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Single-domain critical sizes for coercivity
and remanence

Andrew J. Newell! and Ronald T. Merrill
Geophysics Program, University of Washington, Seattle, Washington

Abstract. It is usually assumed that magnetic parameters such as coercivity and
saturation remanence are single-domain (SD) over the same size range. In reality,
there is a different SD size range for each parameter. We define critical sizes LS™
for coercivity and L§J® for remanence. In general, L§y™ < LEE'. Up to L = L7,
the saturation remanent state is single-domain. If a sufficiently large reverse field is
applied, a conventional SD state would reverse by uniform rotation. However, the
mode of reversal is nonuniform if the grain size is between L™ and Lg', so in this
size range the SD state is less stable. To calculate the critical sizes, we use rigorous
nucleation theory and obtain analytical expressions. The analytical form allows us
to explore the effect of grain shape, stress, crystallographic orientation and titanium
content in titanomagnetites. We adapt the theory to cubic anisotropy with K; < 0,
which allows us to apply the expressions to titanomagnetites. We find that the size
range for SD coercivity is always small. The size range for SD remanence can vary
enormously depending on the anisotropy. If the easy axes are oriented favorably,

the SD state can occur in large ¢ = 0.6 titanomagnetite grains. Ensembles of
magnetite grains with aspect ratios greater than 5 have SD-like remanence but
low coercivity. However, most synthetic magnetite grains are nearly equant, and
the predicted size range for SD remanence is small to nonexistent. This, rather
than grain interactions, may be the reason they have properties such as saturation
remanence that do not agree well with standard SD theory.

1. Introduction

Of the factors that determine the magnetic properties
of rocks, grain size is exceeded in importance only by
chemical composition. Hysteresis parameters like the
coercivity H. and the remanence M, increase rapidly
with grain size and then decrease rapidly. The changes
in these parameters correspond to changes in the micro-
scopic behavior of the magnetization. Rock magnetists
have traditionally divided grain sizes into four ranges on
the basis of the pattern of magnetization in zero field
(the remanent state). Superparamagnetic (SPM) grains
respond reversibly to magnetic fields and have zero re-
manence. In single-domain (SD) grains, the magneti-
zation is uniform in zero field. Pseudo-single-domain
(PSD) and multidomain (MD) grains have a nonuni-
form remanent state.

The single-domain size range is of particular inter-
est to Earth scientists for many reasons [Dunlop and
Ozdemir, 1997]. For example, environmental mag-
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netists use parameters such as H. and M, to infer the
size of magnetic grains [Thompson and Oldfield, 1986;
Opdyke and Channell, 1996]. Paleomagnetists consider
single-domain grains to be important in part because
they carry a remanence that tends to be stable over
geological timescales. Estimates of the SD size range
have also been used to support evolutionary arguments
for navigation using ferromagnetic particles [Kirschvink
and Lowenstam, 1979; Ricci and Kirschvink, 1992].

Rock magnetists often assume that there is a single
critical size Ly separating uniform from nonuniform re-
manence, and that all the magnetic properties change
suddenly across Lg. By this assumption, parameters
such as H. and M,, would have the same size depen-
dence. In reality, they often do not. For example, Levi
and Merrill [1978] observed needles of magnetite with
single-domain remanence but a comparatively low coer-
civity. Nor are the uniform and nonuniform remanent
states clearly separated by size, because the remanent
state depends on the history of the grain. Grains can
have a SD saturation remanent state and then develop
domain walls in reverse fields [Halgedahl and Fuller,
1980, 1983; Boyd et al., 1984].

Instead of a general SD critical size, we need to cal-
culate critical sizes for particular magnetic properties.
In this paper we define critical sizes for coercivity and
remanence and calculate them using a rigorous stability
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single-domain two-domain
closure-domain circular spin

Figure 1. Four candidate domain states. The arrows
are the magnetization, and the straight lines are domain
walls.

theory (nucleation theory). In section 1.1, we describe
previous attempts to calculate the critical size Lo, and
in section 1.2 we introduce nucleation theory.

1.1. Lowest-Energy State

In early attempts at calculating the SD size range,
theorists guessed the nonuniform state, or multidomain
(MD) state, and estimated its energy as a function of
grain size. The critical size Lo, which we will call the SD
energy critical size, was defined as the size at which the
energy of the MD state was equal to the energy of the
SD state. Some examples of proposed states are shown
 in Figure 1. The two-domain and closure-domain states
[Kittel, 1946, 1949] have uniformly magnetized domains
separated by thin domain walls. The Kittel models were
applied to rock magnetism by Stacey [1963].

In the energy. calculations for the two-domain state,
the internal structure of the domain wall was derived
for an infinite body [Landau and Lifshitz, 1935]. As a
result, its predicted thickness was independent of grain
size. Néel [1947] pointed out that when the magne-
tocrystalline anisotropy was small (as in iron or mag-
netite), the predicted critical size Lo was less than the
thickness of the domain wall. For such materials, he
proposed a state with a circular magnetization pattern
(Figure 1) and used it to calculate the critical size for
a sphere of low-anisotropy material. Morrish and Yu
[1955] generalized his calculation to ellipsoids of rota-
tion, and their results were applied to rock magnetism
by Nagata [1961] and Evans and McElhinny [1969].
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The above calculations were for ellipsoids. Butler
and Banerjee [1975] argued that the faceted crystals
commonly found in rocks were better represented by
cuboids (rectangular parallelepipeds). In calculating
the energy of a two-domain state in a cuboid, they al-
lowed the width of the domain wall to vary and included
the magnetostatic energy of the wall in the calculation.
As a result, the wall width depended on the grain size
and occupied about half of the grain at the critical size.

