaeoclimatic time series
into a 300, 200, 100 and 50 point input array. Variations inα95

of the 300, 200, 100 and 50 point simulations are shown with an
increasing number of iterations. Each of the simulations appears
to become stable by 500 iterations.

and thus yields a stable spectrum. To achieve this aim
we ran four stripping simulations (arbitrarily chosen at
50, 100, 200 and 300 points) on the synthetic palaeo-
climatic time series and determined the value of the
α95 level after each iteration. Fig. 2 shows the results
of this investigation and demonstrates that theα95
values became stable around the 500 iteration point in
all four simulations. In all subsequent simulations we
set Iter equal to 1000.

The mean spectrum of the 200 point simulation
(representing data stripping to 50% of the original sig-
nal) was used to investigate the characteristics of the
modulus distributions produced during the procedure.
The output Monte Carlo CLEAN spectrum for the 200
point simulation is shown in Fig. 3a. The modulus
array in Fig. 3b, obtained by sorting all the modulus
values across all the analysed frequencies for all the
iterations was utilised in the calculation of theα95
confidence limit.

The shape of the distribution of modulus values for
single frequency increments was found to vary within
the spectrum. Fig. 3c–e show the distribution of mod-
ulus values obtained for frequencies of 0.0424, 0.0625
and 0.0066 kyr−1, respectively. The frequencyf =
0.0424 has the highest mean modulus of the entire
spectrum shown in 3(a) and in this case the values are
normally distributed. The other two distributions have
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Fig. 3. (a) A typical spectrum produced by the Monte Carlo CLEAN procedure (stripping of the synthetic palaeoclimatic time series from
400 to 200 points). The varying thickness of the shaded line represents the 95% confidence interval determined from the distribution
of Itermodulus values produced at each frequency interval during the simulation. (b) Determination of theα95 significance level for the
mean spectrum utilising all the modulus values across all frequencies in all of the spectra produced during the simulation. Distributions
of modulus results at the frequencies: (c) 0.0424; (d) 0.0625; (e) 0.0066 kyr−1, respectively.

low mean modulus values and are characterised by
positively skewed distributions resulting from the trun-
cation of the baseline values by zero (negative moduli
are not possible).

Fig. 4 shows construction of the synthetic palaeo-
climatic time series and the analysis of its frequency
content using the CLEAN algorithm in its tradi-
tional non-Monte Carlo form. Fig. 4a and d show
the (400 out of 500 pts) 65◦N insolation series
and the combined insolation-noise data sets, respec-
tively. Performing the CLEAN transformation on
the unmodified insolation series produces a smooth
frequency spectrum (Fig. 4b) and the reconstructed
signal (Fig. 4c) yields a linear correlation coefficient

of R2 = 0.995, when compared to original insola-
tion curve. The frequency spectrum (Fig. 4e) derived
from the synthetic palaeoclimatic series reveals the
effect of high-level white noise in the frequency do-
main. The main frequency peaks observed in Fig. 4b
are still present in Fig. 4e, however, reconstruction
of the signal (Fig. 4f) does not successfully iso-
late the insolation series from the noise component
(R2 = 0.373).

The Monte Carlo data stripping simulations shown
in Fig. 5 resampled the 400 point signal at the 50, 100,
200 and 300 point levels for a total of 1000 iterations.
The panels on the left of the figure show the final spec-
tra with the thickness of the shaded line representing
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Fig. 4. (a) The 65◦N insolation time series (0–500 ka) of Laskar (1990) interpolated onto a randomly spaced 400 point time array. (b)
CLEAN frequency spectrum of the insolation curve shown in (a). (c) Inversion of the (b) frequency spectrum into the time domain. In a
noise-free situation the CLEANed insolation curve is closely correlated to the input signal. (d) Production of a synthetic palaeoclimatic
record using the insolation time series shown in (a) with the addition of normally distributed white noise contribution (scaled to 100% of
the insolation magnitude). (e) CLEAN frequency spectrum of the synthetic palaeoclimatic time series shown in (d). (f) Reconstruction of
the CLEANed synthetic palaeoclimatic time series in the time domain. This reconstruction shows that the CLEAN transformation, when
performed in its traditional manner, cannot recover the original insolation curve to a reasonable extent from such a large noise contribution.

the 95% confidence limits about the mean modulus
of each frequency increment. In the mean spectra the
magnitudes of the peaks corresponding to the noise
component (i.e. those appearing in Fig. 4e but not in
Fig. 4b) are reduced. The ability to define a 95% sig-
nificance value via the Monte Carlo procedure allows
reconstruction of the signal using only frequencies
above this level. Reconstruction of the signal above
the 95% level for the 100, 200 and 300 point simula-
tions produces time series that, while not identical to
the original insolation curve, does show a very strong
correlation to the Laskar time series (R2 values of
0.957, 0.966 and 0.964, respectively). The successful
extraction of such a good representation of the input

insolation signal from a noise contribution of equal
magnitude demonstrates the power of the CLEAN al-
gorithm and its effectiveness when utilised in a Monte
Carlo simulation.

