ORIGINAL PAPER

New constraints on the origin and age of Variscan eclogitic rocks (Ligurian Alps, Italy)

Folco Giacomini · Roberto Braga · Massimo Tiepolo · Riccardo Tribuzio

Received: 30 May 2006 / Accepted: 3 August 2006 / Published online: 8 September 2006 © Springer-Verlag 2006

Abstract Gabbro and eclogite boudins are preserved within the amphibolites of the composite para- and ortho-gneiss Variscan basement of the Savona Crystalline Massif (Ligurian Brianconnais, Italy). Whole rock trace element patterns, low initial ε Nd (+5.4 to +8.8) data and trace element analyses on relict igneous clinopyroxene revealed that the mafic rocks were derived from depleted mantle melts, which most likely underwent crustal contamination during emplacement. Gabbros have a cumulus origin controlled by clinopyroxene and plagioclase segregation, whereas the eclogites represent evolved melts. U-Pb and trace element micro-analyses on zircons separated from one amphibolitised gabbro and one eclogite help to constrain coeval ages at ~468 Ma for their igneous protoliths. The occurrence of a few inherited zircons confirms the involvement of a crustal component in the petrogenesis of the mafic rocks. In the eclogite, concordant zircon ages younger than the protolith age testify to metamorphic re-crys-

Communicated by J. Hoefs.

F. Giacomini (⊠) Dipartimento di Scienze della Terra, Università di Siena, via Laterina 8, Siena, Italy e-mail: giacomini@unisi.it

R. Braga Dipartimento di Scienze della Terra e Geologico-Ambientali, Università di Bologna, P.za San Donato 1, Bologna, Italy

M. Tiepolo CNR-IGG Unità di Pavia, via Ferrata 1, Pavia, Italy

R. Tribuzio

Dipartimento di Scienze della Terra, Università di Pavia, via Ferrata 1, Pavia, Italy

tallisation (or new growth) from about 420 to 305 Ma. Zircon textures and trace element compositions indicate that eclogite facies metamorphism occurred 392–376 Ma ago. The younger zircon portions yielding a mean Concordia age of 333 ± 7 Ma are related to equilibration or new growth during the post-eclogite, amphibolite-facies equilibration.

Keywords Variscan · Eclogite · Gabbro · Zircon geochronology · LA-ICP-MS

Introduction

Eclogites and amphibolites are widespread in sections of the Variscan basement exposed in the Alps and adjoining areas (Provence, Corsica and Sardinia). These basement slices are characterised by similar lithological units recording analogous metamorphic events. Eclogitic rocks usually occur in the cores of mafic boudins associated with amphibolite facies paragneisses (often migmatitic) and orthogneisses. There is a general consensus that most of these mafic rocks derive from Cambro-Ordovician igneous protoliths (Paquette et al. 1989; Rubatto et al. 2001; Schaltegger et al. 2003; Cortesogno et al. 2004; Palmeri et al. 2004; Giacomini et al. 2005), while the age of the high-pressure metamorphic overprint is debated.

Eclogite-facies rocks cropping out in the Gotthard massif were dated to 460–470 Ma by combining SHRIMP I data on zircons and the Sm-Nd isochron on whole rocks and garnets (Gebauer et al. 1988, Gebauer 1993). In the external Alpine Massifs of the western Alps, the eclogite-facies equilibration was instead ascribed to the Silurian (425–395 Ma) on the basis of

intercept ages from conventional U/Pb analyses on zircons (Paquette et al. 1989). A not better defined "high-grade event" in the eclogites from northern Sardinia was dated to 403 ± 4 Ma on the basis of conventional U-Pb analyses on a metamorphic-looking zircon population (Cortesogno et al. 2004). Despite several other recent attempts (Rubatto et al. 2001; Palmeri et al. 2004; Giacomini et al. 2005), no other data are currently available for the timing of the eclogite facies overprint in the western Alps and Sardinia.

In this work, metagabbros and eclogites from the Savona Crystalline Massif in the Ligurian Alps, Italy (Fig. 1a, b) were analysed for major, trace element and Nd isotope compositions. The in situ LA-ICPMS trace element composition of relict igneous clinopyroxene from metagabbros was also determined. The U-Pb isotope and trace element composition of zircons from one gabbro sample and one eclogite were analysed in situ (LA-ICPMS) for geochronological purposes. The timing of pre-Alpine metamorphism in the Ligurian Briançonnais basement is poorly constrained. Published geochronological data only constrain the late, widespread amphibolite facies re-equilibration, which is thought to be coeval with the development of the main regional foliation. In particular, Rb/Sr and Ar-Ar data indicate that the amphibolite-facies metamorphism of the paragneisses and orthogneisses in the Ligurian basement occurred between 327 and 297 Ma (Del Moro et al. 1981; Barbieri et al. 2003).

The principal goal of this study was to define the age of the still undated igneous protoliths and the highpressure eclogitic overprint in the mafic rocks of this sector of the Variscan belt and to propose strategies for the interpretation of U/Pb zircon data in complex metamorphic systems. The study of mafic rocks cropping out in the Savona Crystalline Massif through a combination of in situ or bulk isotope data and geochemical analysis has provided new data for reconstructing the magmatic and tectono-metamorphic history of the basement of the Briançonnais zone. The comparison with published literature data on neighbouring southwest European Variscan units permitted a better understanding of the geodynamic evolution of the collisional belt.

Geological setting and field relations

The Savona Crystalline Massif (Fig. 1b) belongs to the Ligurian Briançonnais domain, a stack of pre-Alpine sedimentary sequences and basement slices thought to

Fig. 1 a Tectonic map of the Western and Central Alps. The Penninic Zone comprises the Briançonnais Zone (or Grand Saint Bernard nappe system), which overthrust the Helvetic Domain.

b Geological map of the Savona Crystalline Massif. **c** Geological sketch map of the Val Quazzola area. E, eclogite-facies relics; G, gabbro relics

represent the Mesozoic passive margin of the European continent (Vanossi et al. 1984). The Savona Crystalline Massif comprises a strongly deformed mafic amphibolite-paragneiss complex in tectonic contact with orthogneisses. Locally, the amphibolites retain relics of gabbro and of eclogite facies assemblages of unknown age (Messiga 1987; Messiga et al. 1992; Cortesogno et al. 1993, Gaggero et al. 2004). Orthogneisses and paragneisses record white mica whole-rock and biotite whole-rock Rb-Sr ages of 327-297 Ma, which were attributed to cooling under amphibolite facies conditions (Del Moro et al. 1981). Ar/Ar ages of 311-302 Ma were obtained for white micas separated from paragneiss pebbles of the Tertiary molasse overlying the basement (Barbieri et al. 2003). A white mica separate from a paragneiss associated with the amphibolitised gabbros yielded a Rb/Sr cooling age of 308 ± 11 Ma (Del Moro et al. 1982). The Alpine metamorphic overprint does not exceed greenschist facies conditions (Messiga 1987; Messiga et al. 1992; Cortesogno et al. 1993, Cortesogno et al. 1997).

The study area comprises the valley of the Quazzola stream between Bersaggi and Richini villages (Fig. 1c). Undeformed bodies of either gabbro or partially retrogressed eclogite occur within the mafic amphibolites along the bed of the torrent. Gabbro- and eclogiterelics are not associated in the same outcrop. Near Richini village the mafic amphibolites contain decametre-scale metagabbro boudins. The gabbroic rocks preserve an igneous layering defined by modal and/or grain-size variations in plagioclase and clinopyroxene, the latter showing coronas of hornblende. Decimetrescale layers of melagabbro are sometimes present. A coarse-grained fels rich in staurolite, garnet and magnetite occurs as a meter-scale lens within a deformed and amphibolitised gabbro. This lens is SiO₂-poor and Al_2O_3 -rich (both ~30 wt%) and most likely related to digestion of crustal rocks by the basic magma (Braga and Tribuzio 1999). The contact between this enclave and the host amphibolitised gabbro is marked by the appearance of magnetite + quartz in the amphibolite paragenesis. Near Bersaggi village, about two kilometres northwest of the previous location, retrogressed eclogites form metre-scale, non-foliated domains within banded amphibolites. In the outcrop, the retrogressed eclogites show subhedral to anhedral garnet porphyroblasts (up to 1 cm in diameter) set in a light grey, fine-grained foliated matrix. Garnet porphyroblasts commonly bear coronas of dark-green amphibole aggregates. The transition from retrogressed eclogites to banded amphibolites is marked by a gradual decrease in the garnet-amphibole modal ratio and a progressive disappearing of the light matrix.

Methods

Whole rock major, trace element and Nd isotope compositions were determined at Activation Laboratories (Ancaster, ON, Canada). Major and trace element analyses (Table 1) were carried out by ICP-MS; precision and accuracy are generally estimated to be better than 10%. Nd isotope analyses (Table 2) were performed using a Finnigan MAT 261 8-collector mass-spectrometer in static mode. Powdered samples were dissolved in a Hf-HNO₃-HCl mixture. ¹⁴³Nd/¹⁴⁴Nd ratios are relative to the value of 0.511860 for the La Jolla standard.

The trace element composition of igneous clinopyroxene was determined by laser ablation (LA)-ICP-MS at the CNR-Istituto di Geoscienze e Georisorse- Unità di Pavia. The reader can refer to Tiepolo et al. (2003) for analytical details The LA-ICP-MS instrument couples a Nd:YAG laser operating at 213 nm with a double focusing sector field ICP mass spectrometer type Element I from Thermo. The laser was operated at a repetition rate of 10 Hz, with a spot diameter of $20-40 \ \mu\text{m}$ and a pulse energy of about $0.01-0.03 \ \text{mJ}$, respectively. Data reduction was performed using the software package "Glitter" (van Achterberg et al. 2001). NIST SRM 612 was used as the external standard. ⁴⁴Ca or ²⁹Si were adopted as the internal standards, depending on the mineral composition. Precision and accuracy, assessed against the BCR-2 USGS reference glass, are better than 6% relative.

Zircon grains for the geochronological characterisation were separated using standard techniques starting from a sieved rock fraction of 60-250 microns; grains were mounted in epoxy resin and then polished down using 0.25 micron diamond paste. Pb geochronology of zircons was carried out at the CNR-IGG-Unità di Pavia using an ArF excimer laser ablation microprobe operating at 193 nm (Geolas200Q-Microlas) coupled with the previously described HR-IC-PMS (Element-ThermoFinnigan). Laser was operated at 5 Hz, fluency was set at 12 J/cm² and the spot size to 25 or 10 µm according to the internal complexity of zircon. The method is basically that described in Tiepolo (2003) and in Miller et al. (2006). The signals of masses ²⁰²Hg, ²⁰⁴Pb, ²⁰⁶Pb, ²⁰⁷Pb, ²³²Th and ²³⁸U were acquired in magnetic mode. The ²³⁵U signal is calculated from ²³⁸U on the basis of the ratio 238 U/ 235 U = 137.88. Approximately 60 s of background and at least 30 s of ablation signal from zircon were acquired. The time resolved signal and U/Pb ratios were carefully inspected in order to detect perturbations related to inclusions, cracks or mixing between different age domains. Zircon showing detectable

Table 1 Bulk major and trace element compositions of selected samples

Lithotype Sample	Gabbro GBSV3	Gabbro GBSV2	Gabbro GBSV4	Eclogite SV6	Eclogite SV1	Eclogite SV2	Eclogite SV4
% Wt							
SiO ₂	47.88	48.40	49.17	48.94	49.45	49.72	50.13
TiO ₂	0.27	0.23	0.27	1.26	1.93	1.40	1.28
Al_2O_3	16.26	16.27	17.42	15.79	13.64	15.55	15.75
Fe_2O_3	1.15	1.10	0.80	1.45	2.10	1.50	1.64
FeO	5.88	5.56	4.17	7.42	10.55	7.67	8.46
MnO	0.13	0.13	0.10	0.16	0.21	0.16	0.15
MgO	11.30	10.21	9.11	8.33	6.08	8.29	7.89
CaO	12.93	13.27	15.00	10.91	10.83	11.57	10.12
Na ₂ O	1.88	2.00	1.98	3.30	2.86	2.51	3.46
K_2O	0.20	0.11	0.11	0.91	0.22	0.22	0.24
P_2O_5	<d.l.< td=""><td><d.l.< td=""><td>0.02</td><td>0.13</td><td>0.17</td><td>0.13</td><td>0.10</td></d.l.<></td></d.l.<>	<d.l.< td=""><td>0.02</td><td>0.13</td><td>0.17</td><td>0.13</td><td>0.10</td></d.l.<>	0.02	0.13	0.17	0.13	0.10
LOI	2.69	2.54	1.73	1.91	1.16	1.27	1.40
Sum	100.56	99.82	99.87	100.51	99.20	99.99	100.62
mg#	0.77	0.77	0.80	0.67	0.51	0.66	0.62
	0.77	0.77	0.00	0.07	0.51	0.00	0.02
ppm Ba	65	125	52	219	75	76	17
Rb	8	3	1	30	5	6	5
Sr	201	179	197	135	97	186	139
	0.3	0.2	0.1		0.1	0.3	0.2
Cs	0.3 11			1 16	20		
Ga		12	13			18	16
Sc	40 D I	36	47	39	47	43	39
Ta	<d.l.< td=""><td>0.02</td><td><d.l.< td=""><td>0.15</td><td>0.19</td><td>0.2</td><td>0.09</td></d.l.<></td></d.l.<>	0.02	<d.l.< td=""><td>0.15</td><td>0.19</td><td>0.2</td><td>0.09</td></d.l.<>	0.15	0.19	0.2	0.09
Nb	<d.l.< td=""><td>0.4</td><td><d.l.< td=""><td>2.4</td><td>3</td><td>3</td><td>1.7</td></d.l.<></td></d.l.<>	0.4	<d.l.< td=""><td>2.4</td><td>3</td><td>3</td><td>1.7</td></d.l.<>	2.4	3	3	1.7
Hf	0.3	0.3	0.3	2.2	3.8	2.6	2.2
Zr	10	<d.l.< td=""><td>4</td><td>81</td><td>124</td><td>93</td><td>74</td></d.l.<>	4	81	124	93	74
Y	6.4	8	7.5	26.7	52.6	31	27.6
Th	0.07	0.17	0.08	0.22	0.26	0.27	0.22
U	0.02	0.08	0.05	0.16	0.35	0.12	0.76
Cr	430	100	640	250	<d.l.< td=""><td>300</td><td>270</td></d.l.<>	300	270
Ni	100	80	80	100	30	70	90
Co	42	44	38	34	44	45	41
V	136	110	138	263	402	259	300
Cu	110	120	80	60	40	170	60
Pb	<d.l.< td=""><td>8</td><td><d.l.< td=""><td>7</td><td><d.l.< td=""><td>13</td><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	8	<d.l.< td=""><td>7</td><td><d.l.< td=""><td>13</td><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<>	7	<d.l.< td=""><td>13</td><td><d.l.< td=""></d.l.<></td></d.l.<>	13	<d.l.< td=""></d.l.<>
Zn	<d.l.< td=""><td>30</td><td><d.l.< td=""><td>90</td><td>60</td><td>80</td><td>80</td></d.l.<></td></d.l.<>	30	<d.l.< td=""><td>90</td><td>60</td><td>80</td><td>80</td></d.l.<>	90	60	80	80
La	0.79		0.65	3.90	4.63	4.54	3.12
Ce	1.82	1.69	1.59	10.90	14.40	12.50	9.00
Pr	0.31	0.39	0.28	1.83	2.37	1.95	1.57
Nd	1.95	2.15	1.81	10.10	13.30	10.50	9.29
Sm	0.71	0.76	0.72	3.23	4.55	3.47	3.07
Eu	0.43	0.52	0.46	1.20	1.62	1.39	1.12
Gd	0.91	0.99	1.00	4.21	6.69	4.58	4.07
Tb	0.18	0.20	0.20	0.75	1.31	0.84	0.76
Dy	1.17	1.28	1.30	4.51	8.54	5.19	4.87
Ho	0.24	0.26	0.27	0.94	1.79	1.05	1.00
Er	0.69	0.76	0.75	2.75	5.50	3.04	2.95
Tm	0.10	0.11	0.11	0.41	0.85	0.44	0.45
Yb	0.63	0.65	0.65	2.64	5.35	2.73	2.90
Lu	0.09	0.10	0.10	0.39	0.76	0.41	0.42

mg# = molar (MgO/(MgO+FeO))