While the two-domain and circular spin models are
still widely quoted in textbooks on paleomagnetism and
rock magnetism [e.g., Dunlop and Ozdemir, 1997], they
are only models, not rigorous solutions for the magne-
tization. As the above history suggests, the accuracy of
such a model depends on the ingenuity of the theorist
who tries to guess the structure of the lowest-energy
state. Since the energy calculations involve approxima-
tions of unknown accuracy, there is no way of telling
whether any of them is close to the real solution.

In micromagnetic theory [Brown, 1963], one tries to
solve for the magnetization without placing constraints
on the structure. The energy terms are the same as
in domain theories, but the magnetization is allowed
to vary continuously. By minimizing the energy using
variational calculus, differential equations for the mag-
netization are obtained. These equations are difficult to
solve, so most solutions are numerical. In solutions for
magnetite [Newell et al., 1993; Williams and Dunlop,
1989; Fabian et al., 1996], the lowest-energy nonuni-
form states are called curling, or vortex, states. These
states are more like the circular spin state than the two-
domain state.

While a numerical micromagnetic solution is less con-
strained than a domain model, it still uses numerical ap-
proximations, and the uncertainties in the approxima-
tions have not been quantified. The solution sometimes
changes dramatically when the grid size is refined.

1.2. Multiple States and Stability

Before the 1980s, most researchers implicitly assumed
that a grain must always be in its lowest-energy mag-
netic state, which in domain models was SD for L < Lg
and MD for L > Lo. However, Halgedahl and Fuller
[1980, 1983] observed different numbers of domains in
the same grain. To explain this observation, Moon and
Merrill [1984] used micromagnetic theory to show that
more than one state could occur in a grain depending
on the grain’s history.

Since there are multiple remanent states, we need to
know when transitions occur between states. For there
to be a transition, a state must become unstable. Some
rock magnetists [Moon and Merrill, 1984; Enkin and
Dunlop, 1987; Moskowitz and Halgedahl, 1987; Newell
et al., 1990] have tried to calculate the size range for
stability of the SD state, but in each calculation some
constraint was imposed, and it was not clear whether
the instability was physical or numerical.

The purpose of nucleation theory is to derive rigorous
conditions for the stability of a state M(r). This is done
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Figure 2. A sketch of the curling mode perturbation
added to a uniform magnetization in the z direction.
For visibility, the perturbation is greatly exaggerated;
in the nucleation calculations, the change in m, is neg-
ligible.

by adding a perturbation AM = eM u, where ¢ < 1
and u is a function of position r. If the perturbation
lowers the energy, the initial state is unstable. If the
initial state is the SD state, the perturbation that causes
the instability is called a nucleation mode and the field
at which it occurs is the nucleation field.

The nucleation field has been calculated analytically
for prolate and oblate spheroids (ellipsoids of rotation)
[Aharoni, 1959, 1966]. Spheroidal grains have the ad-
vantage that the demagnetizing field of the initial state
(usually the most difficult part of the calculation) is
uniform and the micromagnetic equations can be lin-
earized. One nucleation mode is uniform rotation. An-
other, the curling mode (Figure 2), is one of a class
of modes that have no radial component. In cylindri-
cal coordinates (with the initial magnetization in the 2
direction), the curling modes have the form

ug = ugp(p,z)  up=1u;=0. (1)

Aharoni [1966] showed that uniform rotation and the
lowest order curling mode (which we will just call the
curling mode hereafter) are the only possible nucleation
modes in oblate spheroids. Both modes also occur in
prolate spheroids. It was long thought that there might
be a third nucleation mode in prolate spheroids called
buckling; this mode is sometimes a solution for infi-
nite cylinders [Aharoni and Shtrikman, 1958]. Recently,
Aharoni [1997] showed that the buckling mode does not
occur in spheroids with aspect ratios below 500:1. Thus
for all practical purposes, the only nucleation modes in
spheroids are uniform rotation and curling.

The existing derivations for the nucleation field are
for uniaxial or cubic magnetocrystalline anisotropy with
K; > 0. A highly symmetric geometry is assumed
where a magnetocrystalline easy axis is aligned with
the rotational axis of the spheroid. We will show that
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if the orientation of the easy axis is changed, the nucle-
ation field can decrease considerably. In addition, we
will calculate the nucleation field for cubic anisotropy
with K; < 0 and apply the results to titanomagnetites.

We will also attempt to make nucleation theory more
useful to rock magnetists by clarifying its relevance to
remanent states and hysteresis. Experimentalists and
theorists use the word “nucleation” in different ways.
For the experimentalists, it is the first appearance of a
domain wall. For the theorist, it is the first deviation
from the SD state. These events do not coincide. We
use the theoretical definition in this paper and show
that it always precedes domain wall formation.

Our main application of nucleation theory will be to
calculate two important critical sizes: L§}y™, the upper
limit for nucleation by uniform rotation, and LgF", the
upper limit for SD remanence. These critical sizes have
been calculated before using nucleation theory [Brown,
1963; Aharoni and Shtrikman, 1958], but their differ-
ences were not emphasized. They were not even dis-
tinguished by name, it being implicitly assumed that
they were nearly equal to each other and to Lo. We
will show that L§S™ and Lgf® can be very different
from each other, and we will discuss the consequences
for hysteresis properties.

2. Critical Size Calculations

In this section, we begin by calculating the nucleation
field, with the effects of crystallographic orientation and
stress included. We then derive expressions for the crit-
ical sizes L§E™ and Lgy'. Finally, we use these ex-
pressions to calculate critical sizes for some titanomag-
netites and compare them with domain observations.

