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bstract

The time evolution of the strength of the Earth’s virtual axial dipole moment (VADM) is analyzed by relating it to the Fokker–Planck
quation, which describes a random walk with VADM-dependent drift and diffusion coefficients. We demonstrate first that our method
s able to retrieve the correct shape of the drift and diffusion coefficients from a time series generated by a test model. Analysis of the
int-2000 data shows that the geomagnetic dipole mode has a linear growth time of 20+13

−7 kyear, and that the nonlinear quenching of
2
he growth rate follows a quadratic function of the type [1 − (x/x0) ]. On theoretical grounds, the diffusive motion of the VADM is

xpected to be driven by multiplicative noise, and the corresponding diffusion coefficient to scale quadratically with dipole strength.
owever, analysis of the Sint-2000 VADM data reveals a diffusion which depends only very weakly on the dipole strength. This
ay indicate that the magnetic field quenches the amplitude of the turbulent velocity in the Earth’s outer core.
2007 Elsevier B.V. All rights reserved.
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. Introduction

The strength of the geomagnetic dipole moment
hows a considerable time variability, about 25% r.m.s.
f the mean, over the course of thousands of years. Occa-
ionally, the variability is so large that the sign of the
ipole moment changes. These reversals happen roughly
nce per (2–3) × 105 year (Merrill et al., 1996). The geo-
agnetic field is the result of inductive processes in the
arth’s liquid metallic outer core. Helical convection
mplifies the magnetic field and balances resistive decay.

everal groups have confirmed this idea with the help of
umerical simulations (Glatzmaier and Roberts, 1995;
uang and Bloxham, 1997; Christensen et al., 1999). A
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suitable measure of the geomagnetic dipole is the virtual
axial dipole moment (VADM), of which several records
have been published, e.g. by Guyodo and Valet (1999)
and Valet et al. (2005). Since the dipole moment is the
result of many processes taking place in the convect-
ing metallic outer core that interact with each other in
a complicated way, it makes sense to try to describe the
time evolution of the VADM over long time scales as a
stochastic process.

Before entering into details we recall that statistical
modelling of the geomagnetic field has a long history.
Constable and Parker (1988) were the first to give a
complete characterization of the statistical properties
of the geomagnetic field in terms of its spherical har-
monic expansion coefficients. The distribution of the

axial dipole was found to be symmetric and bi-modal,
consisting of two Gaussians shifted to the peak posi-
tion of the two polarity states. They also showed that the
expansion coefficients of the non-dipole field may, after
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appropriate scaling, be regarded as statistically indepen-
dent samples of one single normal distribution with zero
mean. This GGP (giant Gaussian process) approach as
it is now generally referred to, permitted computation of
the average of any field-related quantity. Hulot and Le
Mouël (1994) have extended the GGP approach by con-
sidering the evolution of the statistical properties with
time, and Bouligand et al. (2005) have tested the GGP
modelling technique on hydromagnetic geodynamo sim-
ulations.

Returning to the time evolution of geomagnetic dipole
as a stochastic process, consider a stochastic equation of
the type:

ẋ = v(x) + F (x)L(t). (1)

The function v(x) has the dimension of a velocity and
represents the effective growth rate of x, sometimes
called the drift velocity. The fluctuations are embod-
ied in the term F (x)L(t) and they induce an additional
diffusive motion of x.1 Here L(t) is a stationary ran-
dom function with zero mean and a short correlation
time τc:

〈L(t)〉 = 0, 〈L(t)L(t − τ)〉 = L2
r.m.s.τc δ(τ). (2)

A short correlation time means that the duration τc of the
memory of L(t) is much shorter than all other time scales
in the process. Under these circumstances the autocor-
relation function of L(t) behaves as a δ-function of time.
The probability distribution ρ(x, t) of x(t) determined by
Eq. (1) obeys the Fokker–Planck equation (Van Kampen,
1992; Gardiner, 1990)2:

∂ρ

∂t
= − ∂

∂x
(vρ) + 1

2

∂2

∂x2 (Dρ). (3)

Here t is time, and v is again the effective growth rate of
x. The diffusion coefficient is equal to

D � 2F2
∫ ∞

0
〈L(t)L(t − τ)〉 dτ � F2L2

r.m.s.τc. (4)

The Fokker–Planck equation is a simple and versatile
tool for modelling the dynamics of a stochastic process.
That is to say, the statistical properties of a wide vari-
ety of different stochastic processes can be described

by the Fokker–Planck equation (3). Hoyng et al. (2002)
have shown that for theoretically plausible functions v(x)
and D(x) the amplitude distribution of the Sint-800 data

1 The noise is called additive if F is constant, otherwise it is referred
to as multiplicative noise.

2 Provided vτc � x; this particular form of Eq. (3) requires in addi-
tion that dD/dx � v.
anetary Interiors 162 (2007) 249–255

(Guyodo and Valet, 1999) is very well predicted by Eq.
(3).

The purpose of this paper is two-fold. We investi-
gate whether the Sint-2000 VADM time series (Valet et
al., 2005) can indeed be described by a Fokker–Planck
equation (3). Secondly, we derive the dependence of the
effective growth rate v and the diffusion coefficient D
on the magnitude x of the VADM without making any
prior assumption on the functional form. In doing so we
are able to measure the linear growth rate of the dipole
mode and its nonlinear quenching from the data. Like-
wise, the diffusion coefficient D(x) provides information
on the convective flows in the outer core. This marks the
difference between our approach and that of the GGP:
we do not stop at giving a statistical description of the
multipole coefficients of the geomagnetic field, but we
extract information immediately related to the physics
of the geomagnetic dipole.

After a brief discussion of the Sint-2000 data in Sec-
tion 2, we develop in Section 3 a technique for extracting
the functions v(x) and D(x) from a time series. Next, in
Section 4, we validate the method with the help of an arti-
ficial VADM time series generated by a simple model to
see how well we can retrieve the v(x) and D(x) that were
used to generate the series. In Section 5 we apply the
method the Sint-2000 VADM data (Valet et al., 2005)
and we discuss the implications of our findings for the
geodynamo. A summary and our conclusions appear in
Section 6.

2. Sint-2000 data

The Sint-2000 data comprises a time series of 2000
unsigned VADM values spaced by 1000 year, covering
the past 2 Myear history of the geomagnetic dipole. The
positions of the reversals are indicated in Fig. 2 of Valet
et al. (2005), where they show up as local minima in the
VADM record. To obtain a VADM time series with sign
we have inserted a sign change between those locations.
The result is shown in Fig. 1. In doing so we may miss
some of the fine structure in the reversal time profile.
However, in view of the considerable intrinsic uncer-
tainties in the data [see Fig. 2 of Valet et al. (2005)],
similar and larger ambiguities apply to the whole VADM
time series. The amplitude distribution of the unsigned
VADM data is shown in Fig. 2.
3. Method

We start with the discretized version of the Fokker–
Planck equation. Discretization of space and time in Eq.
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ig. 1. The Sint-2000 VADM data of Valet et al. (2005), a time serie
ast 2 Myear history. We have inserted a sign flip at the times of know

3) leads to

ρi(t + �t) − ρi(t)

�t

= −vi+1ρi+1(t) − vi−1ρi−1(t)

2�x

+ Di+1ρi+1(t) + Di−1ρi−1(t) − 2Diρi(t)

2(�x)2 . (5)

e may rewrite this equation in matrix form as

i(t + �t) =
∑

j

(δij + �tMij)ρj(t), (6)

here M is a tridiagonal matrix with elements:

i,i−1 = vi−1

2�x
+ Di−1

2(�x)2 ; Mi,i = − Di

(�x)2 ;

i,i+1 = − vi+1

2�x
+ Di+1

2(�x)2 . (7)
y solving for vi and Di we obtain:

i = (Mi+1,i − Mi−1,i)�x;

i = (Mi+1,i + Mi−1,i)(�x)2. (8)

ig. 2. The amplitude distribution of the unsigned Sint-2000 data. In
rinciple the distribution is symmetric with respect to VADM = 0,
nd has a characteristic double-hump structure with small but nonzero
robability at VADM = 0.
0 unsigned VADM values spaced in time by 1000 year, covering the
sals, see text.