<D.L. below detection limits

common Pb (from the ²⁰⁴Pb count rate) were neglected. The laser induced U-Pb fractionation was corrected adopting a matrix matched external standard (zircon 91500) and considering the same spot size and integration interval on the unknown and the standard zircon. Data reduction, isotope ratio and apparent age

calculation was carried out with the GLITTER software (Macquarie Research Ltd, 2001) developed by Van Achterbergh et al. (2001). Concordia plot and concordant age values were calculated using the ISO-PLOT/EX software by Ludwig (1999). In each analytical run zircon 02123 (Ketchum et al. 2001) was

	Sample	$^{143}Nd/^{144}Nd_{(0)}$	2SE	¹⁴⁷ Sm/ ¹⁴⁴ Nd	$\epsilon_{\rm Nd}(0)$	$^{143}\mathrm{Nd}/^{144}\mathrm{Nd}_{(470)}$	$^{143}\rm{Nd}/^{144}\rm{Nd}_{\rm{(CHUR,470)}}$	$\varepsilon_{Nd}(470)$
Gabbro	GBSV2	0.512965	0.000011	0.214	6.38	0.512307	0.512032	5.4
	GBSV4	0.513121	0.000008	0.241	9.42	0.512380	0.512032	6.8
	GBSV3	0.513160	0.000006	0.220	10.18	0.512482	0.512032	8.8
		143Nd/144Nd(0)	2SE	¹⁴⁷ Sm/ ¹⁴⁴ Nd	$\epsilon_{\rm Nd}(0)$	143Nd/144Nd(460)	$^{143}Nd/^{144}Nd_{(CHUR,460)}$	ε _{Nd} (460)
Eclogite	SV2	0.513004	0.000004	0.200	7.14	0.512402	0.512045	7.0
U	SV6	0.513025	0.000004	0.193	7.55	0.512442	0.512045	7.8
	SV1	0.513129	0.000004	0.207	9.58	0.512506	0.512045	9.0
	SV4	0.513119	0.000006	0.200	9.38	0.512517	0.512045	9.2

Table 2 Isotope Nd composition and ¹⁴⁷Sm/¹⁴⁴Nd ratios of the selected samples

analysed as unknown as quality control and average accuracy is estimated close to 1%.

LAM-ICP MS trace element analyses were carried out on selected age-concordant zircons according to the method for trace element determination described above but using the 193 nm laser source. Ablation spots about 25 μ m in diameter were located near the spots of U-Pb analyses.

Petrology of selected samples

This study determined the whole rock major and trace element chemistry and Sm-Nd composition of three metagabbro samples (GBSV2, GBSV3 and GBSV4) and four retrogressed eclogites (SV1, SV2, SV3 and SV4). The selected metagabbros preserve igneous textures and fresh clinopyroxene of igneous origin and record the lowest degree of amphibolite-facies recrystallisation. An additional metagabbro sample (GBSV1) was chosen for zircon separation. The retrogressed eclogites were selected in order to avoid samples with a greater degree of retrograde amphibolite-facies recrystallization (e.g., amphibole aggregates forming pseudomorphs after garnet).

Gabbros

The gabbroic rocks (Fig. 2) consist of euhedral plagioclase (about 55 vol%), subhedral to poikilitic clinopyroxene and a completely altered mafic mineral. The latter is replaced by rounded aggregates of colourless amphibole, which make up about 10 vol % of the rocks and have been interpreted as pseudomorphs after olivine. In all samples, clinopyroxene is rimmed by fine-grained aggregates of green amphibole and minor plagioclase. Accessory Fe-sulphides occur as inclusions within the major minerals. Scarce pseudomorphs of rutile and titanite interstitial to the major minerals suggest the presence of accessory Fe-Ti-oxide phases in

the original igneous assemblage. Rare plagioclase grains with igneous texture are preserved and have an anorthite content of 60–63 mol %. Plagioclase is commonly altered to fine-grained aggregates of albite and epidote. The mg# value [Mg/(Mg+Fe*)] of clinopyroxene ranges from 0.76 to 0.89. The Al and Cr contents in clinopyroxenes generally decrease with decreasing mg#, whereas Mn increases.

Deformed metagabbros (amphibolites to hornblendites) are characterised by the presence of both Mghornblende and plagioclase and by the development of

Fig. 2 a Boudin of undeformed gabbro in a mylonitic metagabbro. **b** Thin section of an undeformed gabbro preserving relics of igneous plagioclase and pyroxene. Clinopyroxene is invariably rimmed by green amphibole, and the round-shaped amphibole aggregates are interpreted as pseudomorphs after olivine

porphyroblastic garnet in Fe-rich protoliths; pressure and temperature values of 0.4–0.7 GPa and 500–600°C have been proposed for the amphibolite-facies metamorphic re-equilibration (Braga and Tribuzio 1999).

Eclogites

High-pressure paragenetic relics (Fig. 3) consist of euhedral garnet porphyroblasts, omphacite, zoisite, rutile, kyanite, phengite and quartz. Omphacite (Jd_{32-41}) is partially replaced by diopside-andesine symplectites. Garnet porphyroblasts are almandine-rich (49–62%) with lower amounts of grossular and pyrope (19–29% and 13–27%, respectively) and less than 3% spessartine; they are commonly zoned, with a decrease in Mn and Ca and a slight increase in Mg/(Mg+Fe) from core to rim (see also Messiga et al. 1992). Garnets are rimmed by green amphibole and plagioclase kelyphites. Kyanite is rimmed by fine-grained muscovite (\pm margarite) and quartz aggregates.

Fig. 3 a Photograph of a polished eclogite sample highlighting the zoned syn- to post-kinematic garnet porphyroblasts rimmed by amphibole kelyphites; the deformed matrix mainly consists of omphacite, rutile and zoisite. **b** Back-scattered electron image of an eclogite sample: the relict eclogite-facies minerals are variably overprinted by lower pressure mineral parageneses

Minimum pressure conditions of 1.7 GPa were proposed for the eclogite facies paragenesis (Cortesogno et al. 1997). Eclogite facies temperatures based on clinopyroxene-garnet Mg-Fe²⁺ exchange range from 650° to 750°C. The pressure-temperature conditions of the major late amphibolite-facies overprint are constrained to about 0.4–0.7 GPa and ~600 °C (Braga and Tribuzio 1999; Cortesogno et al. 2004).

Chemistry

Whole rock geochemistry

Selected gabbros and eclogites have significantly different major and trace element chemical compositions. At nearly constant SiO₂ contents, the gabbros have higher Al₂O₃, MgO and CaO contents and lower TiO₂, Na₂O and MnO contents than the eclogites. K₂O contents are generally low (0.1–0.9 wt%), particularly in the gabbros where they never exceed 0.2 wt%. The mg# value of the gabbros (0.77–0.80; Fig. 4a) is significantly higher than that of the eclogites (0.51–0.67). The CIPW norm indicates that gabbros are olivine normative, supporting the hypothesis that the subrounded amphibole aggregates in the gabbros are pseudomorphs after olivine. Eclogites are hyperstenenormative.

The REE pattern of the gabbros (Fig. 4b) displays depletion in LREE relative to MREE and HREE ($La_N/Sm_N = 0.6 - 0.7$, Yb_N contents 3–5 times those in chondrites) and a clear positive Eu anomaly (Eu/Eu* = 1.6–1.8). The gabbros have low Nb, Ta, Zr, Y, Hf and Th contents.

The eclogites are slightly depleted in LREE with respect to MREE and HREE ($La_N/Sm_N = 0.64-0.82$), with a small to absent negative Eu anomaly (Eu/ Eu*=0.89-1.06). Total REE contents are about 15-35 times those of a chondrite. The incompatible element pattern of the eclogites is smooth, with concentrations that are typically higher than in the gabbros. No significant Sr anomaly is observed. The LREE are lightly enriched relative to Th, Nb and Ta (Fig. 4b, c). U, Ba and Rb concentrations are highly variable and were not plotted in the multivariation diagrams: these elements are strongly mobile and their concentrations may have varied during the metamorphic events subsequent to the crystallisation of the igneous protolith. Present-day ¹⁴³Nd/¹⁴⁴Nd vary from 0.512965 to 0.513160 in the gabbroic rocks and from 0.513004 to 0.513129 in the eclogites; ¹⁴⁷Sm/¹⁴⁴Nd span from 0.193 to 0.241, thus yielding $\varepsilon Nd_{(0)}$ in the range +6.4 to +10.2.

Fig. 4 a TiO_2 vs. mg# plot evidencing the cumulus character of the gabbroic rocks. **b** Chondrite-normalised REE diagram and **c** trace element multivariation diagram (normalised to Primitive-Mantle values) of the investigated gabbros and eclogites. Ti* is recalculated from the TiO₂ wt% in the major element analyses

Trace element composition of igneous clinopyroxene from the gabbros

The REE patterns of clinopyroxenes are characterised by LREE-depletion with respect to MREE and HREE $(La_N/Sm_N = 0.07-0.17)$, for HREE contents 5-11 times those in chondrites) and by a weak negative Eu anomaly (Eu/Eu* = 0.7–0.9). The La_N/Sm_N ratio and the negative Eu anomaly slightly increase with total REE contents (Fig. 5; Table 3). Cr contents are relatively high (540-2600 ppm). Cr shows a rough positive correlation with mg# values. V and Sc range from 400 to 460 and from 130 to 160 ppm, respectively. The incompatible trace element patterns of the clinopyroxene (normalised to chondrite values, not reported) are characterised by low Nb, Ta, Sr, Zr and Hf contents with respect to the neighbouring REE. A remarkably similar incompatible element fingerprint is observed for clinopyroxenes from MOR-type cumulates (e.g. Tribuzio et al. 1999, 2004).

Geochronology

Zircon features

U-Pb LA-ICPMS dating of zircons was carried out on one gabbro (sample GBSV1) and one eclogite (sample SV1) from the Savona Crystalline Massif. Back-scattered electron and cathodoluminescence image analysis was completed prior to laser ablation analysis to investigate zircon morphology and internal zoning. Selected cathodoluminescence images of zircons from the two dated samples are reported in Fig. 6.

Fig. 5 Chondrite-normalised REE diagram of clinopyroxenes from the investigated gabbro samples

Table 3 Average major andtrace element compositionsof relict magmaticclinopyroxene from the	Major elements (wt%)	GBSV2	GBSV4	GBSV3	Trace elements (ppm)	GBSV2	GBSV4	GBSV3
gabbrocic rocks	SiO ₂	52.57	54.02	54.29	Sc	159	136	130
	TiO ₂	0.60	0.46	0.48	Ti	5037	4428	4090
	Al_2O_3	2.35	2.72	2.96	V	461	400	391
	Cr_2O_3	0.09	0.31	0.56	Cr	539	2386	2592
	FeO	5.86	3.58	3.22	Rb	<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<>	<d.l.< td=""></d.l.<>
	MnO	0.22	0.08	0.11	Sr	13.5	14.5	15.0
	MgO	14.37	15.10	15.50	Y	17.5	7.88	13.1
	CaO	24.27	22.80	22.76	Zr	13.8	9.89	11.3
	Na ₂ O	0.43	1.20	1.79	Nb	0.05	0.05	0.04
	Sum	100.75	100.26	101.67	Ba	<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<>	<d.l.< td=""></d.l.<>
					La	0.40	0.09	0.22
	mg#	0.81	0.88	0.90	Ce	1.52	0.53	1.40
	8				Pr	0.45	0.13	0.36
	a.p.f.u.				Nd	3.30	1.31	2.66
	Si	1.93	1.96	1.93	Sm	1.50	0.75	1.36
	Ti	0.02	0.01	0.01	Eu	0.44	0.24	0.50
	Al	0.10	0.12	0.12	Gd	2.50	0.96	2.06
	Cr	0.00	0.01	0.02	Tb	0.43	0.20	0.34
	Fe ²⁺	0.14	0.10	0.01	Dy	3.08	1.56	2.62
	Fe ³⁺	0.04	0.01	0.09	Ho	0.69	0.32	0.53
	Mn	0.01	0.00	0.00	Er	1.87	0.77	1.39
	Ni	0.00	0.00	0.00	Tm	0.25	0.12	0.21
	Mg	0.78	0.82	0.82	Yb	1.62	0.71	1.26
ma# : molar Mao/	Ca	0.95	0.89	0.87	Lu	0.25	0.09	0.17
mg# : molar Mgo/ (MgO+FeO)	Na	0.03	0.08	0.12	Hf	0.79	0.72	0.63
<i><d.l.< i=""> below detection limits</d.l.<></i>	Sum	4.00	4.00	4.00	Та	0.01	0.04	0.03

Zircons from the gabbro are rare and small, not exceeding 100 microns in length. Back-scattered imaging revealed that almost all zircons are short prismatic, subhedral to euhedral. A few subrounded grains also occur. The cathodoluminescence is generally low: some zircons appear nearly structureless with faint convolute zoning, while others show well developed oscillatory zoning.

Zircons in eclogites are 50-150 microns in length and show subhedral, short prismatic to anhedral and subrounded morphologies. Quartz, apatite and subordinate zoisite inclusions occur in some grains. One fractured zircon rim hosts two small inclusions of clinopyroxene-plagioclase symplectites (Fig. 6). Cathodoluminescence analysis reveals a variety of internal structures. Zircons with internal patchy zoning and strong luminescence contrasts are frequent. Several grains have cores with low luminescence and bright rims. The dark cores may be zoned (patchy or oscillatory) or almost structureless. The bright rims are unzoned.

Geochronological results

The U/Pb isotope compositions of zircons are reported in Tables 4 and 5.

Twenty-two laser ablation spots were made on sixteen zircon grains from gabbro GBSV1. Eleven ages are concordant and span a time interval from 2,136 to 459 Ma (Fig. 7). Six concordant analyses, obtained from subhedral, short prismatic zircons with faint oscillatory zoning have ages of 481-459 Ma with a mean concordant age of 469 ± 6 Ma (MSWD = 0.6, probability = 0.5). Three grains have slightly older ages ranging from 494 to 515 Ma. They have variable internal structures, with complex convolute zoning or dark unzoned areas. One subhedral, rounded crystal has a concordant age of 2,128 Ma (average of 2 analytical spots). It shows sector zoning and alternating bright and dark areas. The other analyses yield discordant points and do not define reliable intercept ages.

Eighty-three laser ablation spots on fifty-nine grains were performed on zircons from the selected eclogite. Fifty-one analyses gave concordant ages with a wide scatter of 645–305 Ma (Fig. 8a). The generally complex

Fig. 6 Cathodoluminescence images of representative zircons ► from the gabbro (1-5) and eclogite (6-13) and location of geochronological and microchemical analyses (Tables 4, 5, 6). Images 13 and 14 are respectively CL and BSE images of the same grain: note the inclusion of clinopyroxene-plagioclase symplectite and the thin fractures in the host zircon

relationships between measured ages and zircon textures are summarised below.

One subhedral zircon, three dark crystal cores and one unzoned domain in a zircon fragment yielded concordant ages of 645–520 Ma. Another twenty-five analyses of core and rim portions in euhedral-subhedral, short prismatic zircon crystals yielded concordant ages of 486–430 Ma. The internal textures vary from dominant faint oscillatory or patchy zoning, to rare firtree zoning. This large group of data presents an irregular bell-shaped distribution centred at about 460 Ma. Due to the large scatter, the data define two mean concordant ages (Fig. 8b): the seventeen oldest analyses cluster around a well-defined mean concordant age of 468 ± 4 Ma (MSWD = 1.2, probability = 0.3), whereas the other seven define a younger mean age of 446 ± 2 (MSWD = 1.8, probability = 0.2).