3.2. White noise simulation

The analysis of the synthetic palaeoclimatic time
series (irregular, 400 point, La90 insolation curve with
an introduced 50% noise contribution) was repeated
using the white noise addition procedure. Four sim-
ulations (each of 1000 iterations) were performed
with noise scaled to 10, 25, 50 and 100% of the
input signal magnitude (Fig. 6). In the first three
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Fig. 5. (a) Synthetic palaeoclimatic time series utilised in the data stripping simulation. (b) Typical example of the synthetic palaeoclimatic
time series after stripping to the 200 point level. Remaining panels: Monte Carlo CLEAN frequency spectra of the synthetic palaeoclimatic
curve produced by stripping the data set to 50, 100, 200 and 300 points for 1000 iterations. The thickness of the shaded line indicates the
95% confidence limits about the mean spectrum at each frequency increment and theα95 significance levels are shown as dashed lines.
Reconstructions of the frequency spectra in the time domain performed with only the frequency components above theα95 level included
in the inversion process are shown on the right hand side of the diagram. The dashed lines correspond to the reconstructed signals, whilst
the grey lines represent the noise-free insolation signal shown in 4(a).
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Fig. 6. (a) Synthetic palaeoclimatic time series utilised in the white noise simulation. (b) Typical example of the synthetic palaeoclimatic
time series after addition of white noise at the 100% level. Remaining panels: results of the white noise simulations for the synthetic
palaeoclimatic time series in the same format as Fig. 5 (noise scaled to 10, 25, 50 and 100%).
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Fig. 7. (a) Synthetic palaeoclimatic time series utilised in the Red Noise simulation. (b) Typical example of the synthetic palaeoclimatic
time series after addition of red noise forρ = 0.9306. Remaining panels, results of the red noise simulations for the synthetic palaeoclimatic
time series in the same format as Fig. 5 (using lag-one autocorrelation coefficients of 0.7499, 0.8913, 0.9306 and 0.9716).

simulations the signal reconstructed from the portions
of the mean spectra above theα95 level show a very
strong correlation with the insolation time series and
the artificial noise introduced into the input signal
has been successfully removed. In the case of the

100% noise addition, however, the significance limits
about each of the points in the frequency spectrum
are broadened and the highest frequency peak of
the three main spectral components falls below the
α95 level, resulting in a decrease in the correlation
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coefficient (reconstruction could be performed with a
reduced significance level, e.g.α90, to encompass the
high frequency peak, however this would reduce the
certainty of the recovered signal).

3.3. Red noise simulation

Analysis of the synthetic palaeoclimatic data was
performed using the red noise simulation withρ con-
trol values of 0.7499, 0.8913, 0.9306 and 0.9716 cor-
responding to dominant periodicites of 10, 25, 40 and
100 kyr−1, respectively. Fig. 7 shows the results of the
each of the four simulations determined after 1000 it-
erations. The mean spectra are extremely consistent
between the four different simulations and each yields
a robust reconstruction of the La90 insolation series in
the time domain.

Fig. 8. Monte Carlo CLEAN frequency spectra for the Vostokδ18Oatm, CH4, CO2 and Dtemp time series produced using the data stripping
technique (data sets stripped from 318, 454, 283 and 3303 points, respectively to 50% of their original size, Iter= 1000). Significance
levels at 95 and 99.5% are shown.