These expressions will be used to infer vi and Di once
the matrix M has been determined.

Each column of M adds up to zero, Mi−1,i + Mi,i +
Mi+1,i = 0, so that there are two free parameters per
spatial interval i, exactly as many as the parameters vi

and Di in the Fokker–Planck equation. An important
consequence of the zero column sum is that Eq. (6) is
norm-conserving:∑

i

ρi(t + �t) =
∑

i

ρi(t). (9)

In the limit �t → 0 Eq. (6) becomes:

dρi

dt
=

∑
j

Mijρj. (10)

The object of this paper is to extract the effective
position-dependent (=VADM-dependent) velocity and
diffusion coefficient from a time series, in this case of
the strength of the Earth’s magnetic dipole moment. To
this end we construct from the data the matrix T whose
elements Tij contain the transition probabilities for a sys-
tem in position j at some time t to move to position i at
a later time t + τ. We begin by counting the number
of times Nij that the system is located in position j at
some time t and in position i at time t + τ. The required
matrix elements are then equal to Tij = αjNij and have

a statistical error σij = αjN
1/2
ij . The normalization coef-

ficients αj are fixed by the requirement that the columns
of Tij should add up to unity,

∑
iTij = 1. The time lag

τ, finally, must be chosen comparable to, or larger than
the correlation time of the randomly fluctuating part of
the system, but small in comparison to the time scale on
which the data changes systematically.

Our assumption is that the process is Markovian and
therefore can be described by Eq. (10), from which it
follows that ρi(t + τ) = ∑

j exp (τM)ijρj(t). The theo-
retical transition matrix T̃ is therefore:
T̃ = exp(τM), (11)

and our goal is now to find a tridiagonal matrix M such
that T̃ closely resembles T. The matrix M has approx-
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Fig. 3. The left panel is the transition matrix T as obtained from simulation data of the HD model with τ = 0.007. Right panel: the approximate
ext. Th
d
∑

i
T

is a clear similarity between the two matrices. Fig. 4
transition matrix T̃ = exp(τM), where M is a tridiagonal matrix, see t
The bin size is 0.16 × 0.16. The matrix elements obey 0 ≤ Tij < 1 an

imately 3n degrees of freedom (ignoring boundary
effects), of which n can be eliminated by norm conser-
vation (columns add up to zero). To find the remaining
2n degrees of freedom we minimize the function:

∑
i,j

(
Tij − exp (τM)ij

σij

)2

. (12)

We could follow an alternative approach, by using the
stationary distribution pi ≡ ρi(∞) which we may find
by binning the data as in Fig. 2. Since the stationary dis-
tribution should obey Eq. (10), we have

∑
jMijpj = 0.

This relation can be used to eliminate another n degrees
of freedom in M, after which we find the remaining n by
minimizing the function (12). But we opted for fitting
2n degrees of freedom and to use

∑
jMijpj = 0, or

equivalently
∑

jT̃ijpj = pi, as a consistency check on
our computations.