Nineteen analyses on both core and rim zircon domains with variable internal textures yielded ages in the 420-305 Ma range. These crystals are generally characterised by low luminescence and have variable internal zoning: the most frequent features are dark unzoned cores surrounded by brighter unzoned rims, or irregular crystal sectors characterised by faint luminescence contrasts. Four analyses performed on one zircon core and on three overgrowths resulted in a mean concordant age of 407 ± 9 Ma (MSWD = 0.11 probability = 0.7). Seven analytical points span from 392 to 374 Ma and form two small groups (comprising 3 and 4 analyses respectively): they define two mean concordant ages of 392 ± 4 Ma (high MSWD of 3.3) and 376 ± 2 Ma (MSWD = 1.8, probability = 0.2) respectively. In particular, the unzoned and fractured zircon rim containing two ovoid inclusions of clinopyroxene-plagioclase symplectites yielded a concordant age of 374 ± 18 Ma.

Lastly, eight analyses of irregularly zoned crystals and of bright unzoned rims on older cores yielded concordant ages ranging from about 346 to 305 Ma. Excluding the single younger analysis at 305 ± 6 Ma, the seven remaining points (Fig. 8c) define a mean Concordia age of 333 ± 7 Ma (MSWD = 0.104, probability 0.75).

Zircon trace element composition: magmatic and metamorphic zircons

Five zircon crystals from the gabbro were selected for trace element analysis: the specimens display oscillatory zoning in CL images and have ages of 459– 477 Ma (Fig. 9). They have high Y (550–2,000 ppm), Hf (7,700–10,000 ppm), Th (80–470 ppm) and U (180–530 ppm) concentrations, with Th/U ratios of 0.35–1.07. The C1-chondrite normalised REE pattern is characterised by strong enrichment in HREE with respect to LREE, with Ce_N/Yb_N values ranging from 0.002 to 0.1. Ce is enriched with respect to Pr and La (La concentrations are often below the detection limit) and Eu is always depleted with respect to the neighbouring REE (Eu/Eu* = 0.02–0.55). This trace element fingerprint and the oscillatory zoning in CL images indicate zircon growth under igneous conditions (Bea and Montero 1999; Schaltegger et al. 1999; Rubatto and Gebauer 2000; Rubatto 2002).

Twenty-one dated zircon grains from eclogite SV1 were also selected for trace element analysis (Fig. 10). The zircons with concordant ages of 480 to 446 Ma are characterised by relatively high Hf (8.800 -12,000 ppm), Y (250-500 ppm), Th (10-53 ppm) and U (68-900 ppm) concentrations. Th/U values are higher than 0.03, whereas the chondrite-normalised REE patterns display a steady HREE enrichment with respect to LREE (Ce_N/Yb_N < 0.003) and a negative Eu anomaly (Eu/Eu* = 0.2-0.6). As in the case of the analysed zircons from the gabbro, this chemical fingerprint, together with their dominant subhedral shape and the internal texture of selected crystals (characterised by faint oscillatory or patchy zoning), is typical of zircons formed under igneous conditions.

The chondrite-normalised REE pattern of two zircon rims dated at 419 ± 10 Ma and 403 ± 8 Ma are similar to those of the magmatic zircons described above, with a negative Eu anomaly and HREE enrichments over MREE and LREE. However, the textures of these rims and of all analysed zircons with ages in the 420–400 Ma range are typical of metamorphic zircons: such ages were all measured in crystal overgrowths or in unzoned and badly-defined crystal sectors with generally low luminescence. The chemical features of these zircons thus partially overlap with those of the older igneous zircons, but their internal textures and the younger ages indicate solid state recrystallisation under metamorphic conditions (Hoskin and Black 2000).

The trace element composition of seven zircon sectors spanning in age from 392 to 325 Ma are characterised by low Y, Th and U contents (35–132 ppm, 0.05–7.84 ppm and 76–197 ppm, respectively) and by Th/U contents usually below 0.02. The MREE and HREE patterns are nearly flat with low concentrations that are 70–100 times typical chondrite values; LREE contents are generally below the detection limit. These chemical features, together with their complex internal texture (presence of overgrowths, irregular sector zoning) are typical of zircons grown (or possibly recrystallised) under metamorphic conditions (Schaltegger et al. 1999;

Table 4 LA	Table 4 LA-ICP-MS U-Th-Pb isotope analyses and calcul	Ch-Pb iso	tope anal	yses an	d calculate	ages b	of zircons	from g	lated ages of zircons from gabbro GBSV1	3SV1										
Zircon #	Analysis #	Spot size	Isotopic ratios	: ratios							Age estimates	imates							Concordia age	lia
		(mn)	²⁰⁷ Pb/ ²⁰⁶ Pb	rsd	²⁰⁶ Pb/ ²³⁸ U	rsd	²⁰⁷ Pb/ ²³⁵ U	rsd	²⁰⁸ Pb/ ²³² Th	rsd	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁶ Pb/ ²³⁸ U	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	²⁰⁸ Pb/ ²³² Th	1σ	Age (Ma)	2σ
zircon 1	Lu12b05	25	0.0574	1.38	0.0832	1.07	0.6592	1.39	0.0235	1.02	507	30	515	5	514	9	470	5	515	10
zircon 3a	Lu12b06	25	0.0559	1.65	0.0760	1.08	0.5860	1.64	0.0233	1.72	446	36	472	S	468	9	466	8	472	10
zircon 10b	Lu12b07	25	0.0595	1.78	0.0776	1.11	0.6356	1.77	0.0247	1.95	585	38	482	S	500	2	493	10	disc	
zircon 3b	Lu12b08	25	0.0707	1.40	0.1070	1.08	1.0428	1.41	0.0340	1.06	949	28	655	7	725	7	675	7	disc	
zircon 10a	Lu12b09	25	0.0928	1.29	0.0833	1.08	1.0653	1.31	0.0311	0.97	1483	24	516	S	736	7	619	9	disc	
zircon 9b	Lu12b10	25	0.0720	1.58	0.0777	1.09	0.7705	1.58	0.0277	1.12	985	32	482	S	580	٢	553	9	disc	
zircon 20a	Lu12b11	25	0.0939	1.18	0.0874	1.06	1.1323	1.21	0.0347	0.92	1506	22	540	9	769	٢	069	9	disc	
zircon 7	Lu12b12	25	0.0571	1.94	0.0767	1.08	0.6045	1.90	0.0230	1.52	496	42	476	S	480	7	460	7	477	10
zircon 24	Lu12b13	25	0.0563	1.85	0.0760	1.08	0.5897	1.81	0.0234	1.67	463	41	472	S	471	٢	467	8	472	10
zircon 9a	Lu12b14	25	0.0570	1.37	0.0796	1.03	0.6266	1.35	0.0239	1.00	493	30	494	S	494	S	478	S	494	10
zircon 11	Lu12b15	25	0.0565	1.24	0.0742	1.02	0.5780	1.24	0.0304	1.61	470	27	462	S	463	S	605	10	462	9
zircon 16	Lu12b16	25	0.0641	1.25	0.0749	1.04	0.6625	1.26	0.0250	1.04	745	26	466	S	516	S	498	S	disc	
zircon 12	Lu12b17	25	0.1907	1.11	0.0872	1.05	2.2944	1.12	0.0970	0.88	2748	18	539	S	1211	×	1870	16	disc	
zircon 4	Lu12b18	25	0.0619	1.61	0.0827	1.06	0.7064	1.60	0.0264	1.10	671	34	512	S	543	2	526	9	disc	
zircon 20b	Lu12b19	25	0.0575	1.63	0.0797	1.07	0.6330	1.62	0.0254	1.10	512	36	495	S	498	9	506	S	495	10
zircon 31	Lu12b22	25	0.0567	1.18	0.0734	1.05	0.5745	1.21	0.0212	0.89	480	26	457	S	461	4	425	4	459	9
zircon 25a	Lu12b23	25	0.1319	1.11	0.3905	1.05	7.1063	1.13	0.1087	1.02	2123	19	2125	19	2125	10	2085	20	2124	14
zircon 25b	Lu12b24	25	0.1331	1.19	0.3878	1.10	7.1293	1.25	0.1188	1.17	2140	21	2113	20	2128	11	2268	25	2136	18
zircon 6	Lu12b25	25	0.0705	1.49	0.0987	1.11	0.9595	1.52	0.0355	1.24	943	30	607	9	683	×	706	6	disc	
zircon 13	Lu12b26	25	0.0631	2.87	0.0753	1.26	0.6559	2.84	0.0259	2.20	711	60	468	9	512	11	517	11	disc	
zircon 29	Lu12b27	25	0.0688	3.90	0.0660	1.41	0.6258	3.79	0.0202	2.58	892	78	412	9	494	15	404	10	disc	
zircon 10c	Lu12b28	25	0.0573	2.78	0.0775	1.20	0.6113	2.73	0.0246	1.87	501	61	481	9	484	11	490	6	481	11
disc discordant	ant																			

-
S
clogite
from ea
of zircons
ages (
calculated
and
analyses a
isotype
ŀP
U-Th
-MS
A-ICP-MS U-Th-Pb
5 LA
Table