4. Real palaeoclimatic data

To demonstrate the application of the Monte Carlo
CLEAN method to real data we investigated palaeo-
climatic time series from the Vostok ice core (78◦S,
106◦E) spanning the last four glacial–interglacial
cycles. Through the compositional analysis of gas
bubbles trapped within the ice core, Petit et al. (1999)
reconstructed variations in atmospheric O2, CO2,
CH4 and2H, and placed them within the chronologi-
cal framework of their GT4 glaciological time scale.
By the comparison of deuterium levels in the ice
core (δDice) to marineδ18O levels, Petit et al. (1999)
reconstructed a proxy record of local atmospheric
temperature levels (hereafter Dtemp). Variations in the
18O content of the ice core O2 (hereafterδ18Oatm)
have been shown to correspond to the changes in
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Fig. 9. Reconstruction of the Monte Carlo CLEAN frequency components above the 95 (solid black lines) and 99.5% significance levels
(dashed lines). In each of the proxies, the reconstructed signal corresponds to eccentricity and is compared to the original time series (gray
line). Labels ppmv and ppbv correspond to parts per million by volume and parts per billion by volume, respectively.
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marine δ18O that are controlled by global ice sheet
volume (Shackleton, 2000). Shackleton suggested
that the records from the Vostok core would demon-
strate that eccentricity-driven variations in the global
carbon cycle (controlling atmospheric CO2 and CH4
concentrations) were responsible for the 100 kyr−1

glacial cyclicity of the Late Pleistocene.
To investigate the eccentricity variations recorded in

the greenhouse gas concentration, global ice volume,
and local temperature records contained in the Vos-
tok core, we performed a data stripping simulation on

Fig. 10. Spectra and reconstructed time series produced by white noise simulations performed upon the Vostokδ18Oatm record. The solid
black lines represent the reconstructed signal whilst the dashed line is the original Vostokδ18Oatm record. The series in gray gives an
example of the data processed by CLEAN after addition of the white noise component (at the 10, 20, 50 and 100% levels).

each of the time series. Sampling density in the Vos-
tok records is extremely variable both between records
and within the individual records themselves. The ef-
fects of such a variability in a stripping procedure can
lead to under and oversampling in certain regions of
the curve, for this reason the magnitude of the strip-
ping was not chosen to reflect the eccentricity signal
but instead was arbitrarily set at 50% (Iter= 1000).
The frequency spectra from each of the Monte Carlo
simulations are shown in Fig. 8, with significance
levels marked at both the 95 and 99.5% levels. In each
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of the frequency spectra the peak corresponding to ec-
centricity is isolated above the 99.5% level providing
a clear threshold for reconstruction of the signals in
the time domain.

Analysis of the time series after reconstruction at
the 95 and 99.5% significance levels (Fig. 9) shows
the different natures of the palaeoclimatic records.
At the 95% level theδ18Oatm signal shows a pre-
cession component that is substantially stronger than
observed in the other three records. In contrast, the
Dtemp time series contains a large obliquity compo-
nent that is present at a much weaker level in the
eccentricity dominated CO2 record. The CH4 record
reveals a combined influence of eccentricity and
obliquity, which is most closely paralleled in the CO2
signal. Reconstruction at the 99.5% level appears
to successfully isolate the eccentricity contributions
contained within the different proxy records. As with
the high frequency components identified in theα95
reconstruction the contribution of eccentricity to over-
all signal variation does not appear to be constant
between the different proxy parameters.

When analysed with a series of white noise simu-
lations theδ18Oatm spectrum appears to be extremely
robust (Fig. 10). When noise is added with ampli-
tudes equal to 10, 20 and 50% of that of the ice
volume record, the Monte Carlo CLEAN procedure
successfully extracts the eccentricity and precessional
components of the record. In the case of 100% noise
addition the higher frequency portion of the double
precession peak centered at∼0.045 kyr−1 falls be-
low the α95 level. This results in a reduction in the
amplitude of the reconstructed time series in certain
portions of the record (e.g. at∼65, 150 and 250 ka).

5. Conclusions

The development and application of the Monte
Carlo CLEAN procedure to both real and synthetic
data sets has allowed us to draw following four main
conclusions:

1. Use of the CLEAN transformation in a Monte Carlo
simulation allows confidence limits to be deter-
mined for each frequency value in the mean spec-
trum, and significance levels to be determined for
the entire spectrum.

2. The three simulation types: data stripping, and
white and red noise addition, produce consis-
tent spectra for a synthetic palaeoclimate record,
demonstrating that the Monte Carlo procedure
produces stable results in the frequency domain.

3. The analysis of a synthetic palaeoclimatic time
series effectively recovered a coherent insolation
record that was hidden within a white noise contri-
bution of equal magnitude. This analysis demon-
strates the applicability of the Monte Carlo CLEAN
procedure to the analysis of periodic signals con-
tained within noisy palaeoclimatic records.

4. The reconstruction of a CLEANed signal in the
time domain using the significance levels deter-
mined by the Monte Carlo technique allows specific
periodic components to be isolated in the time se-
ries. Comparisons of the reconstructed Vostok time
series demonstrate that the relative contributions of
eccentricity, obliquity and precession are not con-
stant between the different climatic proxies.
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