4. Validation with the HD model

First, we test the approach outlined in the previous
section on data generated with the model of Hoyng
and Duistermaat (2004).3 This is a time series x(t) of

VADMs measured in units of the equilibrium value, so
x = 1 corresponds to the nonlinear equilibrium value of
the VADM. The series comprises 5 × 106 data points
with a time spacing of 0.001, and by construction this

3 Henceforth referred to as ‘HD’ or ‘HD model’.
e upper left corner corresponds to (−2, −2), the lower right to (2, 2).

ij = 1.

is also the correlation time.4 Time is measured in units
of the linear growth time of the dipole mode so that
the series is about 50 Myear long in real time. We dis-
cretize the strength x(t) of the VADM into 25 bins of
width 0.16 in dimensionless units, and we construct a
histogram of all sets {x(t), x(t + τ)} employing a time
lag of τ = 0.007. We then exploit the fact that there is
no sign preference, that is, for a given realisation x(t) the
series −x(t) is an equally likely realisation. Accordingly,
we add to the histogram all sets {−x(t), −x(t + τ)}. We
follow the procedure of the previous section, and the
resulting effective transition matrix T is plotted in Fig. 3
(left panel). Note that the blue matrix elements near the
centre have a relatively large value but not a more accu-
rate one: matrix elements near the centre of the figure
are determined by small x(t) associated with reversals
and these are rare. The most accurate elements corre-
spond therefore to the equilibrium value x = ±1, and are
located in the wings near (1, 1) and (−1, −1) in Fig. 3(left
panel).

We then perform the fitting procedure outlined above
to obtain the tridiagonal transition matrix M, and in the
right panel of Fig. 3 we have plotted T̃ = exp(τM). There
shows the resulting values for the diffusion coefficient
D and the effective growth rate v (inset), computed with

4 The time resolution of this series is a factor 10 higher than that of
the series used in Fig. 2 of HD, but the other parameters are the same
(a = 2, c = 5, and D = 0.4).
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Fig. 4. The diffusion coefficients Di as a function of x, obtained
by fitting the simulation data of Hoyng and Duistermaat (2004) to
t
D

v

b

t
v
B
n

4

F
b
a

H

v

H
h
f
S
b
r
〈
p
a
f

he Fokker–Planck equation. The drawn line is given by (14) with

0 = 0.4 and 〈r2〉 = 0.27. The inset shows the effective growth rate

i, compared to the theoretical value x(1 − x2) (drawn line). The error
ars indicate 80% confidence intervals.

he help of (8). The error bars are 80% confidence inter-
als computed with the bootstrap method (Newman and
arkema, 1999). This captures the statistical errors, but
ot the systematic errors.

.1. Comparison with theory

To place these results in perspective, we compute the
okker–Planck equation for the probability density of x
y integrating Eqs. (5) and (6) of HD over the overtone
mplitude r, to find:

∂ρ

∂t
= − ∂

∂x
x(1 − x2)ρ + 1

2

∂2

∂x2 D0(x2 + 〈r2〉|x)ρ.

(13)

ence, we recover Eq. (3) with

= x(1 − x2); D = D0(x2 + 〈r2〉|x). (14)

ere D0 a constant equal to 0.4 for the HD dataset used
ere, and 〈r2〉|x is the mean square overtone amplitude
or given x. The result is the two drawn lines in Fig. 4.
ince 〈r2〉|x is only a weak function of x, we did not
other to measure it from the simulation data. Instead, we
eplaced it by the average of r2 over all x, measured to be

r2〉 = 0.27. The v and D recovered from the data com-
are rather well with their theoretical values (14). The
greement for D could be further improved by allowing
or the fact that 〈r2〉|x is smaller than 0.27 near x = 0
anetary Interiors 162 (2007) 249–255 253

and larger than 0.27 for x > 1. However, we cannot
expect agreement to within the statistical errors because
of approximations made in deriving the Fokker–Planck
equation (13). As a result there are small systematic
differences between the statistical properties of x(t) pre-
dicted by (13) and (14) and those of the numerically
generated x(t). These differences are visible because we
use many data points (5 × 106).