4 4 1 1 - 5 - C 1		²⁰⁷ Pb/ rsd ²⁰⁶ Pb/ rsd 0.0577 5.64 0.0577 2.74 0.0578 3.32 0.0576 2.10 0.0576 2.10 0.0586 3.26 0.0586 3.26 0.0586 3.26 0.0586 3.26 0.0586 3.26 0.0588 4.84 0.0562 5.05 0.0898 4.84	²⁰⁶ Pb/ ²³⁸ U 0.0585 0.0741 0.0745	rsd	²⁰⁷ Pb/	rsd	20805/	1	207 Ph/ 1 f		201				²⁰⁸ Pb/		age	
Ha-R Ap05c05 Hb-C Ap05c05 3C Ap05c06 Hb-C Ap05c09 H7a-R Ap05c09 H7a-R Ap05c10 H7b-R Ap05c10 H7b-R Ap05c11 H8b Ap05c13 H10 Ap05c13 H10 Ap05c13 H12a Ap05c19 H12a Ap05c23 H11 Ap05c26 H12a Ap05c26 H12a Ap05c26 H12a Ap05c26 H12a Ap05c26 H12a Ap05c26 H12b Ap05c26 H12b Ap05c26 H12b Ap05c16 H2-C Ap05c16 H2-C Ap05c16 H2-C Ap05c16 H2-R Ap05c16 H2-R Ap05c16 H2-R Ap05c16 H2-R Ap05c11 H2-C Ap05c116 H2-R			²⁰⁶ Pb/ ²³⁸ U 0.0585 0.0741 0.0745	rsd	$^{207}Pb/$	rsd	20805/	I	207ph/						²⁰⁸ Pb/			
 H1a-R Ap05c05 H1b-C Ap05c05 H2b-C Ap05c06 H2b-C Ap05c08 H2a-R Ap05c09 H7a-R Ap05c11 H8b Ap05c11 H8b Ap05c13 H10 Ap05c13 H12a Ap05c23 H12 Ap05c23 H12 Ap05c23 H12 Ap05c24 H12 Ap05c23 H12 Ap05c23 H12 Ap05c24 H12 Ap05c24 H12 Ap05c23 H12 Ap05c25 H13 Ap05c24 H12 Ap05c24 H12 Ap05c25 H13 Ap05c25 H13 Ap05c26 H14-C Ap05d13 H-4-C Ap05d13			0.0585 0.0741 0.0745		²³⁵ U		²³² Th	ISU	²⁰⁶ Pb		²⁰⁶ Pb/ ²³⁸ U	1σ	²⁰⁷ Pb/ ²³⁵ U	lα	²³² Th	1σ <i>F</i> (Age (Ma)	2σ
 H1b-C Ap05c06 3C Ap05c07 4-5-C Ap05c08 4-6-C Ap05c09 4-7a-R Ap05c01 4-7b-R Ap05c11 4-8b Ap05c13 4-9 Ap05c13 4-10 Ap05c14 4-112 Ap05c13 4-112 Ap05c13 4-112 Ap05c13 4-112 Ap05c13 4-11 Ap05c23 4-11 Ap05c23 4-12 Ap05c13 4-14-R Ap05c14 4-14-R Ap05c14<			0.0741 0.0745	1.83	0.5908	_	NA	I	1034	110	366	7	471	21	Ι	-	disc	
3C Ap05c07 H-C Ap05c08 H-C Ap05c09 H-7a-R Ap05c10 H-7b-R Ap05c10 H-7b-R Ap05c13 H-10 Ap05c13 H-10 Ap05c13 H-12b Ap05c19 H-12b Ap05c21 H-12b Ap05c21 H-12b Ap05c22 H-12b Ap05c22 H-12b Ap05c22 H-12b Ap05c25 H-12b Ap05c26 H-4-C Ap05c16 H-4-C Ap05c1			0.0745	1.32	0.5825		NA	I	518	59	461	9	466	10	I	4	461	12
 +5-C Ap05c08 +7a-R Ap05c10 +7b-R Ap05c11 +8b Ap05c11 +8b Ap05c13 +90 Ap05c13 +110 Ap05c13 +110 Ap05c13 +12a Ap05c13 +12b Ap05d13 +5-R Ap05d13 +5-R Ap05d13 +5-R Ap05d13 +5-R Ap05d13 +5-R Ap05d13 +5-R Lu13b13 -5-R Lu13b13 -5-R Lu13b12 -5-R Lu13b12 				1.30	0.6170		NA	I	622	75	463	9	488	13	I	1	464	12
Ho-C Ap05c09 H7a-R Ap05c11 H7a-R Ap05c11 H8b Ap05c12 H8b Ap05c13 H9 Ap05c13 H10 Ap05c13 H11 Ap05c13 H12a Ap05c19 H12a Ap05c21 H12b Ap05c22 H12b Ap05c21 H12b Ap05c22 H12b Ap05c22 H12b Ap05c21 H12b Ap05c21 H2b Ap05c22 H2-C Ap05c26 H2-C Ap05d17 H2-C Ap05d18 H2-C Ap05d18 H2-C Ap05d18 H2-C Ap05d19 H2-C Lu13b19 L2-C Lu13b19 L2-C Lu13b19 L2-C Lu13b19			0.0866	1.40	0.6854	_	NA	I	522	72	535	7	530	14	I	ч) ч)	535	14
+7a-R Ap05c10 +7b-R Ap05c11 +8b Ap05c13 +8b Ap05c13 +8b Ap05c13 +90 Ap05c13 +90 Ap05c13 +10 Ap05c13 +11 Ap05c14 +112 Ap05c19 +112 Ap05c21 59a Ap05c23 59a Ap05c24 59a Ap05c21 59b Ap05c26 57b Ap05c26			0.0773	1.46	0.6029		NA	I	489	82	480	7	479	14	I	1	480	13
+7b-R Ap05c11 +8b Ap05c13 +8b Ap05c13 +8b Ap05c13 +9b Ap05c14 +10 Ap05c13 +11 Ap05c13 +112a Ap05c20 +112b Ap05c21 +12b Ap05c21 +12b Ap05c22 +11 Ap05c23 +12b Ap05c21 +12b Ap05c21 +12b Ap05c22 +12b Ap05c26 +12b Ap05c26 +12b Ap05c26 +12b Ap05c26 +7a Ap05c26 +7a Ap05c26 +7b Ap05c26 +7b Ap05c26 +7b Ap05c26 +7b Ap05c26 +7c Ap05c407 +5-R Ap05c407 +5-R Ap05d18 +4-C Ap05d18 +5-R Lu13b10 -5-R Lu13b10 -5-R Lu13b10 -5-R Lu13b10 <td></td> <td></td> <td>0.0643</td> <td>1.01</td> <td>0.4990</td> <td></td> <td>NA</td> <td>I</td> <td>457</td> <td>39</td> <td>402</td> <td>4</td> <td>411</td> <td>9</td> <td>I</td> <td>4</td> <td>403</td> <td>×</td>			0.0643	1.01	0.4990		NA	I	457	39	402	4	411	9	I	4	403	×
 +8a Ap05c12 +8b Ap05c13 +9 Ap05c14 +10 Ap05c13 +12a Ap05c19 +12b Ap05c19 +12b Ap05c21 59 Ap05c24 57a Ap05c25 57a Ap05c26 57a Ap05c26 57a Ap05c26 57a Ap05c16 54a Ap05c16 54a Ap05c16 54a Ap05c16 55a Ap05c16 55b Ap05c16 <li< td=""><td></td><td></td><td>0.0693</td><td>1.20</td><td>0.5514</td><td>_</td><td>NA</td><td>Ι</td><td>513</td><td>46</td><td>432</td><td>5</td><td>446</td><td>8</td><td>I</td><td>) </td><td>disc</td><td></td></li<>			0.0693	1.20	0.5514	_	NA	Ι	513	46	432	5	446	8	I) 	disc	
 +8b Ap05c13 +10 Ap05c13 +112a Ap05c19 +112b Ap05c19 +12b Ap05c20 +12b Ap05c21 +12b Ap05c21 +12b Ap05c21 +11 Ap05c21 +11 Ap05c21 +5 Ap05c01 +5 Ap05d05 +1 Ap05d13 +5 Ap05d13 <li< td=""><td></td><td></td><td>0.0710</td><td>1.75</td><td>0.5437</td><td>_</td><td>NA</td><td>I</td><td>427</td><td>133</td><td>442</td><td>7</td><td>441</td><td>22</td><td>I</td><td>4</td><td>442</td><td>15</td></li<>			0.0710	1.75	0.5437	_	NA	I	427	133	442	7	441	22	I	4	442	15
 H9 Ap05c14 H10 Ap05c19 H12a Ap05c19 H12b Ap05c20 H12b Ap05c21 H12b Ap05c21 H12b Ap05c21 H12b Ap05c21 H2b Ap05c24 H2b Ap05c25 H2b Ap05c26 H2b Ap05c26 H2b Ap05c113 <l< td=""><td></td><td></td><td>0.0720</td><td>1.53</td><td>0.6081</td><td></td><td>NA</td><td>I</td><td>640</td><td>94</td><td>448</td><td>7</td><td>482</td><td>17</td><td>I</td><td>-</td><td>disc</td><td></td></l<>			0.0720	1.53	0.6081		NA	I	640	94	448	7	482	17	I	-	disc	
 +10 Ap05c18 +12a Ap05c19 +12b Ap05c20 541 Ap05c21 541 Ap05c21 55b Ap05c24 55b Ap05c25 55b Ap05c26 55b Ap05c26 55b Ap05c13 55b Ap05c16 55b Ap05c13 55b Ap05c16 55b Ap05c26 <!--</td--><td></td><td></td><td>0.0759</td><td>1.16</td><td>0.6144</td><td></td><td>NA</td><td>I</td><td>551</td><td>70</td><td>472</td><td>S</td><td>486</td><td>12</td><td>I</td><td>1</td><td>472</td><td>11</td>			0.0759	1.16	0.6144		NA	I	551	70	472	S	486	12	I	1	472	11
 +12a Ap05c19 +12b Ap05c20 541 Ap05c21 541 Ap05c21 542 Ap05c23 555 Ap05c24 555 Ap05c26 556 Ap05c26 556 Ap05c06 557 Ap05d06 558 Ap05d07 558 Ap05d13 559 Ap05d13 559 Ap05d13 558 Ap05d13 558 Ap05d13 559 Ap05d13 558 Ap05d13 559 Ap05d13 558 Ap05d13 558 Ap05d13 558 Ap05d13 558 Ap05d14 558 Ap05d13 558 Ap05d13 559 Ap05d13 558 Ap05d13 558 Ap05d13 558 Ap05d13 558 Ap05d13 558 Ap05d14 558 Ap05d14 558 Ap05d13 558 Ap05d13 558 Ap05d13 558 Ap05d13 558 Ap05d14 <!--</td--><td></td><td></td><td>0.0720</td><td>1.43</td><td>0.5593</td><td></td><td>NA</td><td>I</td><td>458</td><td>109</td><td>448</td><td>9</td><td>451</td><td>18</td><td>I</td><td>4</td><td>48</td><td>12</td>			0.0720	1.43	0.5593		NA	I	458	109	448	9	451	18	I	4	48	12
 +12b Ap05c20 b9a Ap05c21 b9b Ap05c21 b9b Ap05c23 b9b Ap05c24 b7a Ap05c24 b77a Ap05c26 b77b Ap05c26 b77b Ap05c26 b77b Ap05c13 b77b Ap05c16 b77b Ap05c16 b77b Ap05c13 b77b Ap05c13			0.0761	1.42	0.6261		NA	I	619	75	473	9	494	14	I	1	473	13
3-11 Ap05c21 3-9a Ap05c22 3-9b Ap05c23 3-8 Ap05c24 3-7a Ap05c25 3-7b Ap05c26 3-7b Ap05c25 3-7b Ap05c26 3-7b Ap05c26 3-7b Ap05c26 3-7b Ap05c26 2-1 Ap05c26 2-2 Ap05c13 2-9 Ap05c13 2-9 Ap05c13 2-9 Ap05c13 1-5-7 Ap05c13 1-5-8 Ap05c13 1-5-8 Ap05c13 1-4-8 Ap05c13 1-4-7 Ap05c13 1-4-8 Ap05c13 1-4-7 Ap05c19 1-4-8 Ap05c19 1-4-7 Ap05c19 2-9-8 Lu13b10 2-9-8 Lu13b11 2-9-8 Lu13b12 2-9-8 Lu13b12 2-9-8 Lu13b12 2-9-8 Lu13b12			0.0735	1.52	0.5768		NA	I	471	109	457	7	462	18	I	4	58	13
3-9a Ap05c22 3-9b Ap05c23 3-8 Ap05c24 3-7b Ap05c25 3-7b Ap05c26 2-1 Ap05c26 2-2 Ap05c405 2-2 Ap05c406 2-9 Ap05c406 2-9 Ap05c409 2-9 Ap05c409 2-9 Ap05c409 2-9 Ap05c409 2-9 Ap05c409 2-9 Ap05c409 2-9 Ap05c419 1-4-C Ap05c419 1-4-C Ap05c419 1-4-C Ap05c419 1-4-C Ap05c419 1-4-C Ap05c419 1-4-C Ap05c419 2-9-C Lu13b10 2-9-C Lu13b11 3-7 Lu13b12 3-7 Lu13b12 2-9 Lu			0.0707	1.60	0.8757		NA	I	1421	90	441	7	639	22	I	-	lisc	
3-9b Ap05c23 3-8 Ap05c24 3-7b Ap05c25 3-7b Ap05c26 3-7b Ap05c26 3-5b Ap05c26 3-5b Ap05c26 3-5b Ap05c26 2-1 Ap05c26 2-2 Ap05c06 2-2 Ap05d07 2-9 Ap05d09 2-9 Ap05d13 1-5b-R Ap05d16 1-4-R Ap05d16 1-4-R Ap05d19 1-4-R Ap05d19 1-4-C Ap05d19 2-9-R Lu13b10 2-1-2-R Lu13b11 2-2-C Lu13b12 2-1 Lu13b12 2-1 Lu13b12			0.0551	1.47	0.4002		NA	I	314	121	346	S	342	16	I	1	46	6
3-8 Ap05c24 3-7a Ap05c25 3-7b Ap05c26 3-5b Ap05c26 2-1 Ap05c26 2-1 Ap05c26 2-1 Ap05c26 2-1 Ap05c26 2-1 Ap05c26 2-2 Ap05c06 2-2 Ap05d07 2-9 Ap05d13 1-5-R Ap05d16 1-4-R Ap05d19 1-4-R Ap05d19 1-4-R Ap05d19 1-4-R Ap05d19 1-4-C Ap05d19 2-6-C Lu13b10 2-7 Lu13b11 2-8-C Lu13b12 2-9-R Lu13b12 3-7 Lu13b12			0.0517	2.50	0.4064		NA	Ι	517	222	325	8	346	31	I	1	25	16
3-7a Ap05c25 3-7b Ap05c26 3-5b Ap05c26 2-1 Ap05c405 2-1 Ap05c405 2-2 Ap05c406 2-2 Ap05c406 2-2 Ap05c406 2-4 Ap05c409 2-5-C Ap05c409 2-6-C Ap05c409 2-5-C Ap05c409 1-5-R Ap05c413 1-4-R Ap05c418 1-4-C Ap05c419 2-5-R Lu13b10 2-6-C Lu13b11 2-7 Lu13b12 3-7 Lu13b12 3-7 Lu13b12			0.0742	1.63	0.4263		NA	I	I	I	462	2	361	30	I) 	lisc	
3-7b Ap05c26 3-5b Ap05d05 2-1 Ap05d06 2-2 Ap05d06 2-2 Ap05d07 2-6-C Ap05d07 2-6-C Ap05d09 2-6-C Ap05d013 1-5b-R Ap05d13 1-5-F-R Ap05d16 1-4-R Ap05d16 1-4-R Ap05d19 1-4-C Ap05d19 1-4-C Ap05d19 1-4-C Ap05d19 1-4-C Ap05d19 1-4-C Ap05d19 2-8-C Lu13b08 1b-R Lu13b11 2-9-R Lu13b11 2-6-R Lu13b12			0.0716	1.48	0.5591		NA	I	470	115	446	9	451	19	I	4	46	13
3-5b Ap05d05 2-1 Ap05d06 2-2 Ap05d06 2-6-C Ap05d07 2-6-C Ap05d01 2-6-C Ap05d01 2-6-C Ap05d01 2-6-C Ap05d01 1-5b-R Ap05d11 1-5-R Ap05d11 1-4-R Ap05d11 1-4-C Ap05d11 1-4-C Ap05d11 1-4-C Ap05d11 1-4-C Ap05d11 1-4-C Ap05d11 2-4-C Lu13b08 1b-R Lu13b10 2-2a-C Lu13b11 2-2b-R Lu13b12 3-C Lu13b12			0.0840	1.81	0.6573		NA	I	474	158	520	6	513	30	I	- - -	20	18
2-1 Ap05d06 2-2 Ap05d07 2-6-C Ap05d09 2-9 Ap05d13 1-5b-R Ap05d16 1-5b-R Ap05d16 1-4-C Ap05d16 1-4-C Ap05d19 1-4-C Ap05d16 1-4-C Ap05d18 1-4-C Ap05d19 1-4-C			0.0690	1.29	0.5278		NA	I	446	91	430	S	430	14	I	4	30	11
2-2 Ap05d07 2-6-C Ap05d09 2-9 Ap05d13 1-5a-C Ap05d16 1-5b-R Ap05d16 1-4-R Ap05d18 1-4-C Ap05d19 1-4-C Ap05d19 1-4-C Ap05d19 1-4-C Ap05d19 1-4-C Ap05d19 1-4-C Ap05d19 1-4-C Ap05d19 1-4-C Ap05d19 2-2a-C Lu13b10 2-2a-C Lu13b10 2-2a-C Lu13b11 2-2a-C Lu13b11 2-2a-C Lu13b11 2-2a-C Lu13b12			0.0720	4.21	0.5566		NA	I	454	458	448	18	449	86	I	4	48	36
2-6-C Ap05d09 2-9 Ap05d13 1-5a-C Ap05d16 1-5b-R Ap05d16 1-4-R Ap05d18 1-4-C Ap05d19 1-4-C Ap05d19 1-4-C Ap05d19 1-4-C Ap05d19 2-2a-C Lu13b09 1b-R Lu13b10 2-2a-C Lu13b10 2-2a-C Lu13b11 2-2a-C Lu13b12 2-2a-C Lu13b12 2-		12.39	0.0806	3.52	1.1215		NA	Ι	1645	214	500	17	764	64	I) 	lisc	
2-9 Ap05d13 1-5a-C Ap05d16 1-5b-R Ap05d16 1-4-R Ap05d18 1-4-C Ap05d19 1-4-C Ap05d18 1-4-C Ap05d19 1-4-C			0.0673	2.10	0.5109		NA	I	416	178	420	6	419	28	I	4	20	17
1-5a-C Ap05d16 1-5b-R Ap05d17 1-4-R Ap05d18 1-4-C Ap05d19 24-C Lu13b08 1b-R Lu13b10 2b-R Lu13b11 2b-R Lu13b12			0.1060	3.28	0.5493		NA	I	I	I	649	20	445	90	I	-	lisc	
1-5b-R Ap05d17 1-4-R Ap05d18 1-4-C Ap05d19 1-4-C Ap05d19 1-4-C Ap05d19 1-4-C Ap05d19 1-4-C Ap05d19 1-4-C Ap05d19 24-C Lu13b08 1b-R Lu13b10 2b-R Lu13b11 3-C Lu13b12 3-C Lu13b12		3 2.97	0.0849	1.32	0.6555		NA	Ι	446	65	525	7	512	12	I	1	24	13
14-R Ap05d18 14-C Ap05d19 4-5-R Ap05d19 1a-C Lu13b08 1b-R Lu13b10 2a-C Lu13b10 2b-R Lu13b11 2b-R Lu13b11 3-C Lu13b12			0.0536	1.70	0.4267	8.00	NA	I	504	170	337	9	361	24	I	1	337	1
1-4-C Ap05d19 4-5-R Ap05d21 1a-C Lu13b08 1b-R Lu13b10 2a-C Lu13b10 2b-R Lu13b11 2b-R Lu13b11 3-C Lu13b12 3-C Lu13b12) 16.34	0.0597	2.45	0.4385		NA	I	326	334	374	6	369	50	I	1	74	18
-4-5-R Ap05d21 Ja-C Lu13b08 Jb-R Lu13b09 2a-C Lu13b10 2b-R Lu13b11 2b-R Lu13b11 3-C Lu13b12		(1	0.0778	2.38	0.1934		NA NA	I			483	11	180	34 24	I		lisc	
_la-C Lu13b08 _lb-R Lu13b09 _2a-C Lu13b10 _2b-R Lu13b11 _3-C Lu13b11 _3-C Lu13b12			0.0794	1.03	0.6057		NA	1	403	36	493	ŝ	481	9	I į		lisc	
		3.15	0.0545	1.17	0.4059		0.0340	1.06	949	28	655		725		675		42	×
2a-C Lu13b10 2b-R Lu13b11 3-C Lu13b12			80<0.0	1.24	0.3/42		0.0311	0.97	1483	24	516	n i	/30	- 1	619	 0	20	×
_2b-R Lu13b11 _3-C Lu13b12			0.0597	1.07	0.4617		0.0277	1.12	985	32	482	Ś	580		553	9	74	×
_3-C Lu13b12			0.0592	1.27	0.5242		0.0347	0.92	1506	22	540	9	769	2	690	9	isc	
4° D I10L10			0.0508	0.91	0.4079	_	0.0230	1.52	496	42	476	S	480	7	460	7 (lisc	
CTACINT			0.0756	1.08	0.6027	3.08	0.0234	1.67	463	41	472	S	471	7	467	8	.70	10
Lu13b14			0.0692	1.05	0.6240		0.0239	1.00	493	30	494	S	494	S	478	5 6	lisc	
Lu13b15			0.0626	0.89	0.4823		0.0236	3.52	446	39	391	n	400	S	471	16 ĉ	392	×
Lu13b16			0.0471	1.21	0.4321	_	0.0250	1.04	745	26	466	S	516	S	498	5 6	lisc	
Lu13b17			0.0523	1.26	0.3727		0.0970	0.88	2748	18	539	S	1211	8	1870	16 ۇ	28	×
Lu13b18			0.0485	1.03	0.3470	2.07	0.0264	1.10	671 201	ξ;	512	Ś	543		526 220	9	305 	9
SV1_/a-C Lu13021 23	10CU.U C	1.0/	CZ80.0	0.84	0.6381	0.93	0010.0	1.4/	180	4/	c15	S.	349	0	300	4	ISC	