2.1. Nucleation Field Calculations

In a ferromagnet, the magnetization M has variable
direction but fixed magnitude M,, where M, is called
the saturation magnetization. It can therefore be rep-
resented by a unit vector

i = M/M, = mgi+ myj + mk, 2)

where m2 + mZ +m2 =1

For a given temperature and external field H, the free
energy G is a minimum in equilibrium [Brown, 1963].
This energy is an integral over the volume V of the
ferromagnet:

G= [, {A[(Vm.)?+(Vmy)? + (Vm,)?]
~ EOMHy — poMH + ga + g2 &, (3)

where A is the exchange constant, Hg is the demag-
netizing field, H is the applied field, g, is the magne-
tocrystalline energy density, and g is the inverse mag-
netostriction energy density.

In the following calculations, we assume the grain is
a spheroid (ellipsoid of rotation). The axis of rotational
symmetry of the spheroid, the external magnetic field
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and a magnetocrystalline easy axis are all aligned with
the z axis. Because of the rotational symmetry, the
magnetic moment must also be in the z direction. The
dimensions of the spheroid are the major axis Z and
the minor axis X. Previous authors have used various
definitions for grain size, including the major or minor
axis. We define the size L as the cube root of the vol-
ume. This definition is equally applicable to grains of
any shape, and it separates the effects of volume and

shape.
The initial state for the nucleation calculations is one
of uniform magnetization (m, = my = 0,m, = 1).

Since m has a fixed magnitude and can only rotate,
any perturbation is perpendicular to rh and has the
form Amg = euy, Amy = €euy, and Am, = 0. We add
such a perturbation to m and expand the free energy
to second order in €.

To illustrate the procedure, we will calculate the nu-
cleation field for uniform rotation. If the only source
of anisotropy is magnetostatic (from grain shape), the
energy is G = gV, where

1
g= —équf(Nxmi + Nym? + N.m2) — poM;Hm,.

In this expression, Ny, Ny, and N, are the demagnetiz-
ing factors corresponding to the z,y, and z axes. For
the magnetization to be along the z axis in zero field,
we require N, > Ny, > N,. With the perturbation
added, the magnetization is m, = eu,, my = €uy, and
)1/2

m, = (1 — *u?
and ignoring constants,

—€®u?)"'". Expanding the energy in ¢

1 1
g~ 5#0M3(Nz = No) + guoM H € (uf + up)

If, for some choice of u, and u,, 8G/de = §*G/de* = 0,
the initial state is unstable. From the above equation,
this occurs when H = — (N, — N, ) M;.

If there are other sources of anisotropy, their effec-
tive fields are simply added to the nucleation field. For
example, if a uniaxial magnetocrystalline anisotropy is
included, the nucleation field is
2K,

unif _ _ s — ) 4
HYf == (N = N)M, = - (4)

The above stability calculations are for uniform ro-
tation. More generally, u, and uy can be functions of
position. For the general case, the following equations
are obtained using variational calculus [Aharoni, 1996]:

1 1
[sz——fc-— iqusH;l] um+§u0MsH;:0 (5)

1 . 1
[AVQ——/{— EpDMsH,'I} uy+§qusH;:0 (6)
with the boundary conditions

Oug _ Ouy _

on ~ On M
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at the surface of the grain. In the above equations, n is
the component in the direction of the outward surface
normal, H), = H,—N, M, and H' = (H,, H,, H}) is the
demagnetizing field due to the perturbation. The coef-
ficient « is the coefficient of €? (uZ + u;) in the expan-
sion of the magnetocrystalline energy (see section 2.1.1).
If we derive the nucleation field for k = 0, then we
can include the effect of nonzero k by adding a term
—2k/poM; to the nucleation field.

Equations (5)-(7) have an infinite set of solutions,
each with their own nucleation field H,. However, only
the largest such field has any physical meaning because
below this field the SD state is already unstable. The
solutions that are physically meaningful are uniform ro-
tation and curling.

The nucleation field for the curling mode is [Aharoni,
1959, 1966]

1/3 2
q Lez> B 2k (8)

HS™ = N, M, — kM
" * ° < L ) /iOMs

where ¢ = Z/X is the aspect ratio. The exchange

length, L, = (A/,quf)l/Q, where A is the exchange
constant, is a scale length over which the magnetization
can vary. The factor ¢/3 is not in the original equations
by Aharoni because he defined the size as the minor axis
X = Lg~1/3,

The dimensionless parameter k can be expressed as
the first zero of the derivative of a spheroidal harmonic.
Because of differences in units, normalization, and def-
inition of grain size, the values of k given by Aharoni
[1959, 1966] must be multiplied by 27 (47/3)%/% = 16.3.
This parameter does not vary much with aspect ratio;
it is 23.3 for an infinite plate (¢ = 0) and decreases
monotonically through 22.5 for a sphere (¢ = 1) to 17.6
for an infinite cylinder (¢ = 00).

2.1.1. Magnetocrystalline anisotropy. In de-
riving the magnetocrystalline anisotropy parameter « in
(8), we must keep in mind that the energy density g, is
expressed in terms of the crystallographic coordinates.
We will denote the direction cosines of the magnetiza-
tion along the [100], [010], and [001] axes by g, my,
and m,.