These results demonstrate that our analysis is capable
to extract the information on the effective VADM growth
rate v and the type of noise that was used to generate the
time series. The scaling D ∝ x2 is a consequence of the
multiplicative noise that the HD model employs [that
is, a noise term of the type ẋ = · · · + N(t)x]. But that
is really a detail here. The main issue is that we have
successfully validated our retrieval method, as we have
shown that our analysis is able to get out what has been
put into the model. To avoid misunderstanding we note
that this agreement does not say anything on whether
the HD model describes the physics of the geomagnetic
dipole correctly or not, or better than other reversal
models do. It only tells us that our retrieval method
appears to work satisfactorily.

5. Application to the Sint-2000 data

We then repeat the same procedure on the Sint-2000
data, Fig. 1. The fitting procedure was performed
with a time lag of τ = 4 kyear, see Fig. 5. This choice
is motivated as follows. The autocorrelation time of
VADM data is a few hundred years (the time scale for
rapid random changes in the geomagnetic dipole), but
the sampling of the Sint-2000 VADM data increases that
to 1 kyear. The time scale for systematic changes may
be identified with the linear growth time of the dipole
mode (of the order of 10 kyear). The resulting effective
growth rate v and diffusion coefficient D are shown in
Fig. 6. The error bars are again 80% confidence intervals
computed with the bootstrap method (Newman and
Barkema, 1999). In reality, the errors will be larger as
we did not allow for the considerable intrinsic errors in
the VADM data (Valet et al., 2005).

The x dependence of the effective growth rate is
approximately as expected. The best fit of the func-
tion λx[1 − (x/x0)2] to the ‘data points’ vi yields
1/λ = 20+13

−7 kyear, and x0 = (5.4 ± 0.5) × 1022 A m2.
For small x we have v ∝ x which corresponds to linear

growth of the dipole mode when it is small, and the −x3

term is the nonlinear quenching. The surprise is in the
x-dependence of the diffusion coefficient D which we
discuss below.
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000 dat
orner co
2.
Fig. 5. Left panel: the transition matrix T obtained from the Sint-2
T̃ = exp(Mτ) obtained from a tridiagonal matrix M. The upper left c
(10, 10) × 1022 A m2. We use square bins of linear size 1 × 1022 A m

5.1. Implications for the geodynamo

The analysis of the Sint-2000 data confirms that
the geomagnetic dipole mode is unstable with a lin-
ear growth time 1/λ � 20+13

−7 kyear. The nonlinear
quenching follows approximately a quadratic quench-
ing function [1 − (x/x )2]. The nonlinear equilibrium
0
is attained at a VADM of x0 = 5.4 × 1022 A m2. These
results are more or less as expected. To our knowledge
this is the first time that the linear growth rate λ and

Fig. 6. Diffusion coefficients Di and velocity vi (inset) as a function
of magnetic dipole strength, obtained from fitting the Fokker–Planck
equation to the Sint-2000 data. The drawn line in the inset is the best
fit of λx[1 − (x/x0)2] to the ‘data points’ vi, see text for details.
a, with τ = 4 kyear. Right panel: the approximate transition matrix
rresponds to (−10, −10) × 1022 A m2, and the lower right corner to

the shape of the quenching function of the geomagnetic
dipole have been measured from pertinent data.

In order to judge our results on the diffusion coef-
ficient we derive the theoretical x-dependence of D. To
this end we consider the induction equation of MHD:
∂B/∂t = ∇ × (v0 × B) + ∇ × (δv × B) + η∇2B. The
fluctuating velocity δv represents the convective turbu-
lence in the metallic outer core superposed on a steady
flow v0. If we expand the magnetic field in the induction
equation in multipoles, the equation for the dipole
becomes ẋ = · · · + const. · δv(t)x. Only the contribu-
tion of the fluctuating term acting on the dipole is written
down explicitly. Comparing with Eq. (1) which produces
a diffusion coefficient D = 2F2