	Table 5 cor	continued																			
	Zircon #	Analysis #	Spot size	Isotopic	: ratios							Age es	timate	s	I		I			Conco age	rdia
			(mu)	²⁰⁷ Pb/ ²⁰⁶ Pb	rsd	²⁰⁶ Pb/ ²³⁸ U	rsd	²⁰⁷ Pb/ ²³⁵ U	rsd	²⁰⁸ Pb/ ²³² Th	rsd	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁶ Pb/ ²³⁸ U		²⁰⁷ Pb/ ²³⁵ U	1σ	²⁰⁸ Pb/ ²³² Th	1σ	Age (Ma)	2σ
R. I.11324 35 0.064 2.25 0.1055 1.0165		Lu13b22	25	0.0556	1.15	0.0773	0.84	0.5927	1.02	0.0212	0.89	480	26	457	S	461	4	425	4	disc	
		Lu13b23	25	0.0695	2.32	0.0545	0.95	0.5226	2.19	0.1087	1.02	2123	19	2125	19	2125	10	2085	20	disc	
	SV1_8a-R	Lu13b24	25	0.0594	2.91	0.0551	1.03	0.4516	2.78	0.1188	1.17	2140	21	2113	20	2128	11	2268	25	disc	
	SV1_8b-C	Lu13b25	25	0.0618	3.13	0.0532	1.05	0.4526	3.01	0.0355	1.24	943	30	607	9	683	8	706	6	disc	
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	SV1_9a-C	Lu13b26	25	0.0625	1.90	0.0741	0.89	0.6385	1.78	0.0259	2.20	711	60	468	9	512	11	517	11	disc	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	SV1_10a-C	Lu13b27	25	0.0587	2.16	0.0901	0.92	0.7293	2.04	0.0202	2.58	892	78	412	9	494	15	404	10	556	10
$ \begin{array}{l lllllllllllllllllllllllllllllllllll$	SV1_10b-R	Lu13b28	25 25	0.0570	1.61	0.0728	0.85	0.5724	1.48	0.0246	1.87	501	61	481	9 -	484	11,	490	σ,	454	5
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	SV1_11a-K	Lu13629 1 113530	9 X	0.0809	4.00 06.4	2020.0	0001	1600.0	4.34 7.75	0.0151	0.86	005 772	7 C	1/5 787	4 4	0/5 707	n u	341 303	n u	disc	
	SV1 12-C	Lu13b31	2 2 2	0.00655	4.15	0.0749	1.35	0.6771	4.02	0.0121	0.82	511	33	292 292	n m	318	n m	244 244	0 0	disc	
	SV1_13-C	Lu13b32	25	0.0567	7.41	0.0778	1.88	0.6079	7.25	0.0182	0.88	390	27	353	4	358	4	365	l m	483	17
	SV1_14- C		25	0.0539	3.92	0.0597	1.16	0.4430	3.79	0.0098	0.82	518	22	243	2	270	2	196	0	374	×
	SV1_15a-C		25	0.0735	3.67	0.0759	1.34	0.7600	3.56	0.0162	0.80	578	23	302	ω	336	m	325	С	disc	
	SV1_15b-R	Lu13b35	25	0.0524	3.80	0.0673	1.25	0.4806	3.70	0.1027	1.25	2958	27	295	ςΩ,	889	10	1976	23	419	10
	SV1_16-C	Lu13b36	25	0.0560	5.07	0.0742	1.50	0.5652	4.95	0.0194	0.88	379	24	365	4	367	ς i	389	n i	461	13
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	SV1-17-C	Lu13c05	25 25	0.0577	1.32	0.0756	0.95	0.6012	1.25	0.0240	1.04	519	29	470	4 ו	478	ŝ	479	v, r	disc	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	SV1-18-C	Lu13c06	38	08/0.0	1.82	0.0777	1.06	0.8349	1./6	0.0447	1.72	1146	95 0	482	n .	616	x	884	0 I 2	disc	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	N-1-19-K	Lu13c0/	3 2	0.0625	6C.2	00000	CL.1	C62C.U	10.7	0.2024	9.14 0.12	8/8	ς υ ς	549	4 4	428	ס ע	51/0 771	615 31	disc	
$ \begin{array}{[c] cmcccccccccccccccccccccccccccccccccc$	SV1-20-C	Lu13008 1 113009	0 X	0.0557	1.8/ 2.05	0.0741	CO 1	0.7685	1 00	0.0055	21.2 21.2	430	46 74	410 461	n v	960 457	0 5	510	ci ±	disc 460	0
$ \begin{array}{[llllllllllllllllllllllllllllllllllll$	SV1-22-C	Lu13c10	25	0.0579	1.87	0.0762	1.06	0.6083	1.81	0.0255	1.57	525	, 4	474	n vo	483		509	×	474	10
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	SV1-23-R	Lu13c11	25	0.0564	1.56	0.0735	1.03	0.5715	1.53	0.0232	1.25	467	35	457	s vs	459	9	463	9	458	6
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	SV1-23-C	Lu13c12	25	0.0560	1.52	0.0726	1.03	0.5610	1.48	0.0240	1.21	454	33	452	4	452	S	479	9	452	6
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	SV1-24-C	Lu13c13	25	0.0603	1.58	0.0712	1.00	0.5917	1.52	0.0267	1.61	613	34	444	4	472	9	533	8	disc	
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	SV1-25-C	Lu13c14	25 25	0.0566	1.78	0.0761	1.01	0.5937	1.72	0.0278	1.77	475	39	473	ŝ.	473	۲ ·	553	10	473	6 0
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	SV1-20-K	Lul 3c22	38	0.0240	1.19	0.0645	1.07	0.4859	1.22	0.0180	1.68	965 576	97	403	4 1	402	4 v	360	n u	402	x
Ma29b17 55 0.0568 1.32 0.0790 0.90 0.0184 1.22 0.0265 1.13 4.83 2.9 4.90 4 4.92 5 5.28 6 4.90 Ma29b18 25 0.0549 1.86 0.0605 0.93 0.5911 1.75 0.0265 1.13 4.83 29 4.90 4 4.92 5 5.28 6 4.70 Ma29b18 25 0.0564 2.52 0.0707 1.00 0.5493 2.41 0.0206 1.55 4.84 40 470 4 472 7 413 6 470 Ma29b24 25 0.0564 2.52 0.0707 1.00 0.5493 2.41 0.0290 2.69 468 55 441 4 472 7 413 6 470 Ma29b26 25 0.0549 2.26 0.0627 0.96 0.4740 2.14 0.0029 2.69 468 55 441 4 472 7 413 6 470 Ma29b26 25 0.0638 1.49 0.0727 0.88 0.6379 1.34 0.0291 2.30 7 393 4 391 7 192 Ma29b28 25 0.0633 1.49 0.0777 1.88 0.0277 1.34 733 31 452 4 5 414 Ma29b29 25 0.0633 1.287 0.0796 0.93 0.6343 1.84 0.0291 <	Sv1-28-C	Lu13028 Ma29h16	G X	0.0550 0	1.45 177	0.0734	1.05	0.6003	1.45 1.70	90.00 0.0719	1.04 2.07	4/1 417	7 X 6 K	48/ 457	n v	483 457	n v	810 438	o fi	480 456	ס ע
Ma29b18 25 0.0549 1.86 0.0605 0.93 0.4574 1.75 0.0236 2.25 408 41 379 3 383 6 470 11 379 Ma29b23 25 0.0568 1.83 0.0756 0.93 0.5911 1.73 0.0206 1.55 484 40 470 4 472 7 413 6 470 Ma29b24 25 0.0564 2.52 0.0776 0.93 0.5493 2.41 0.0290 2.69 468 55 441 4 472 7 413 6 470 Ma29b26 25 0.0437 1.83 0.0620 0.87 0.3724 1.72 0.0214 1.31 $ 388$ 3 321 5 421 7 192 Ma29b27 25 0.0638 1.49 0.0727 0.88 0.6379 1.36 0.0201 1.34 733 31 452 4 5 421 Ma29b28 25 0.0638 1.49 0.0727 0.88 0.6379 1.36 0.0201 1.34 733 31 452 4 5 7 413 Ma29b28 25 0.0653 1.95 0.0756 0.93 0.63743 1.84 0.0201 1.34 733 31 452 4 501 7 7 494 Ma29b28 25 0.0653 1.95 0.0752 0.96343 1.84 0.021	SV1-29-C	Ma29b17	22	0.0568	1.32	0.0790	0.90	0.6184	1.22	0.0265	1.13	483	29	490) 4	489	o vo	528	9	490	× ∞
Ma29b2325 0.0568 1.83 0.0756 0.93 0.5911 1.73 0.0206 1.55 484 40 470 4 472 7 413 6 470 Ma29b2425 0.0564 2.52 0.0707 1.00 0.5493 2.41 0.0290 2.69 468 55 4411 4 445 9 579 15 441 Ma29b2625 0.0437 1.83 0.0620 0.87 0.3724 1.72 0.0214 1.31 $ 388$ 3 321 7 192 8 392 Ma29b2625 0.0638 1.49 0.727 0.87 0.3724 1.72 0.0214 1.31 $ 388$ 3 321 7 192 8 392 Ma29b2725 0.0638 1.49 0.727 0.88 0.6379 1.36 0.0277 1.34 733 31 452 4 40 7 499 7 499 7 Ma29b2825 0.0623 1.95 0.0796 0.93 0.6343 1.84 0.0291 2.30 526 42 499 7 580 13 494 Ma29b2825 0.0627 1.04 0.988 0.539 1.24 0.0291 2.30 526 42 499 7 580 13 494 Ma29b2925 0.06570 1.04 0.9880 0.526 1.49 7 <	SV1-30-R	Ma29b18	25	0.0549	1.86	0.0605	0.93	0.4574	1.75	0.0236	2.25	408	41	379	ŝ	383	9	470	11	379	L
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	SV1-31-C	Ma29b23	25	0.0568	1.83	0.0756	0.93	0.5911	1.73	0.0206	1.55	484	40	470	4	472	٢	413	9	470	×
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	SV1-32-C	Ma29b24	25	0.0564	2.52	0.0707	1.00	0.5493	2.41	0.0290	2.69	468	55	441	4	445	6	579	15	441	×
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	SV1-33-C	Ma29b25	25	0.0549	2.26	0.0627	0.96	0.4740	2.14	0.0095	4.20	408	49	393	4	391	2	192	×	392	2
Ma29b2725 0.0638 1.49 0.0727 0.88 0.6379 1.36 0.0277 1.34 733 31 452 4 501 5 552 7 discMa29b2825 0.0579 1.95 0.0796 0.93 0.6343 1.84 0.0291 2.30 526 42 494 4 499 7 580 13 494 Ma29b2925 0.0623 12.87 0.1052 3.44 0.9030 12.59 0.0960 19.34 686 253 645 21 653 61 1854 343 645 Ma29b3025 0.0623 1.04 0.9200 12.59 0.0960 19.34 686 253 645 21 653 61 1854 343 645 Ma29b3125 0.0570 1.56 0.0745 0.98 0.5854 1.49 0.0225 1.51 493 34 463 4 469 7 464 Ma29b3325 0.0570 1.05 0.0698 0.92 0.5274 0.97 0.0225 1.11 276 23 489 4 452 3 450 5 $4isc$ Ma29b3325 0.0550 1.05 0.0698 0.92 0.5274 0.97 0.0209 1.15 412 23 450 5 $4isc$ 452 3 450 5 $4isc$ Ma29b3325 0.0550 1.05 0.0698	SV1-33-R	Ma29b26	25	0.0437	1.83	0.0620	0.87	0.3724	1.72	0.0214	1.31	I	Ι	388	e	321	ŝ	428	9	disc	
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	SV1-34-C	Ma29b27	25	0.0638	1.49	0.0727	0.88	0.6379	1.36	0.0277	1.34	733	31	452	4	501	ŝ	552		disc	0
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	SV1-35-C	Ma29b28	25	0.0579	1.95	0.0796	0.93	0.6343	1.84	0.0291	2.30	526	42	494	4	499		580	13	494	6
Ma29b30 25 0.0556 2.70 0.0627 1.04 0.4800 2.59 436 59 592 4 598 9 592 Ma29b31 25 0.0570 1.56 0.0745 0.98 0.5854 1.49 0.0225 1.51 493 34 463 4 468 6 449 7 464 Ma29b32 25 0.0518 1.00 0.0787 0.91 0.5604 0.93 0.0225 1.11 276 23 489 4 452 3 450 5 disc Ma29b33 25 0.0550 1.05 0.0698 0.92 0.5274 0.97 0.0209 1.15 412 23 435 4 430 3 417 5 disc	SV1-36-C	Ma29b29	25	0.0623	12.87	0.1052	3.44	0.9030	12.59	0.0960	19.34	686 12	253 25	645	21	653 222	61	1854	343	645 222	42 2
Ma29b31 25 0.0570 1.56 0.0745 0.98 0.5854 1.49 0.0225 1.51 493 34 463 4 468 6 449 7 464 Ma29b32 25 0.0518 1.00 0.0787 0.91 0.5604 0.93 0.0225 1.11 276 23 489 4 452 3 450 5 disc Ma29b33 25 0.0550 1.05 0.0698 0.92 0.5274 0.97 0.0209 1.15 412 23 435 4 430 3 417 5 disc	SV1-37-R	Ma29b30	25	0.0556	2.70	0.0627	1.04	0.4800	2.59		1 -	436	59	392	4.	398	6 ,	1		392	× ×
Ma29b32 25 0.0550 1.05 0.0698 0.92 0.5274 0.97 0.0209 1.15 412 23 435 4 430 3 417 5 Ma29b33 25 0.0550 1.05 0.0698 0.92 0.5274 0.97 0.0209 1.15 412 23 435 4 430 3 417 5	SV1-38-C	Ma29b31	25	0.0570	1.56	0.0745	0.98	0.5854	1.49	0.0225	1.51	493 22	34 9	463	4.	468	9	449		464 :	6
C 11 C 12	SV1-39-C	Ma29b32	25 25	0.0518	1.00	0.0787	0.91	0.5604	0.93	0.0225	1.11	276	23	489	4.	452	<i>ი</i> , ი	450	in n	disc	
	SV1-39-K	Ma29b33	3	00000	c0.1	0.0698	0.92	0.52/4	0.97	6070.0	CI.I	412	73	435	4	430	Ċ,	417	n	disc	