For uniaxial anisotropy,

9o = K1 (1=1m2).
If the [001] axis is in the z direction, then m, = m;, so
9o = K3 (1 - mz) = K;é? (ui + uZ) ,

and therefore k = K.
For cubic anisotropy, the energy density is
ga = K1 (M2, + mlm? + mim2).
If a (001) axis is in the z direction, then we can choose

the coordinates so mgy = Mg, my = My and m, = Mm,.
To second order,

Jo N Ki€? (uﬁ + “12/) ,
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so k = K again. If a (111) axis is in the z direction,
we choose the coordinates so mg,my, and m, are the
direction cosines of the magnetization in the [110], [112],
and [111] directions. Then
g 1/V2

1/V/6  1/V/3

my | = -1/v2 1/V6 1/V3 mz
. 0 =2/v/6 1/V3 m;

)

The second order expansion of the energy is then
ga ~ —(2/3)K1€? (v +ul),

so k = —(2/3)K;.
For cubic anisotropy with K; > 0, the easy axes are
the (001) axes, and the hard axes are the (111) axes.

The above equations are correct even if the specified.

axis is a hard axis, but we must be careful when we
calculate the critical sizes (section 2.2).

In the above calculations, the coefficients for u2 and
uf/ in the expansion of the energy are equal. This is
implicitly assumed in the derivation of equations (5)-
(6). If they are not equal, we cannot simply add an
effective field for magnetocrystalline anisotropy to the
nucleation field. The expressions we derive in this pa-
per apply to titanomagnetites but not to hematite or
pyrrhotite, which have sixfold easy axes within a basal
plane. In such materials, a rotation out of the basal
plane is more difficult than a rotation within the plane.
The nucleation modes in hematite and pyrrhotite may
be more like domain wall motion.

2.1.2. Magnetostriction. If the effect of mag-
netostriction is included, the nucleation field for uni-
form rotation is obtained simply by replacing the “zero-
strain” constant K; by the “zero-stress” constant K7j.
Fortunately, most methods for measuring anisotropy ac-
tually measure K1 [Ye et al., 1994]. No one has obtained
an explicit expression for the nucleation field that in-
cludes the effect of magnetostriction. However, if we
replace K1 with K, we will obtain a lower bound for
the actual nucleation field [Brown, 1963], and the error
is probably small. '

2.1.3. Stress. If a uniaxial stress ¢ is applied in
the direction (yz,7y,7:), Where v2 + 75 +92 = 1, the
inverse magnetostriction energy density is [Chikazumi,
1964]

g = =310 (mrmy’)’z'Yy + mym Yy Y. + mzmz')’z')'x)

3 .
*§>\1000' (m2y2 + mfﬂ: +m2y?).

Thus for a stress in the [001] direction, the energy is
— 3)\ 2 3)\ 2 (u? + u2)
gr = T5A1000M; N 5 A1000€ Ug + Uy ).

If the stress is in the [111] direction, o;; = ¢/3 for all ¢
and j. Defining m;, my, and m, as in (9),

3
g ~ 5/\1110‘62 (ui + uf/) + const.
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2.1.4. Combining the effects. With the mag-
netocrystalline and magnetoelastic effects added, the
nucleation field for uniform rotation is

HiME = (N, — Np) M, — Hg — Hj, (10)
and the nucleation field for curling is

2

curl __ ql/sLel‘
Hi™ = N M, — kM, ( | —Hx - Hy, (11)
where
He = 2K [poMs, (001) axis in z direction
K= —4K!/3poM,, (111) axis in z direction
(12)
7, — 31000/ poMs, stress in (001) direction
A= 3A1110/ oM, stress in (111) direction.

(13)
Again, ¢ is the aspect ratio, and L., = (A/quf)l/Z.
The above equations can be applied to both prolate

and oblate spheroids. For a prolate (¢ > 1) spheroid
[Chikazumi, 1964],

N, =q(q® — 1)_3/2 cosh™ ¢ — (¢ — 1)L (14)
For an oblate (¢ < 1) spheroid,
N, = —q(l——qz)‘B/zcos_lq—i—(l—qz)_l. (15)

In both cases, N, = (1 - N,)/2.

2.2. Expressions for the Critical Sizes

If HSUW < HUE | the magnetization is uniform in any
uniform applied field and it can change only by uniform
rotation. We define the SD coercivity critical size L§F™
as the size at which HS™! = HU™f Applying (10) and

(11),
/ k 1/2
Jcoere — 1 3Lex v .
SD q N,

The SD remanence critical size is the size at which SD
remanence becomes unstable, or HS%! = 0:

o e\ 12 He + Hy\ ~12
LES = ¢/ Les (F) (1 - _____]1\{4 i '\) - (17)
z S z

(16)

If we apply (17) to an oblate spheroid, we must make
sure that H2™ > 0, so there is a stable remanent state
with moment along the rotational axis. Otherwise, the
expression for LgH" is meaningless.

Strictly speaking, the parameter k depends on the
aspect ratio, but the dependence is weak, and k appears
inside a square root in the above expressions. Using
k = 20 for all aspect ratios introduces an error of at
most 7%.

We also need a lower bound for the SD size range.
We use the theory of Néel [1949] to calculate the critical
size Lgpym for the transition from superparamagnetism
to single-domain hysteresis. For a given temperature T,
the critical volume V; at the SPM-SD transition satisfies
the blocking criterion
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(18)

where kg is the Boltzmann constant, 7, is the tim< scale
of interest, 7y is a characteristic relaxation time, and
AgV is the energy barrier separating minima. The pa-
rameter 7o is different for uniaxial and cubic anisotropy
but probably not different enough to affect the criti-
cal sizes significantly [Aharoni, 1996]. The critical size
Lspym 1s defined as Vsl/s.