∫ ∞
0 〈L(t)L(t − τ)〉 dτ,

we now obtain D ∝ (δv)2
r.m.s.τc x2 ∝ β x2, where τc is

the correlation time of δv(t), and β � (δv)2
r.m.s.τc the

turbulent diffusion coefficient that occurs in the dynamo
equation (Moffatt, 1978). Detailed considerations lead
to:

D � β

R2

x2

N
+ const., (15)

where R is the radius of the outer core and N is the
number of convective cells in the core. There is a
small, approximately constant contribution to D due
to feedback of the overtones on the dipole amplitude.
This term also occurred in the HD model, cf. Eq. (14).
It is important because it is related to the occurrence of

reversals but it plays no role in the following discussion.

We expect therefore that D ∝ x2, and the explanation
is simple. The form of the induction equation makes that
a given δv generates a change in B proportional to the
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agnitude of B. For given δv the diffusive motion of
is therefore larger if B is large, and this translates to

he dipole component as well. However, these considera-
ions are not borne out by our numerical results in Fig. 6.

The increase of the diffusion coefficient for |x| → 0
n Fig. 6 is probably an artifact of the restricted length
f the data, in combination with the fact that there are
nly five reversals and one aborted reversal in the last
Myear. VADMs smaller than 2 × 1022 A m2 are absent

n the Sint-2000 data except during the very brief reversal
eriods. Since the data cannot resolve the fine structure
f the VADM during a reversal one might wonder what
he effect would be of a few rapid sign changes near a
eversal, but that would only serve to make D(0) larger.

For VADM > 2 × 1022 A m2 the diffusion coefficient
s constant. In fact, one might say that the data are con-
istent with a constant D at all VADM. We have tested
he possibility that this result might somehow be caused
y the limited time resolution of the Sint-2000 data. To
his end we have generated from the HD data a Sint-
000-like series by taking a running average and then a
ubset of 2000 data points separated by 1000 year. This
an only be done approximately as we cannot convert
he dimensionless time of the HD data (in units of the
ipole growth time) into real time. It is conceivable that
his new time series would have a large D(0) and a con-
tant D at larger x, but the resulting v and D did not differ
aterially from those in Fig. 4.
There seems to be no signature of multiplicative

oise in the Sint-2000 data, and we believe that this is
solid result. Instead, the data indicate that the noise

s quasi-additive, because the diffusion coefficient D �
2L2

r.m.s.τc in Eq. (3) would be constant if F in Eq. (1)
s constant. We have no explanation for this, but there
s the intriguing possibility that it is due to a nonlinear
uenching of the fluid velocity fluctuations δv(t). If β ∝
(δv)2〉τc would scale as ∝ 1/B2 ∝ 1/x2, then D would
e effectively independent of VADM, cf. (15). The best
ay to test these ideas would be to use a longer dataset,

nd an obvious possibility is to employ VADM data from
ydromagnetic geodynamo simulations for this purpose.

. Summary and conclusions

We have presented and validated a technique for
xtracting the effective growth rate and diffusion coeffi-
ient of a time series of a stochastic process. An attractive
eature of the method is that it does not assume any a pri-

ri mathematical form for these quantities. Application
f the method to the Sint-2000 VADM time series has
hown that it is possible to measure the linear growth
ate of the geomagnetic dipole and the shape of the non-
anetary Interiors 162 (2007) 249–255 255

linear quenching of this growth rate. The dependence
of the diffusion coefficient on the VADM suggests that
the amplitude of the convective flows in the outer core
is suppressed with increasing dipole strength. The main
limitation in extracting more useful information on the
geodynamo is the length of the Sint-2000 series. In
future research, we will apply this analysis technique
to time series obtained from hydromagnetic geodynamo
simulations. If no nonlinear quenching is observed in
these simulations, the simulation model produces time
series which are qualitatively different from the Sint-
2000 VADM time series. On the other hand, if these
simulations show similar nonlinear quenching, then the
cause of it can be investigated within the model.
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