41

	Gabb	ro GBSV	/1							
Analysis Location Zoning U/Pb Age (Ma) ^a	1 Core Unzoi 472 ±	ned	2 Core Unzoned 459 ± 9	3 Core Oscillatory 481 ± 11	4 Core Faint osc 462 ± 9	cillatory	5 Core Oscillator 477 ± 10	у		
Element (ppm)										
Li	3.78		1.93	5.58	3.56		2.51			
Mg	2.8		10.44	1.75	20.75		2.73			
Sc	201		330	156	219		198			
Ti	11.55		22.91	9.76	23.27		<d.l.< td=""><td></td><td></td><td></td></d.l.<>			
V	0.51		0.75	1.48	0.59		<d.l.< td=""><td></td><td></td><td></td></d.l.<>			
Cr	<d.l.< td=""><td></td><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td></td><td><d.l.< td=""><td></td><td></td><td></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>		<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td></td><td><d.l.< td=""><td></td><td></td><td></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""><td></td><td><d.l.< td=""><td></td><td></td><td></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td></td><td><d.l.< td=""><td></td><td></td><td></td></d.l.<></td></d.l.<>		<d.l.< td=""><td></td><td></td><td></td></d.l.<>			
Rb Sr	0.22 0.27		0.51 0.33	0.37 0.11	<d.l. 0.11</d.l. 		<d.l. 0.22</d.l. 			
Sr Y	973		1811	1933	0.11 710		0.22 558			
Nb	6.34		4.45	6.42	3.83		6.12			
Cs	<d.l.< td=""><td></td><td>0.057</td><td><d.l.< td=""><td>0.072</td><td></td><td><d.l.< td=""><td></td><td></td><td></td></d.l.<></td></d.l.<></td></d.l.<>		0.057	<d.l.< td=""><td>0.072</td><td></td><td><d.l.< td=""><td></td><td></td><td></td></d.l.<></td></d.l.<>	0.072		<d.l.< td=""><td></td><td></td><td></td></d.l.<>			
Ba	<d.l.< td=""><td></td><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td></td><td><d.l.< td=""><td></td><td></td><td></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>		<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td></td><td><d.l.< td=""><td></td><td></td><td></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""><td></td><td><d.l.< td=""><td></td><td></td><td></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td></td><td><d.l.< td=""><td></td><td></td><td></td></d.l.<></td></d.l.<>		<d.l.< td=""><td></td><td></td><td></td></d.l.<>			
La	<d.l.< td=""><td></td><td><d.l.< td=""><td>0.06</td><td><d.l.< td=""><td></td><td><d.l.< td=""><td></td><td></td><td></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>		<d.l.< td=""><td>0.06</td><td><d.l.< td=""><td></td><td><d.l.< td=""><td></td><td></td><td></td></d.l.<></td></d.l.<></td></d.l.<>	0.06	<d.l.< td=""><td></td><td><d.l.< td=""><td></td><td></td><td></td></d.l.<></td></d.l.<>		<d.l.< td=""><td></td><td></td><td></td></d.l.<>			
Ce	11.38		4.54	19.01	2.23		8.96			
Pr	0.463		0.182	0.366	0.07		<d.l.< td=""><td></td><td></td><td></td></d.l.<>			
Nd	2.26		3.13	6.9	0.9		0.64			
Sm	3.07		5.57	10.36	3.7		2.26			
Eu	1.24		0.377	0.17	0.84		0.84			
Gd Tb	19.86 8.39		39.03 14.38	59.49 18.04	15.25 4.86		7.72 3.74			
Dy	8.59 94.85		14.58 166.18	18.04 213.54	4.80 60.91		3.74 49.25			
Но	33.5		62.11	72.29	22.52		20.32			
Er	147.7		267.3	293.6	100.5		92.9			
Tm	34.7		57.4	61.6	22.5		18.7			
Yb	379.5		550.4	512.8	208.8		183.2			
Lu	59.12		93.69	84.42	38.10		35.20			
Hf	8153		9674	9689	7680		9980			
Та	1.23		0.564	1.26	0.333		1.39			
Pb	5.56		5.47	38.15	22.03		3.21			
Th	118		100	256	467 529		81			
U Th/U	197 0.6017		286 0.3479	240 1.0679	528 0.8853		176 0.4584			
Eu/Eu*	0.363		0.057	0.016	0.8855		0.4384			
Ce_N/Yb_N	0.0081		0.0022	0.0100	0.0029		0.0132			
	0.0001		0.0022	010100	010022		010102			
Eclogite SV1										
Analysis	6	7	8	9	10	11	12	13	14	15
Location	Core	Core	Undefined		Core	Core	Core	Core	Core	Core
zoning	Dark		Unzoned	Bright	Patchy	Oscillatory	Patchy	Patchy	Unzoned	
U/Pb Age (Ma) ^a	unzoned 535 ± 14	524 ± 1	bright 3 520 ± 18	subconc. 488	480 ± 10	474 ± 10	473 ± 9	464 ± 12	464 ± 9	oscillatory 461 ± 12
Element (ppm)										
Li	<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td>7.84</td><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td>7.84</td><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td>7.84</td><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td>7.84</td><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td>7.84</td><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td>7.84</td><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""><td>7.84</td><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td>7.84</td><td><d.l.< td=""></d.l.<></td></d.l.<>	7.84	<d.l.< td=""></d.l.<>
Mg	<d.l.< td=""><td><d.l.< td=""><td>160.97</td><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td>160.97</td><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	160.97	<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<>	<d.l.< td=""></d.l.<>
Sc	529	545	516	542	482	415	443	463	430.21	464
Ti	<d.l.< td=""><td><d.l.< td=""><td>38.28</td><td><d.l.< td=""><td>6.91</td><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td>2.63</td><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td>38.28</td><td><d.l.< td=""><td>6.91</td><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td>2.63</td><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	38.28	<d.l.< td=""><td>6.91</td><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td>2.63</td><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	6.91	<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td>2.63</td><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""><td>2.63</td><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td>2.63</td><td><d.l.< td=""></d.l.<></td></d.l.<>	2.63	<d.l.< td=""></d.l.<>
V	1.83	<d.l.< td=""><td><d.l.< td=""><td>1.56</td><td>1.16</td><td>0.72</td><td><d.l.< td=""><td><d.l.< td=""><td>0.112</td><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td>1.56</td><td>1.16</td><td>0.72</td><td><d.l.< td=""><td><d.l.< td=""><td>0.112</td><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	1.56	1.16	0.72	<d.l.< td=""><td><d.l.< td=""><td>0.112</td><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td>0.112</td><td><d.l.< td=""></d.l.<></td></d.l.<>	0.112	<d.l.< td=""></d.l.<>
Cr	<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td>21.68</td><td><d.l.< td=""><td><d.l.< td=""><td>15.93</td><td><d.l.< td=""><td><d.l.< td=""><td>33.65</td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""><td>21.68</td><td><d.l.< td=""><td><d.l.< td=""><td>15.93</td><td><d.l.< td=""><td><d.l.< td=""><td>33.65</td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td>21.68</td><td><d.l.< td=""><td><d.l.< td=""><td>15.93</td><td><d.l.< td=""><td><d.l.< td=""><td>33.65</td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	21.68	<d.l.< td=""><td><d.l.< td=""><td>15.93</td><td><d.l.< td=""><td><d.l.< td=""><td>33.65</td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td>15.93</td><td><d.l.< td=""><td><d.l.< td=""><td>33.65</td></d.l.<></td></d.l.<></td></d.l.<>	15.93	<d.l.< td=""><td><d.l.< td=""><td>33.65</td></d.l.<></td></d.l.<>	<d.l.< td=""><td>33.65</td></d.l.<>	33.65
Rb	<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td>3.53</td><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td>3.53</td><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""><td>3.53</td><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td>3.53</td><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	3.53	<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<>	<d.l.< td=""></d.l.<>
Sr	<d.l.< td=""><td><d.l.< td=""><td>1.16</td><td><d.l.< td=""><td>0.82</td><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td>0.226</td><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td>1.16</td><td><d.l.< td=""><td>0.82</td><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td>0.226</td><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	1.16	<d.l.< td=""><td>0.82</td><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td>0.226</td><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	0.82	<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td>0.226</td><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""><td>0.226</td><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td>0.226</td><td><d.l.< td=""></d.l.<></td></d.l.<>	0.226	<d.l.< td=""></d.l.<>
Y Nb	314 1.69	442 2.13	51 < D I	342 2.33	397 0.73	301 1.3	447 1.46	361 0.55	253.21 1.077	338 1.52
110	1.07	2.13	<d.l.< td=""><td>2.33</td><td>0.75</td><td>1.J</td><td>1.40</td><td>0.55</td><td>1.0//</td><td>1.JL</td></d.l.<>	2.33	0.75	1.J	1.40	0.55	1.0//	1.JL

 Table 6
 Trace element compositions of selected zircons

Table	6	continued
Labic	v	continued

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Eclogite SV1										
	Analysis	6	7	8	9		11	12		14	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Location	Core	Core	Undefined	Rim	Core	Core			Core	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	zoning	Dark			Bright	Patchy	Oscillatory	Patchy	Patchy	Unzoned	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	U/Pb Age (Ma) ^a		524 ± 13		subconc. 488	480 ± 10	474 ± 10	473 ± 9	464 ± 12	464 ± 9	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cs	<d.l.< td=""><td><d.l.< td=""><td>1.29</td><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td>1.29</td><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	1.29	<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<>	<d.l.< td=""></d.l.<>
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		0.57				0.84					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		<d.l.< td=""><td>0.098</td><td></td><td></td><td></td><td>0.033</td><td><d.l.< td=""><td></td><td></td><td></td></d.l.<></td></d.l.<>	0.098				0.033	<d.l.< td=""><td></td><td></td><td></td></d.l.<>			
	Nd	<d.l.< td=""><td>0.58</td><td>1.56</td><td>0.33</td><td><d.l.< td=""><td>0.25</td><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	0.58	1.56	0.33	<d.l.< td=""><td>0.25</td><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	0.25	<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<>	<d.l.< td=""></d.l.<>
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Sm										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	U	663	1040	65	2282		441	68			
$ \begin{array}{cccc} {\rm Ce}_n / {\rm Yb}_n & 0.008 & 0.019 & 0.0034 & 0.0037 & 0.0011 & 0.006 & 0.0011 & 0.0021 & 0.0013 & - \\ \hline {\rm Eclogite SV1} \\ \hline \\ \hline \\ \hline \\ {\rm Analysis} & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 \\ {\rm Location} & {\rm Undefined} & {\rm Core} & {\rm Rim} & {\rm Core} & {\rm Core} & {\rm Core} & {\rm Rim} & {\rm Rim} \\ {\rm dark} & {\rm dark} & {\rm dark} & {\rm bright} & {\rm bright} & {\rm bright} & {\rm dark} & {\rm dark} & {\rm bright} & {\rm bright} & {\rm bright} & {\rm dark} & {\rm bright} & {\rm bright} & {\rm bright} & {\rm dark} & {\rm dark} & {\rm bright} & {\rm bright} & {\rm dark} & {\rm dark} & {\rm bright} & {\rm bright} & {\rm dark} & {\rm dark} & {\rm bright} & {\rm dark} & {\rm dark} & {\rm bright} & {\rm dark} & {\rm dark} & {\rm bright} & {\rm dark} & {\rm dark} & {\rm dark} & {\rm bright} & {\rm dark} & {\rm dark} & {\rm dark} & {\rm bright} & {\rm dark} & {\rm$	Th/U	0.0316	0.0729	0.0180	0.0433	0.2121	0.0316	0.1324	0.1580	0.1607	0.1903
	Eu/Eu*										_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ce_N/Yb_N	0.0008	0.0019	0.0034	0.0037	0.0011	0.0006	0.0011	0.0021	0.0013	-
$ \begin{array}{cccc} Location \\ zoning \\ zoning \\ unzoned \\ unzoned \\ dark \\ zoning \\ zoring \\ $	Eclogite SV1										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Analysis	16	17	18		20			23	24	
	Location					Rim			Core	Rim	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	zoning			Unzoneo							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	U/Pb Age (Ma) ^a			$10 403 \pm 8$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Element (ppm)										
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td>3.62</td><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td>3.62</td><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td>3.62</td><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""><td>3.62</td><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""><td>3.62</td><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td>3.62</td><td><d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<></td></d.l.<>	3.62	<d.l.< td=""><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<>	<d.l.< td=""></d.l.<>
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Mg					<d.l.< td=""><td><d.l.< td=""><td></td><td></td><td></td><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<>	<d.l.< td=""><td></td><td></td><td></td><td><d.l.< td=""></d.l.<></td></d.l.<>				<d.l.< td=""></d.l.<>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				149581						149581	149581
$ \begin{array}{llllllllllllllllllllllllllllllllllll$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5.29									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	La					0.065					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.95									
Sm 1.45 0.512 <d.l.< th=""> 0.947 1.13 0.56 0.9 1.46 1.16 0.74 Eu 0.53 0.111 0.145 0.919 0.816 0.66 0.726 0.665 <d.l.< td=""> 0.712</d.l.<></d.l.<>	Pr										
Eu 0.53 0.111 0.145 0.919 0.816 0.66 0.726 0.665 <d.l. 0.712<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></d.l.>											
Ou 0.12 2.0/ 11.01 0.// 4.24 12./9 0.22 1.25 0.22 4./0											
	u	0.12	2.07	11.01	0.//	7.24	14.17	0.22	1.43	0.22	4.70

Table 6 continued

Eclogite SV1										
Analysis Location zoning U/Pb Age (Ma) ^a	16 Undefined Unzoned dark 446 ± 13	17 Core Sector zoning 419 ± 10	18 Rim Unzoned 403 ± 8	19 Rim Unzoned bright 392 ± 8	20 Rim Unzoned bright 392 ± 7	21 Rim Unzoned dark 374 ± 18	22 Core Unzoned dark 374 ± 8	23 Core Unzoned bright 346 ± 9	24 Rim Unzoned bright 337 ± 11	25 Rim Sector zoning 325 ± 16
Tb	2.74	1.059	8.07	1.222	0.767	3.06	1.069	0.964	0.94	0.761
Dy	28.7	16.14	117.12	7.75	6.94	18.3	7.04	7.6	12.96	5.17
Ho	14.13	7.21	54.36	1.712	2.69	3.59	2.039	1.82	3.65	1.056
Er	85.1	38.13	282.6	6.07	11.85	13.2	7.41	5.2	14.7	4.5
Tm	19.5	8.72	67.4	0.94	3.12	1.8	1.662	1.0	3.1	0.8
Yb	241.3	107.65	657.9	9.39	37.46	18.1	18.91	7.5	15.7	7.0
Lu	59.07	23.7	128.83	1.43	8.44	3.29	3.63	1.18	2.80	0.91
Hf	10795	7998	11693	9790	8899	12062	9573	11828	16271	11718
Ta	0.346	0.19	0.736	0.159	0.107	<d.l.< td=""><td>0.136</td><td>0.243</td><td><d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<></td></d.l.<>	0.136	0.243	<d.l.< td=""><td><d.l.< td=""></d.l.<></td></d.l.<>	<d.l.< td=""></d.l.<>
Pb	2.8	1.81	1.46	0.06	0.535	0.34	0.124	0.135	<d.l.< td=""><td>0.368</td></d.l.<>	0.368
Th	53	19.68	32	0.191	7.84	2	1.471	0	1	0
U	902	103.46	457	194.37	196.68	157	108.42	76	143	126
Th/U	0.0589	0.1902	0.0704	0.0010	0.0399	0.0143	0.0136	0.0018	0.0069	0.0004
Eu/Eu*	0.463	0.220	_	0.810	1.000	0.344	0.690	0.511	_	0.873
Ce_N/Yb_N	0.0010	0.0013	0.0002	0.0091	0.0042	0.0078	0.0054	0.0123	0.0017	0.0073

subconc subconcordant age, <D.L. below limits, NA not analysed

^a Trace element analyses were located near the ablation spots for U/Pb geochronology: the calculated ages are here reported for reference

Hoskin and Black 2000; Rubatto 2002). In addition, the low abundance of HREE and Y suggests the presence of garnet as a chemical buffer during zircon growth/ recrystallisation (Rubatto 2002).

Discussion

Protolith age and geochemical affinity of the mafic rocks

In the gabbro, zircons with oscillatory zoning and trace element compositions typical of crystallisation under igneous conditions (high Th/U ratios, high trace element contents, negative Eu anomaly) yielded a mean concordant age of 469 ± 6 Ma. This age is interpreted as the timing of zircon crystallisation in the basic magma. The presence of zircons with ages older than the inferred crystallisation age suggests the involvement of an old (crustal?) component in the petrogenesis of the gabbro.

Zircons from the eclogite yielded very scattered ages of 556–305 Ma. Zircon grains with typical igneous textures and trace element compositions concentrate in the 486–430 Ma range. These zircons define two mean

Fig. 7 U/Pb Concordia diagram (left) and mean Concordia age (right) for the analysed zircons from the gabbro

(a)₂₀

45

Fig. 8 a Density plot of the U/Pb ages for the analysed zircons from the eclogite. **b** mean Concordia ages of the oldest (igneous) zircon populations. **c** mean Concordia age of the youngest (metamorphic) zircon population. See the Discussion for further details

Fig. 9 REE compositions (normalised to chondrite values) of selected zircons from the gabbro

concordant ages of 468 ± 4 Ma (17 analyses, MSWD = 1.2) and 446 ± 2 Ma (7 analyses, MSWD = 1.8), respectively. This large scatter does not allow a

straightforward estimate of the emplacement age for the eclogite igneous protolith.