For K{ < 0 and the [111] easy axis aligned with the
rotational axis of the spheroid, the energy barrier is
the difference in energy between the [111] direction and
the [110] direction. The latter is the saddle point for
magnetocrystalline anisotropy and the hard direction
for magnetostatic energy. We add the energy terms to
obtain ) 1

Ag = -2-M0M3 (Ne — N;) + l-ﬁll
When K > 0 and the [001] easy axis is aligned with the
rotational axis, the saddle points for magnetocrystalline
anisotropy do not coincide with the hard axis for shape
anisotropy. Nevertheless, the above expression is an up-
per bound for Ag, so it provides a lower bound on Lgpy.
The expression is exact for a sphere and approaches
the correct Ag asymptotically for poM2(N, — N,) >
K1|/6. For the materials we consider in this paper,
Lspm changes little with elongation, so our expression
is a good approximation to the exact Lgpy.

No rigorous solutions for the energy critical size Lg
have been calculated, but there are upper and lower
bounds. Clearly, Ly < LY in general, since the SD
state is unstable for L > LI Of course, this up-
per bound is not useful if L{P" is infinite. In addition,
for a prolate ellipsoid whose long axis is also a mag-
netocrystalline easy axis, Aharoni [1988] obtained the
lower bound

(19)

k

’ 1/2
LO Z Lg = ql/SLez <_> . (20)

N,

When K; = o =0, LEY (17) reduces to the expression
on the right, which is why we have called it L. Combin-

Table 1. Magnetic Parameters Used to Calculate the
Room Temperature Critical Sizes for Three
Titanomagnetite Compositions

Parameter Magnetite TM10 TM60
M.(Am™?) 4.8 x 10° 4.2 x 10° 1.25 x 10°
A(Jm™) 1.3x 107" 1.0x 107" 0.5 x 107
K{(Jm™%) -1.1x10*  —2.5x 10* 0.3 x 10*
A100 —-19x 1078 - 140 x 10™°
A1 78 x 107 - 95 x 107

The parameter K7 is the zero-strain magnetocrystalline
anisotropy constant.
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19= X2
Figure 3. The critical sizes for magnetite are plotted as
a function of inverse aspect ratio 1/¢ = X/Z in order
to represent the full range of prolate spheroids. The
vertical dashed line is the asymptote for L. The

calculations of Butler and Banerjee [1975], converted to
the cube root of the volume, are shown as open circles.

0 0.2

ing L§ = L& with the upper bound, Lo = LE®. Sur-
prisingly, no one had previously noticed that the upper
and lower bounds converge for a magnetically isotropic
material.

When the internal (magnetocrystalline or magnetoe-
lastic) easy axis does not coincide with the long axis,
the lower bound on Ly does not apply. The same is true
for an oblate spheroid. The critical size L§¥™, which is
independent of internal anisotropy, is probably a lower
bound for L.

2.3. Critical Sizes for Titanomagnetites

In this section, we use (12)-(20) to calculate critical
sizes for solid solutions of magnetite and ulvéspinel. We
list the room temperature magnetic parameters in Table
1, and we discuss them in the appendix. For calculating
Lspm, we use 7, &~ 7 x 107 s (1 year). Changing 7, to
100 s or 1 billion years changes Lspy by only 15%.
Following the discussion in section 2.2, we use k ='20.

2.3.1. Theoretical predictions. In Figure 3, we
plot the critical sizes for magnetite. In calculating Ly,
we assume the [111] easy axis is in the z direction. We
also plot the calculations of Lo by Butler and Banerjee
[1975] for comparison.

For a sphere of magnetite, The size range for SD re-
manence is very narrow (Lg' = 1.07L$F). In ad-
dition, Lspym > L§yT™, so there is no size at which
ideal SD hysteresis occurs. However, the uncertainty
in the exchange constant A is enough (see the ppendix)
that we cannot rule out larger ranges for SD remanence
and coercivity. As the aspect ratio ¢ = Z /X increases,
Lspm decreases rapidly at first and then levels off. Our
Lspm curve looks different from previously published
curves because previous authors defined the grain size
as the long or short side.
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Figure 4. Critical sizes for TM60 (same conventions
as in Figure 3). The vertical dashed line is the asymp-
tote for LEE". The critical size Lg® is plotted for two
extreme cases: alignment of the long axis with the easy
and hard axes. In the latter case, L§f" is meaningful

only for LE® > L™, so we stop the curve just before
SD SD

1 coerc
1t crosses Lgpy'°.

coerc

The SD coercivity critical size L§y™ is weakly de-
pendent on elongation except for ¢ > 10. By con-
trast, LS approaches infinity as the aspect ratio ap-
proaches 5. The asymptote for Lg3)" satisfies the equa-
tion Hx + Hy = M, N,. Thus large, highly elongated
grains of magnetite can have SD remanence, but this re-
manence will be less stable than the theory for uniform
rotation predicts.

The above calculations are for zero stress. If a uniax-
ial tensile stress (o > 0) is applied along the [111] axis,
L§sre is unaffected, but L§R" increases. However, for a
sphere of magnetite, it takes a large stress to have much
effect. Without stress, L§F® = 0.057 um. To increase
LER to 0.1 pm, a stress of 240 MPa is required.

In Figure 4, we plot the critical sizes for stress-free
TM60 (60 mol % ulvospinel). Comparing Figures 3
and 4, we see that the critical sizes Lspm and L3S are
weakly dependent on composition, but Lg§* can be very
sensitive. We plot LE for the [001] easy axis in the z
direction and for the [111] hard axis in the z direction.
These curves show the importance of crystallographic
orientation: When the hard axis is aligned with the
long axis of the grain, the gap between L§Fy™ and LT’
almost disappears.

In Figure 4, the magnetic parameters we use for
TM60 are our estimates of the mean values (appendix).
In Figure 5, we show what happens if we vary these
parameters. A change in K| or M, of only 10% can
increase L' from about 0.5 um to infinity. A tensile
stress of 1.3 MPa has the same effect.