The spread towards younger ages could result from mixed ages in relation to the textural complexity of some zircon crystals. Nevertheless, we believe that the careful observation of CL images prior to geochronological analyses and the use of small laser spots (10 µm) for the most critical zircons substantially reduced the risk of mixed analyses. The fact that the age results of analyses performed at 25 µm are comparable (within error) to those of the spatially more precise analyses performed at 10 µm, suggests that the younger zircon ages are most likely "true" ages and not the result of mixed analyses. In addition, the dispersion of concordant ages with igneous-like characters is often observed in magmatic rocks that underwent slow cooling rates or metamorphic re-equilibration after crystallisation (Ashwal et al. 1999; Hoskin and Black 2000; Ghezzo, personal communication). This partial

Fig. 10 a REE compositions (normalised to chondrite) of selected zircons from the eclogite: domains with igneous texture are on the *left*, those with metamorphic texture are on the *right*.

b Y contents and Th/U ratio plotted against U/Pb ages of texturally different zircon domains

Fig. 11 Trace element (normalised to N-MORB values) of calculated liquids from clinopyroxene (metagabbro) compared to the whole rock compositions of the eclogites (average values)

resetting of the zircon isotope system is variably explained with high-temperature solid-state recrystallisation (Ashwal et al. 1999; Hoskin and Black 2000) or with zircon/fluid interaction during younger metamorphic events (Hartmann 2000). This process may be facilitated by the occurrence of metamict areas in zircon with strongly enhanced isotope mobility. A thermal perturbation related to a younger metamorphic event can promote re-crystallisation of the metamict zones, thereby yielding apparent ages with no geological meaning (Pidgeon 1991; Geisler et al. 2001).

We suggest that the time of crystallisation of the eclogite igneous protolith is reasonably recorded by the older mean concordant age of 468 ± 4 Ma defined by the largest "igneous" zircon population. Note that this radiometric date is within error of the inferred emplacement age of the gabbro. The younger ages clustering around the mean value of 446 ± 2 Ma are most likely due to partial isotope mobilisation during the subsequent metamorphic evolution.

The gabbros have high mg# (0.77–0.80) and positive Eu and Sr anomalies in the primordial mantle-normalised multivariation diagram, thus indicating a cumulus origin controlled by clinopyroxene (\pm olivine) and plagioclase segregation. We calculated the incompatible trace element composition of the melt in equilibrium with the clinopyroxene by applying the clinopyroxene/liquid partition coefficients for a basaltic system (Tiepolo et al. 2002). The MORB-normalised REE patterns of computed melts show no significant LREE enrichment ($La_N/Sm_N = 0.8-1.8$) and nearly flat HREE profiles.

The Nd isotope compositions at the time of igneous crystallisation were calculated on the basis of the U-Pb zircon data from the present study. The gabbros have initial ε_{Nd} ranging from +5.4 to +8.8. The variability in the initial ε_{Nd} values is most likely related to the interaction of a fractionating melt derived from a depleted mantle source with a low ε_{Nd} crustal component. This is indicated by the fact that the initial ε_{Nd} is roughly correlated with chemical features of clinopyroxene (e.g. it decreases with decreasing mg# and with increasing La_N/Sm_N). We thus propose that the mantle melt evolved through a process controlled by fractionation and concomitant assimilation of crustal material. The crustal contamination process is consistent with the occurrence of staurolite-, garnet- and magnetite-rich fels within the amphibolitised gabbros, which are considered evidence for country rock assimilation during magma emplacement (see also Braga and Tribuzio 1999). The presence of zircons with complex zoning patterns and ages (495–2129 Ma) older than the inferred magma crystallisation age provide further proof of inheritance from a crustal source.

The eclogites differ from the gabbros in their bulk chemical composition. Their chemical fingerprint may be representative of a melt composition and rules out derivation through a cumulus process. The variable mg# (0.51-0.67) and relatively high REE and incompatible element contents (15-35 times typical chondrite values) suggest an origin from evolved melts. The slight LREE depletion ($La_N/Sm_N = 0.6 - 0.8$) and the Zr/ Nb and Y/Nb ratios (33-43 and 10-17, respectively) are consistent with the chemical features of N- or T-MORB. The initial ε_{Nd} of eclogites is similar to that of the analysed gabbros and ranges from +7.0 to +9.2, showing a rough negative correlation with the whole rock La_N/Sm_N ratio. There is good correspondence between the bulk trace element composition of the eclogites and the composition of the melts in equilibrium with the clinopyroxene from the gabbros of cumulus origin (Fig. 11). In addition, the U-Pb zircon ages indicate that the eclogite protoliths and gabbros are coeval (469 \pm 6 and 468 \pm 4 Ma, respectively). This sustains the hypothesis that the eclogite protoliths and gabbros were cogenetic, i.e. they formed from variably evolved and crustally contaminated melts that were derived from similar depleted mantle sources. The lack of high pressure parageneses in the metagabbros and associated paragneisses suggests that the crustal sections containing the relics of gabbros and eclogites were juxtaposed during the amphibolite facies Variscan evolution. An Alpine juxtaposition of the two

Fig. 12 Schematic P-T-t evolution of the eclogites from the Savona Crystalline Massif (pressure-temperature estimates from Messiga et al. 1992 and Cortesogno et al. 1997). *Ar-Ar data from Barbieri et al. (2003)

sections cannot be demonstrated due to absence of know shear zones or faults in the region of interest.

Cambro-Ordovician magmatism in the western European Variscides

Basic rocks of mid-Ordovician age are not a novelty in portions of the Variscan basement from the western Mediterranean area. The occurrence of mafic rocks with Cambro-Ordovician protoliths has already been reported in the Western-Central Alps, Sardinia and Provence (Lancelot et al. 1998; Ménot et al. 1988; Paquette et al. 1989; Oberli et al. 1994; Abrecht et al. 1995; Poller 1997; Rubatto et al. 2001; Schaltegger et al. 2003; Cortesogno et al. 2004; Palmeri et al. 2004; Giacomini et al. 2005). Similarly to the Savona crystalline massif, these mafic rocks mostly occur as amphibolite or retrogressed eclogite bodies within paragneiss and orthogneiss sequences, and the protolith ages range from about 495 to 450 Ma. In particular, in-situ U/Pb zircon data (Rubatto et al. 2001; Palmeri et al. 2004; Giacomini et al. 2005) yield ages in the range of 460-450 Ma, which are usually younger than those obtained by conventional methods. These rocks commonly have E- to N-MORB chemical affinity, with initial ε_{Nd} values ranging from +4 to +9. The low ε_{Nd} values are alternatively attributed to processes of crustal contamination (e.g. Paquette et al. 1989) or to

an origin in active margin/island-arc environments (Oberli et al. 1994; Schaltegger et al. 2003).

True oceanic crust sequences are scarce in the Variscan chain. In the southern-western portion of the belt they could be represented by the Cambro-Ordovician Chamrousse ophiolite from the Belledonne Massif of the western Alps and possibly by some sequences in the French Maures Massif (Bellot 2005, and references therein). The Chamrousse ophiolite was interpreted as a crustal fragment of an "immature" oceanic basin (Guillot et al. 1992 and references therein), in agreement with the lack of pelagic sediments in the stratigraphic cover, which instead contains significant quantities of metatuff (Pin and Carme 1987). Based on conventional U-Pb geochronology applied to zircons from a plagiogranite, the Chamrousse ophiolite was dated at 496 ± 6 Ma (Ménot et al. 1988). The ophiolite has a complex geochemical signature, as the presence of non-cumulitic mafic rocks with variable LREE enrichment and initial ε_{Nd} of +5 to +9 testify (Bodinier et al. 1981; Pin and Carme 1987). The geochemical signature of the Chamrousse sequence was attributed to mixing of N-MORB and E-MORB-like end members with a third component having subduction zone affinity (Pin and Carme 1987).

The protoliths of metagabbros and eclogites from the Savona Crystalline Massif originated from depleted mantle melts emplaced within a continental crust. They most likely record a process of contamination by crustal material. We have no evidence to sustain the hypothesis of their origin in a supra-subduction or a mid-ocean ridge setting. We propose that the Ligurian Briançonnais basement records a mid-Ordovician extensional phase characterised by intrusion of mantlederived melts into the continental crust. The widespread occurrence of mantle melts intruding the pre-Variscan crust in the Mediterranean area has been taken as evidence for the development of an oceanic domain at the northern margin of Gondwana (Stampfli and Borel 2002; Stampfli et al. 2002; von Raumer et al. 2003), which marks the beginning of the new Wilson cycle leading to the Variscan orogeny. Considering the scattered occurrence of mafic rocks in the basement outcrops of the southern Variscides and their variable chemical and isotopic fingerprints, we suggest that the Cambro-Ordovician basin did not evolve into a true ocean, but was likely a basin on (thinned?) continental crust.

Timing of Variscan metamorphism in the Ligurian eclogites

Dating the eclogitic peak by means of zircon geochronology is not straightforward, mainly because it is often difficult to relate zircon U-Pb ages to the P-T conditions of metamorphic equilibration. Zircons grown or re-crystallised under eclogite and amphibolite facies conditions may have almost indistinguishable trace element patterns. Their composition (especially HREE and Y) is controlled by the presence of garnet (Rubatto 2002), which often remains stable (or metastable) during decompression to amphibolite-facies conditions. In addition, the common dispersion of "metamorphic" ages along the Concordia does not facilitate the interpretation of data and demonstrates that zircon may be an open system under particular metamorphic conditions (e.g. Timmermann et al. 2004; Gray et al. 2004; Giacomini et al. 2005).

In the studied eclogite, the age of zircons younger than the crystallisation age of the inferred igneous protolith and with typical metamorphic texture spans from 420 ± 17 to 305 ± 6 Ma. The zircons with ages of $420 \pm 17-402 \pm 8$ Ma underwent a textural resetting that cancelled the igneous textures: their trace element composition is similar to that of the older igneous zircons (negative Eu anomaly, HREE enriched with respect to LREE and MREE). These grains probably represent a further step in the process of annealing during prograde metamorphism, as already observed in the rejuvenated igneous zircon (mean age of 446 ± 2 Ma) described in the previous paragraphs. The mean concordant age of 407 ± 9 Ma obtained from the four oldest zircons with metamorphic textures is therefore considered a prograde stage of subductionrelated metamorphism (amphibolite facies conditions?) which promoted a process of solid-state recrystallisation in zircon. This is consistent with the evidence for prograde metamorphic crystallisation in the Savona eclogites (i.e. hornblende grains within the cores of garnet porphyroblasts) reported by Messiga et al. (1992).

All analysed zircons with ages younger than 392 Ma are texturally and compositionally indistinguishable. They are euhedral to subrounded or mostly anhedral and have flat HREE patterns (generally 10-100 times typical chondrite values) with no negative Eu anomaly, overall low trace element abundances and low Th/U ratios. These zircons were derived from equilibration of igneous zircons or new precipitation in a system containing stable or metastable garnet and in the absence of high modal percentages of plagioclase. In particular, a fractured zircon rim dated at 374 ± 18 Ma contains an inclusion of diopside-plagioclase symplectite, a typical product of omphacite breakdown during decompression. There is no clear evidence to establish whether the zircon enclosed an omphacite crystal during the eclogite peak or a symplectite portion during the early stages of decompression. However, the presence of small fractures around the inclusion could be attributed to an increase in volume related to the omphacite breakdown reaction; in this case, the development of the diopside-plagioclase symplectite post-dated the measured zircon age. Following this hypothesis, the seven ages ranging from 392 ± 7 to 374 ± 8 Ma are related to equilibration under eclogitefacies conditions.

The trace-element patterns of zircons with ages in the 346-320 range (giving a mean Concordia age at 333 ± 7 Ma) are similar to those of older metamorphic zircons and are typical of growth or re-crystallisation in the presence of garnet. The comparison with published data on the neighbouring Variscan outcrops of the western Alps and Sardinia supports the notion that the zircons younger than 350 Ma are related to posteclogite exhumation. The exhumation of high-pressure rocks and the process of nappe stacking related to the main continental collision are constrained to about 350-310 Ma by different geochronological methods (Ferrara et al. 1978; Rubatto et al. 2001; Di Vincenzo et al. 2004; Palmeri et al. 2004; Giacomini et al. 2005; Giacomini et al. 2006). We therefore propose that the flat HREE patterns of these zircons are linked either to the presence of stable-metastable garnet in the posteclogitic assemblages or to the inefficiency of the

re-crystallisation process in completely erasing the trace element signature of older "eclogitic" zircons.

One thin rim (no trace element composition for this spot) yielded a young concordant age of 305 ± 6 Ma. This age is consistent with available geochronological data for amphibolite facies equilibration recorded by associated paragneisses and orthogneisses, which indicate 327–297 Ma (Del Moro et al. 1981; Barbieri et al. 2003). We conclude that such a young zircon rim from the selected eclogite is related to late-stage growth during the final stages of exhumation.

The pre-Alpine metamorphic history: a regional comparison

The U/Pb age distribution in the selected eclogite of the Savona Crystalline Massif further constrains the Palaeozoic metamorphic evolution of the European Variscan belt in the Mediterranean area. For the first time in this sector of the chain, the high-pressure metamorphic overprint has been dated to 392-374 Ma. The post-eclogitic evolution is recorded by several zircon ages that yield a mean Concordia age of 333 \pm 7 Ma. These new ages are complementary to previously published data (Rubatto et al. 2001; Cortesogno et al. 2004; Palmeri et al. 2004; Giacomini et al. 2005) on high-pressure rocks in the basements of Sardinia and the Western Alps. All these eclogite relics have similar geological settings and peak parageneses, and mainly occur as lenses and boudins within dominant amphibolite-facies paragneiss and orthogneiss sequences.

In northern Sardinia, SHRIMP and LA-ICP-MS U-Pb zircon data constrain the post-eclogite exhumation stage (granulite- to amphibolite-facies) from about 350 to 320 Ma (Palmeri et al. 2004; Giacomini et al. 2005). New data on two samples of kyanite-bearing eclogites from the Sardinian basement (Giacomini et al. unpublished) confirm the presence of a dominant metamorphic zircon population with ages spanning from 367 to 301 Ma. In the external massifs of the western Alps (Belledonne and Argentera), high-pressure metamorphism occurred from 425 to 395 Ma (conventional U/Pb zircon dilution, Paquette et al. 1989). In addition, muscovite Ar-Ar ages of 375-350 Ma for the Argentera Massif were attributed to the amphibolite-facies retrograde overprint (Monié and Maluski 1983). In the same area, however, SHRIMP and ID-TIMS U/Pb zircon ages from an eclogitised metagabbro (Rubatto et al. 2001) indicate that the post-eclogite amphibolitic overprint occurred at 323 ± 3 Ma. Older metamorphic ages (~470 Ma) were proposed by Gebauer et al. (1988) and Oberli et al. (1994) for some eclogites cropping out in the Aar-Gotthard massif (central Alps). On the basis of an upper intercept discordia age at 870 Ma, Gebauer et al. (1988) proposed that these eclogites have igneous protoliths of Precambrian age and that the eclogite-facies overprint refers to Caledonian accretion.

Geochronological estimates from the western Alps and Sardinia constrain the beginning of the Variscan prograde metamorphic evolution to Siluro-Devonian times. The broad time span proposed for eclogite facies equilibration (425-375 Ma) can be attributed to either diachronous subduction in the different zones, or to uncertainties related to the application of different dating methods. We favour the latter hypothesis, in agreement with the complex internal features and the domains with different U/Pb ages observed in metamorphic zircons through recent micro-analytical studies (e.g. Rubatto et al. 1999; Song et al. 2005; Giacomini et al. 2006; this work). In addition, the different areas yield consistent post-eclogite U/Pb zircon datings at 340-320 Ma, which are commonly interpreted as the timing of amphibolite facies equilibration at middle crustal levels (Rubatto et al. 2001; Di Vincenzo et al. 2004; Palmeri et al. 2004; Giacomini et al. 2005; Giacomini et al. 2006). Thus, old "eclogitic" ages like proposed in the Belledonne and the Argentera massifs would imply very slow rates (0.6-0.4 mm/year) to exhume the high pressure rocks to the middle crustal levels (~0.5 GPa) inferred for the widespread amphibolite facies overprint. Exhumation rates are almost 1.5- to 2-fold quicker (0.9-1 mm/a) if calculated taking into account the youngest eclogitic ages proposed in this contribution.

Conclusions

The Savona Crystalline Massif was intruded at ~468 Ma by basaltic melts that originated from depleted mantle sources, probably in response to regional Cambro-Ordovician crustal extension at the northern margin of Gondwana. The mantle melts underwent fractional crystallisation and crustal contamination in relation to their emplacement in the continental crust.

In Devonian times at least part of the Savona Crystalline Massif was involved in a subduction zone that produced eclogite-facies assemblages pointing to equilibration at minimum pressures of 1.7 GPa and temperatures of 650–750 °C (Fig. 12). In particular, LA-ICP MS analyses of metamorphic zircons from one eclogite show that the high-pressure metamorphic overprint occurred between 392 and 374 Ma. Based on a comparison with other published data, the younger ages of metamorphic zircons that cluster around a

mean Concordia age of 333 ± 6 Ma (i.e. in the Late Carboniferous) are ascribed to the amphibolite facies overprint related to the main Variscan collision and the chain exhumation.

The present study also shows that the U/Pb isotope system in zircons from eclogites is a powerful tool for reconstructing the chronology of entire orogenic cycles. Within a single eclogite sample from the Variscan Savona Massif, the evaluation of U-Pb zircon microanalyses in association with CL images and trace element signatures allowed us to identify five petrogenetic events: (1) old zircons inherited from the pre-Variscan basement, (2) igneous zircons dating the crystallisation of the eclogite protolith during an extensional tectonic event, (3) variably rejuvenated zircons, at least partly related to a prograde metamorphic stage which marked the onset of plate convergence, (4) peak eclogitic zircons dating the involvement of the crustal slice at deep subduction levels, and (5) retrograde zircons associated with eclogite exhumation under amphibolite facies conditions in response to continental collision.

Acknowledgments We are grateful to Bruno Messiga that in different times introduced us to the geology of the Savona Crystalline Massif. Angela Ivaldi and Stefano Maffeo are also acknowledged for precious help in the field. Special thanks are due to Claudio Ghezzo for stimulating discussions. Suggestions and comments by Felix Oberli and an anonymous referee led to a considerable improvement of the original manuscript. This work was financially supported by Ministero dell'Università e della Ricerca Scientifica (Progetti di Ricerca di Interesse Nazionale, Ghezzo and Tribuzio fundings).

References

- Abrecht J, Biino GG, Schaltegger U (1995) Building the European continent: Late Proterozoic– Early Paleozoic accretion in the Central Alps of Switzerland. Terra Abstracts 7(1):105–105
- van Achterbergh E, Ryan CG, Jackson SE, Griffin W (2001) Data reduction software for LA-ICP-MS. In Laser ablation-ICPMS in the earth science. P. Sylvester ed. Mineralogical Association of Canada. vol. 29:239–243
- Ashwal LD, Tucker RD, Zinner Ek (1999) Slow cooling of deep crustal granulites and Pb-loss in zircon. Geochimica et Cosmochimica Acta 63(18):2839–2851
- Barbieri C, Carrapa B, Di Giulio A, Wijbrans J, Murrell GR (2003) Provenance of Oligocene synorogenic sediments of the Ligurian Alps (NW Italy): inferences on belt age and cooling history. Int J Earth Sci 92:758–778
- Bea F, Montero P (1999) Behaviour of accessory phases and redistribution of Zr, REE, Y, Th and U during metamorphism and partial melting of metapelites in the lower crust: an example from the Kinzigite Formation of Ivrea-Verbano, NW Italy. Geochim Cosmochim Acta 63:1133– 1153

- Bellot J (2005) The Palaeozoic evolution of the Maures massif (France) and its potential correlation with others areas of the Variscan belt: a review. J Virtual Explor, 19
- Bodinier JL, Dupuy G, Dostal J, Carme F (1981) Geochemistry of ophiolites from the Chamrousse complex (Belledonne massif, Alps). Contrib Mineral Petrol 78 (379–388)
- Braga R, Tribuzio R (1999) Late-Variscan amphibolitisation of gabbroic rocks from the Brianconnais basement (Savona Crystalline Massif, Western Alps). Plinius 22:67–68
- Cortesogno L, Dallagiovanna G, Gaggero L, Vanossi M (1993) Elements for the Palaeozoic history of the Ligurian alps. In: von Raumer J, Neubauer, F (eds) Pre-Alpine Geology in the Alps, vol. Springer, Berlin Heidelberg New York: 257– 277
- Cortesogno L, Gaggero L, Capelli C (1997) Petrology of pre-Alpine eclogites and amphibolites from the Ligurian Brianconnais basement. Atti Ticinensi Scienze della Terra 39:3–29
- Cortesogno L, Gaggero L, Oggiano G, Paquette JL (2004) Different tectono-thermal evolutionary paths in eclogitic rocks from the axial zone of the Variscan Chain in Sardinia (Italy) compared with the Ligurian Alps. Ofioliti 29(2):125–144
- Del Moro A, Pardini G, Messiga B, Poggio M (1981) Dati petrologici e radiometrici preliminari sui massicci cristallini della Liguria occidentale. Rendiconti Società Italiana di Mineralogia e Petrologia 38(1):73–87
- Di Vincenzo G, Carosi R, Palmeri R (2004) The relationship between tectono-metamorphic evolution and argon isotope records in white micas: constraints from in situ 40Ar–39Ar laser analysis of the Variscan basement of Sardinia (Italy). J Petrol 45:1013–1043
- Ferrara G, Rita F, Ricci CA (1978) Isotopic age and tectonometamorphic history of the metamorphic basement of North-eastern Sardinia. Contrib Mineral Petrol 68:99–106
- Gaggero L, Cortesogno L, Bertrand JM (2004) The pre-Namurian basement of the Ligurian Alps: a review of the lithostratigraphy, pre-Alpine metamorphic evolution, and regional comparison. Periodico di Mineralogia 73(2):85–96
- Gebauer D (1993) Isotopic systems geochronology of eclogites. In: D.A C (ed) Eclogite facies rocks, vol. Blackie, Glasgow: 132–159
- Gebauer D, Quadt A, Compston W, Williams IS, Grünefelder M (1988) Archaean zircons in a retrograded, Caledonian eclogite of the Gotthard Massif (Central Alps, Switzerland). Schweizerische Mineralogische Petrographische Mitteilungen 68:485–490
- Geisler T, Pidgeon RT, van Bronswijk w, Pleysier R (2001) Kinetics of thermal recovery and recrystallization of partially metamict zircon: a Raman spectroscopic study. Eur J Mineral 13(6):1163–1176
- Giacomini F, Bomparola RM, Ghezzo C (2005) Petrology and geochronology of metabasites with eclogite facies relics from NE Sardinia: constraints for the Palaeozoic evolution of Southern Europe. Lithos 82:221–248
- Giacomini F, Bomparola RM, Ghezzo C, Guldbrandsen H (2006) The geodynamic evolution of the Southern European Variscides: constraints from the U/Pb geochronology and geochemistry of the lower Palaeozoic magmatic-sedimentary sequences of Sardinia (Italy). Contrib Mineral Petrol 86:19–42
- Gray DR, Hand M, Mawby J, Armstrong RA, McL. Miller J, Gregory RT (2004) Sm–Nd and Zircon U–Pb ages from garnet-bearing eclogites, NE Oman: constraints on High-P metamorphism. Earth Planet Sci Lett 222:407–422

- Guillot S, Ménot RP, Lardeaux JM (1992) Techtonique intraocéanique distensive dans l'ophiolite paléozoique de Chamrousse (Alpes occidentales). Bulletin Société Géologique de France 163(3):229–240
- Hartmann LA, Leite JAD, Da Silva LC, Remus MVD, McNaughton NJ, Groves DI, Fletcher IR, Santos JOS, Vasconcellos MAZ (2000) Advances in SHRIMP geochronology and their impact on understanding the tectonic and metallogenic evolution of southern Brazil. Aust J Earth Sci 47(5):829–844
- Hoskin PWO, Black LP (2000) Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J Metamorphic Geol 18(4):423–439
- Ketchum JWF, Jackson SE, Culshaw NG, Barr SM (2001) Depositional and tectonic setting of the Paleoproterozoic Lower Aillik Group, Makkovik Province, Canada: evolution of a passive margin-foredeep sequence based on petrochemistry and U-Pb (TIMS and LAM-ICP-MS) geochronology: Precambrian Res 105:331–356
- Lancelot J, Moussavou M, Delor C (1998) Géochronologie U/Pb des témoins de l'evolution ante-varisque du Massif des Maures. Geologie du Massif des Maures – Réunion Spécialisée BRGM. Societé Géologique de France, Le Plan de la Tour, 20.Mai 1998, p 22
- Ludwig KR (1999) Isoplot/Ex version 2.00: A geochronological toolkit for microsoft excel. Berkeley Geochronology Center Special Publications 1a. 46 pp
- Ménot RP, Peucat JJ, Scarenzi D, Piboule M (1988) 496 Ma age of plagiogranites in the Chamrousse ophiolite complex (external crystalline massifs in the French Alps): evidence of a lower Palaeozoic oceanization. Earth Planetary Sci Lett 88:82–92
- Messiga B (1987) Alpine metamorphic evolution of Ligurian Alps (North-West Italy): chemography and petrological constraints inferred from metamorphic climax assemblages. Contrib Mineral Petrol 95:269–277
- Messiga B, Tribuzio R, Caucia F (1992) Amphibole evolution in Variscan eclogite-amphibolites from the Savona crystalline massif (western Ligurian Alps, Italy). Controls on the decompressional P-T-t path. Lithos 27:215–230
- Miller C, Konzett J, Tiepolo M, Armstrong RA, Thöni M (2006) Jadeite-gneiss from the Eclogite zone Tauern Window, Easter Alps, Austria. Metamorphic, geochemical and zircon record of a sedimentary protolith. Lithos (in press)
- Monié P, Maluski H (1983) Données géochronologiques 39Ar-40Ar sur le socle anté-Permien du massif de l'Argentera-Mercantour (Alpes Maritimes, france). Bulletin Société Géologique de France 2:247–257
- Oberli F, Meier M, Biino GG (1994) Time constraints on the pre-Variscan magmatic/metamorphic evolution of the Gotthard and Tavetsch units derived from single-zircon U-Pb results. Schweizerische Mineralogische Petrographische Mitteilungen 74:483–488
- Palmeri R, Fanning M, Franceschelli M, Memmi I, Ricci CA (2004) SHRIMP dating of zircons in eclogite from the Variscan basement in north-eastern Sardinia (Italy). Neues Jahrbuch Mineralogie Abh 6:275–288
- Paquette JL, Menot RP, Peucat JJ (1989) REE, Sm-Nd and U-Pb zircon study of eclogites from the Alpine External Massifs (Western Alps): evidence for crustal contamination. Earth Planetary Sci Lett 96:181–198
- Pidgeon RT (1991) Recrystallisation of oscillatory zoned zircon: some geochronological and petrological implications. Contrib Mineral Petrol 110(4):463–472
- Pin C, Carme F (1987) A Sm-Nd isotopic study of the 500 Ma old oceanic crust in the Variscan belt of western Europe: the

Chamrousse ophiolite complex, Western Alps (France). Contrib Mineral Petrol 196:406–413

- Poller U (1997) U–Pb single-zircon study of gabbroic and granitic rocks in the Val Barlas-ch (Silvretta nappe, Switzerland). Schweizerische Mineralogische Petrographische Mitteilungen 77:351–360
- von Raumer J, Stampfli GM, Bussy F (2003) Gondwana derived microcontinents - the constituents of the Variscan and Alpine collisional orogens. Tectonophysics 365:7–22
- Rubatto D (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chem Geol 184(1):123–138
- Rubatto D, Gebauer D (2000) Use of cathodoluminescence for U-Pb zircon dating by ion microprobe: some examples from the Western Alps. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminescence in Geosciences. Springer, Berlin Heidelberg New York, pp 373– 400
- Rubatto D, Schaltegger U, Lombardo B, Colombo F, Compagnoni R (2001) Paleozoic magmatic and metamorphic evolution of the Argentera Massif (Western Alps) resolved with U-Pb dating. Schweizerische Mineralogische Petrographische Mitteilungen 81(2):213–228
- Rubatto D, Gebauer D, Compagnoni R (1999) Dating of eclogite-facies zircons: the age of Alpine metamorphism in the Sesia-Lanzo Zone (Western Alps). Earth and Planet Sci Lett 167:141–158
- Schaltegger U, Fanning CM, Günther D, Maurin JC, Schulmann K, Gebauer D (1999) Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism; conventional and in-situ U-Pb isotope, cathodoluminescence and microchemical evidence. Contrib Mineral Petrol 134:186–201
- Schaltegger U, Abrecht J, Corfu F (2003) The Ordovician orogeny in the Alpine basement: constraints from geochronology and geochemistry in the Aar Massif (Central Alps). Swiss Bull Mineral Petrol 83(2):183–239
- Song S, Zhang L, Niu Y, Su L, Jian P, Liu D (2005) Geochronology of diamond-bearing zircons from garnet peridotite in the North Qaidam UHPM belt, Northern Tibetan Plateau: A record of complex histories from oceanic lithosphere subduction to continental collision. Earth Planet Sci Lett 234:99– 118
- Stampfli GM, Borel GD (2002) A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet Sci Lett 196:17–33
- Stampfli GM, von Raumer J, Borel G (2002) The Palaeozoic evolution of pre-Variscan terranes: from Gondwana to the Variscan collision. In: Martinez Catalan JR, Hatcher RD, Arenas R, Diaz Garcia F (eds) Variscan-Appalachian dynamics: the building of late Palaeozoic basement, Geological Society of America, Special Paper 364:263–280
- Tiepolo M (2003) In situ Pb geochronology of zircon with laser ablation–inductively coupled plasma–sector field mass spectrometry. Chem Geol 192:1–19
- Tiepolo M, Tribuzio R, Vannucci R (2002) The composition of mantle-derived melts developed during the Alpine continental collision. Contrib Mineral Petrol 144:1–15
- Timmermann H, Stedra V, Gerdes A, Noble SR, Parrish RR, Dörr W (2004) The Problem of Dating High-pressure Metamorphism: a U-Pb Isotope and Geochemical Study on Eclogites and Related Rocks of the Mariànské Lazne Complex, Czech Republic. J Petrol 45(7):1311–1338

- Tribuzio R, Tiepolo M, Vannucci R, Bottazzi P (1999) Trace element distribution within olivine-bearing gabbros from the Northern Apennine ophiolites (Italy): evidence for postcumulus crystallisation in MOR-type gabbroic rocks. Contrib Mineral Petrol 134:123–133
- Tribuzio R, Thirlwall MF, Vannucci R (2004) Origin of the Gabbro–Peridotite Association from the Northern Apennine Ophiolites (Italy). J Petrol 45(6):1109–1124

Vanossi M, Cortesogno L, Galbiati B, Messiga b, Piccardo GB, Vannucci R (1984) Geologia delle Alpi Liguri: dati, problemi, ipotesi. Memorie società Geologica Italiana 28:5–75