Finally, in Figure 6, we plot the critical sizes for
TM10 (10 mol % ulvospinel). As titanium content in-
creases from zero (magnetite), K initially remains neg-
ative but increases in magnitude while M, decreases
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Figure 5. Contours of the SD remanence critical size
L§E* as a function of possible values of K; and M,
for TM60. The combination of parameters we used in
Figure 4 is represented by an asterisk. A 10% change

in K; or M, can make LG infinite.

[O’Reilly, 1984]. The critical sizes for a sphere do not
change much, but the asymptote shifts from ¢ = 5 to
g = 2.3. We will discuss the significance of this shift in
section 2.3.2.

2.3.2. Comparison with domain observations.
The critical sizes can be compared most directly with
domain observations. If a grain has developed a visible
domain wall,.it has certainly nucleated (the converse
is not necessarily true). Thus nucleation theory can
place bounds on domain wall formation. As we argue
in section 3.1, the value of L predicted by nucleation
theory should be the upper limit for SD remanence in
a real grain.

The value of LgA for spherical, unstressed magnetite
grains is only 0.057 um. This limit is still near 0.1 ym

10

Cube root of volume (um)
]

102 ‘ - , :
0 0.2 0.4 0.6 0.8 1
1/q=X/Z

Figure 6. Critical sizes for TM10 (same conventions

“as in Figure 3). The asymptote for LgF is shown as a

vertical dashed line.
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if the aspect ratio is increased to 2. This seems to con-
tradict the observations of Boyd et al. [1984], who ob-
served apparently SD states in two grains of natural
magnetite that were 30 — 40 ym in size. The stability
of these states varied when a reverse field was applied.
Most developed domain walls in fields less than 10 mT,
but one was stable in fields above 20mT [Boyd, 1986].
No other investigators have found SD states in mag-
netite grains, even down to the present observational
limit of about half a micron [Smith, 1980; Geiff et al.,
1996]. ‘

It is possible that the observations are misleading.
Firstly, Geif et al. [1996] examined only 10 magnetite
grains, while Boyd [1986] examined a much larger num-
ber, so SD remanent states may turn up if more of
the micron-size magnetite grains are examined. How-
ever, the SD state should be much more common in the
grains that Geif et al. [1996] observed because they are
smaller. Secondly, as Geiff et al. [1996] acknowledged,
they did not use a large enough field to ensure complete
removal of preexisting domains. Thus their grains may
not have started out saturated. Finally, the remanent
states observed by Boyd et al. [1984] may have had
nonuniform magnetization that was not imaged by the
Bitter pattern technique.

If the observations of Boyd et al. [1984] are taken
at face value, they could indicate a large uniform stress
(hundreds of megapascals), although it is not clear what
the origin of such a stress would be. Another possibility
is that their magnetites are impure. As our calculations
in section 2.3.1 showed, if only 10% ulvospinel is added,

& is infinite for grains with elongations greater than
2.3. The grains observed by Boyd et al. [1984] have
comparable elongations. _

In observations of saturation remanence in TM60
grains, Halgedahl and Fuller [1980, 1983] saw both SD
and MD states over a wide range of grain sizes. If TM60
is stress-free, it has a cubic anisotropy (with K; > 0),
and LE" is highly sensitive to small changes in compo-
sition, shape or crystallographic orientation. In prac-
tice, domain observations of TM60 suggest that the
anisotropy is usually dominated by stress and is uniax-
ial. Depending on the orientation of the stress-induced
easy axes, this may increase or decrease the size range
for SD remanence. Halgedahl and Fuller [1980, 1983]
claimed that the nonuniform states occurred because
defects promote nucleation, but easy axis orientation is
another possible mechanism. V

Where LY > L§H™c, the coercivity will decrease
considerably before the remanence starts to decrease.
Levi and Merrill [1978] found that some highly elon-
gated (¢ =~ 8) grains of magnetite had values of M,
around 0.45M,, close to the theoretical value (0.5M,)
for randomly oriented SD grains. The coercivity for ran-
domly oriented, highly elongated SD grains (N, — N, ~
1) should be 0.5M; if they reverse by uniform rotation,
but the observed coercivities were one sixth that value.
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3. Discussion

Nucleation theory remains an esoteric and frequently
misunderstood subject even among micromagnetic the-
orists. In part, this is because the theory determines
only whether the SD state is stable; it does not say
what happens after it becomes unstable and how this
relates to observations. In sections 3.1 and 3.2, we dis-
cuss the form nucleation takes in small and large grains
and the relationship of nucleation to hysteresis.

. 3.1. Nucleation in Small and Large Grains

In SD grains with uniaxial anisotropy [Stoner and
Wohlfarth, 1947], there are at most two stable states at
any given field. If one of these states becomes unsta-
ble, the magnetization must jump to the other state.
The field at which the jump occurs was aptly named
the switching field by Schabes and Bertram [1988]. The
switching field is the single-grain analogue of the coer-
civity of remanence.

Most theorists assume that when nucleation occurs
there must be a jump from one state to another, yet in a
numerical model for a sphere [Aharoni and Jakubovics,
1990], the magnetization decreases continuously from
saturation. The jump between states in the Stoner-
Wohlfarth model occurs because one of the energy min-
ima disappears, but this is not the only kind of insta-
bility. At another kind, a pitchfork bifurcation, a single
minimum splits in two. As a state moves toward a bi-
furcation, it evolves along a single path until it reaches a
fork at the bifurcation; it must then choose which path
to take. Both new paths evolve continuously out of the
old.

Newell and Merrill [1998] show that nucleation by the
curling mode is a bifurcation. The mode u described by
(1), and its opposite —u, have the same effect on the
energy. There is no reason to choose one over the other.
After nucleation occurs, the SD state evolves continu-
ously into a curling (vortex) state. At the nucleation
field, there is a sudden change in the slope of the mag-
netization curve [Aharoni and Jakubovics, 1990; Newell
and Merrill, 1998].

Thus the nucleation field must be distinguished from
the switching field. Since the magnetization changes
continuously at the nucleation field, it is not associated
with obvious changes in the domain structure such as
the appearance of domain walls. However, nucleation
must occur before a domain wall appears.

For most of our calculations, the magnetocrystalline
easy axis was parallel to the long axis. This is the most
favorable orientation for maintaining the SD state. If
the easy axis is rotated, Lg} will decrease. In many
natural samples there is probably no correlation be-
tween the easy axis and the long axis. We cannot de-
termine the nucleation field for all orientations of the
easy axis, but we can calculate it for the least favorable:
alignment of the hard axis with the long axis. When we
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did this for a grain of TM60, we found the gap between
LEys™ and LEY almost disappeared (Figure 4).

It has long been known that nucleation in real ma-
terials occurs much more easily than nucleation theory
predicts. This is known as Brown’s paradox. The de-
viation from theory is usually attributed to defects, al-
though the role that defects play may depend on the size
of the anisotropy (for a thorough discussion see Aharon:
[1996]). In “hard” materials (K1/poM?2 > 1), defects
probably create centers for nucleation by lowering the
local anisotropy. However, the same defects that al-
low nucleation centers to appear may also prevent them
from spreading, so their effect on hysteresis properties
is not obvious. In “soft” materials (K1/poM?2 < 1),
such as magnetite, the most likely nucleation centers
are surface imperfections that affect the local demagne-
tizing field.

The ellipsoid is the only known shape for which the
demagnetizing field is uniform. As a result, the two nu-
cleation modes (uniform rotation and curling) are ex-
actly the same at all grain sizes. Despite the name “nu-
cleation,” which implies that the mode is concentrated
in a small region, the nucleation modes are nonlocal.

In nonellipsoidal grains, the magnetization is never
uniform. In the cube, the SD state (also called the
flower state [Schabes and Bertram, 1988]) has a small
divergence in the magnetization near the surface. If the
magnetization were uniform, the demagnetizing field
would be infinite in the corners. Shtrikman and Treves
[1960] predicted this would make nucleation easier and
concentrate it in the corners. However, the divergent
magnetization in the flower state screens the field in
the corners. Newell and Merrill [1998] show that as
the size of a cubic grain increases, the nucleation mode
changes gradually from a global curling mode like that
in the sphere to a local mode. Nucleation is indeed eas-
ier in the cube, but the mode is concentrated in the
centers of two opposing faces rather than the corners.
The nucleation field fits a modified version of (8) quite

well near L§35™, but as the size increases the nucleation

field increases more rapidly than (8) predicts.

In summary, our calculations of the critical sizes are
for ideal, highly symmetric grains. However, there are
good theoretical and experimental reasons to assume
that (16) is a good approximation to L§y™ in real
grains, while (17) is an upper limit for the actual Lg3".

The size range for SD remanence will be greatest for
saturation remanence and smaller for other kinds of
remanence. Strictly speaking, the nucleation calcula-
tions are for saturation remanence, since they assume
there is initially a large field. There may be other states
below L, such as curling states with moments per-
pendicular to the long axis [Enkin and Williams, 1994;
Newell, 1997]. These states may dominate thermorema-
nent magnetization (TRM) and anhysteretic remanent
magnetization (ARM) while the saturation remanence

is still SD.
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3.2. Nucleation and Hysteresis

We have described the relationship between nucle-
ation and domain wall formation. What about hys-
teresis parameters? As we discussed above, nucleation
always precedes switching (the transition from positive
to negative remanence in a single grain). In principle,
the nucleation field could be used as a bound on the
coercivity of remanence. However, this is useful only
when HESW! is negative (L < LER).

The critical sizes are more easily related to changes in
the hysteresis parameters with grain size. The smallest
grains are superparamagnetic and have no coercivity or
remanence. As the size increases above Lgpy, both H.
and M, increase initially because thermal fluctuations
decrease in importance. When the size exceeds LEY™,
nucleation occurs by nonuniform rctation and H, de-
creases. Thus H. is a maximum at the grain size L§F™.
The remanence continues to increase until L = LgF",
at which point the SD state becomes unstable. Thus
M,s /M, is a maximum at Lg3".

In trying to fit the grain size dependence of hystere-
sis parameters to theory, previous authors have assumed
the grains in a sample can be represented by grains of
a single size, the mean size [e.g., Williams and Dunlop,
1989]. However, the grains typically span an order of

‘magnitude in size. Most of the synthetic samples are

nearly spherical, and we predict the SD size range for
equant grains will be small to nonexistent. This is prob-
ably the reason why many synthetic samples that are
nominally in the SD size range have values of M, /M,
that are well below 0.5, the value predicted by Stoner-
Wohlfarth theory. Much of the non-SD behavior in
these samples that is attributed to grain interactions
le.g., Dunlop and Ozdemir, 1997] may be due to the
size distribution.

While LEF" depends on composition as well as grain
shape and other sources of anisotropy, L§y™ is much
the same for titanomagnetites of all compositions and
shapes. The size range between Lspm and LEY™ is
always narrow. Thus, in real samples with a range of

grain sizes, the coercivity will always be well below the
SD value.

4. Conclusions

We had two main goals in this paper. The first was
to make use of nucleation theory. The literature on
nucleation is forbidding, but the solutions for the nu-
cleation field are among the very few rigorous analyt-
ical solutions for nonuniform magnetization. In most
fields, analytical solutions (even of very simple, ideal-
ized cases) are used as a starting point for numerical
solutions. By contrast, nucleation theory has been ne-
glected even by experts on micromagnetics. Yet some
of the results obtained by nucleation theory are very
simple. For example, in perfect spheroidal grains, there
are only two possible nucleation modes, uniform rota-
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tion and curling, when the applied field is parallel to the
axes of anisotropy. The nucleation field for the curling
mode has a 1/L? dependence on grain size.

In this paper, we have presented the theory for perfect
spheroidal grains. We have also shown how this ideal-
ized theory is related to observations of imperfect, non-
spheroidal grains. Recently, Newell and Merrill [1998]
identified the nucleation mode in a cube, and showed
that it evolves from a curling mode like that in a sphere
to a more localized curling mode in larger grains. As the
nucleation mode becomes more localized, nucleation be-
comes easier than the analytical theory predicts. When
nucleation occurs, the magnetization changes continu-
ously so there is no observable change in domain struc-
ture, but nucleation precedes domain wall formation.

Our second goal was to show that there is more than
one critical size for SD properties. Previous authors
le.g., Dunlop and Ozdemir, 1997] have noted that the
usual energy-based critical size Ly has an uncertain
meaning. Now we have used nucleation theory to calcu-
late the critical sizes L™ for coercivity and L7 for
remanence. The analytical form of our equations makes
it easy to explore the effect of varying shape, composi-
tion, stress, or the orientation of easy axes; by modify-
ing the equations for cubic anisotropy with K; < 0, we
can apply them to titanomagnetites.

We find that the coercivity critical size L™ varies
little with composition or shape in the titanomagnetite
series and is not affected by stress or magnetocrystalline
anisotropy. By contrast, the remanence critical size
LgF" varies greatly. For nearly equant magnetite grains,
the size range for SD remanence is small to nonexis-
tent. This probably explains why synthetic samples
with mean sizes that are nominally SD have properties
that do not agree well with the predictions of Stoner-
Wohlfarth or Néel theory.

As numerical micromagnetic calculations become eas-
ler, they will replace existing domain theories. It is im-
portant to anchor the numerical work with analytical
results. If possible, the nucleation field should be cal-
culated for arbitrary orientations of the field, and the
relationship between the nucleation field and the switch-
ing field should be explored. We should also try to
determine what critical sizes apply to reliable Thellier-
Thellier tests, the Lowrie-Fuller test, and other tests of
importance to paleomagnetism.

Appendix: Magnetic Parameters for
Titanomagnetites

The magnetic parameters listed in Table 1 are rea-
sonably well known for magnetite, but in the rest of
the series Fes_,Tiy04,0 < x < 1, there is consider-
able uncertainty because the parameters are sensitive
to differences in stoichiometry [O’Reilly, 1984]. Indeed,
the exact composition of a titanomagnetite is often un-
certain because there is inconsistency between different
methods of determining the level of oxidation, there are
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uncertainties in cation ordering, and there tend to be
small-scale chemical inhomogeneities [ Moskowitz, 1987].
Often, theorists are tempted to understate the uncer-
tainty because it is too laborious to repeat numeri-
cal calculations with different parameters, but with the
simple expressions that we have developed in this pa-
per, it is easy to assess the effect on the critical sizes of
changing parameters.

Below we review the measurements of each param-
eter at room temperature for magnetite and TM60

(Fez 4Tig 604).

Al. Saturation Magnetization

For magnetite, M; is 4.8 x 105 Am~!. For TM60, the
range of experimental estimates is (1 —1.5) x 10> Am~!
[O’Reilly, 1984].

A2. Exchange Constant

In principle, A can be determined from inelastic neu-
tron scattering and other methods, but for ferrimagnets
the interpretation of the measurements is complex and
the values of A do not always agree well. Moskowitz
and Halgedahl [1987] and Heider and Williams [1988]
reviewed existing measurements and obtained an aver-
ageof A =1.3x107* Jm~!. Butler and Banerjee [1975]
used A = 1.5 x 10711 Jm~!. Moskowitz and Halgedahl
[1987] point out that because of uncertainties in two of
the coupling constants, the uncertainty in A could still
be 50%.

For titanomagnetites other than magnetite, A is es-
timated indirectly using assumptions about its depen-
dence on composition and temperature [Moskowitz and
Halgedahl, 1987]. It is probably reasonable to assume
a range A = (107'2 — 107'1)Jm~!. Fortunately, A
appears inside a square root in the expressions for the
critical sizes, so this range corresponds to a change in
the critical sizes of a factor of three. In Figure 4, we
used A =5 x 10712 Jm™1L.

A3. Magnetocrystalline Anisotropy

As we mentioned in section 2.1, the constant that is
actually measured is K1, the “zero-stress” constant. For
magnetite, K| = —1.1x 10*Jm™3. As titanium content
increases, K| first decreases, then increases to positive
values [O’Reilly, 1984]. Moskowitz and Halgedahl [1987)
estimate K] = 0.4 x 10* Jm~3 for TM60 by interpolat-
ing the measurements of Syono [1965]. For TM61, Sahu
and Moskowitz [1995] measure Kj = 0.2 x 10*Jm~3.
Since the compositions of TM60 and TM61 are so close,
these measurements indicate the uncertainty in K for
TM60.

A4. Magnetostriction

For magnetite, A\1gp is —19 x 10~¢, and A;;; is 78 x
10~ [Fletcher and O’Reilly, 1974]. For TM60, we use
the measurements by Sahu and Moskowitz [1995] for
TM61: Aigo = 140 x 10~% and A1 = 95 x 10-6.
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