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[1] Various magnetic parameters are in common use for estimating the grain size of
magnetic particles. Among these, the ratio of the intensity of anhysteretic remanent
magnetization (ARM) to that of isothermal remanent magnetization, as well as their
alternating field (AF) demagnetization curves are used as an indicator of the domain state of
the particles. Several models have been proposed to describe physically the acquisition of
ARM in a biased AF field. Jaep [1969] first developed a semiquantitative theory based
entirely on the thermal fluctuation analysis developed by Néel [1949, 1954, 1955].
Significant discrepancies were found between his model and experimental results on
magnetite. A new, general theory of ARM based on the work of Jaep is presented here, with
particular regard to the influence of various parameters like grain size, coercivity, and
mineralogy on ARM intensity. An analytical expression for ARM intensity in the special
case of very fine particles was derived from this theory, and a good agreement with
experimental results and data from the literature was found. A new estimation of the atomic
reorganization time was obtained from ARM measurements on a sample of the Yucca
Mountain Tuff, which has well-known mineralogy and grain-size distribution. The results
are in agreement with the value proposed by McNab et al. [1968] for magnetite. Some
authors considered magnetic interactions as the key to understand the ARM in fine particles,
and this is certainly true for strongly interacting samples. In this case, ARMwould be useless
for the characterization of magnetic grains. However, many sediments have a very low
concentration of well-distributed magnetic grains. For these samples, the explanation of an
ARM in terms of intrinsic properties of the grains, as qualitatively proposed by other
authors, is more suitable. INDEXTERMS: 1540Geomagnetism and Paleomagnetism: Rock andmineral

magnetism; 1512 Geomagnetism and Paleomagnetism: Environmental magnetism; KEYWORDS: thermal

fluctuations, ARM, single domain, coercivity, Lowrie-Fuller test
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1. Introduction

[2] In studies of environmental magnetism the variations
in grain size are conveniently described by magnetic param-
eters. Among these, it is common to use the ratio of
anhysteretic remanent magnetization (ARM) to bulk sus-
ceptibility or to isothermal remanent magnetization (IRM).
Interpretation of variations in these parameters is inhibited
by lack of fundamental theoretical understanding of how
they relate to grain size. The interpretation of many magnetic
profiles in sediments is largely empirical, based upon exper-
imental observations made on sized fractions of selected
magnetic minerals. A comparison between the demagnet-
ization characteristics of ARM and IRM was proposed as a
discriminant between single domain (SD) and multidomain
(MD) carriers of remanence [Johnson et al., 1975]. How-
ever, an adequate theory of ARM has not yet been devel-
oped. In this paper we address the theory of ARM in SD
particles.

[3] Several theoretical studies have been made of ARM in
fine particles, because of its importance in the recording
process on magnetic tapes [Wohlfarth, 1964; Jaep, 1969].
Assuming ARM as a proxy for TRM, Bailey and Dunlop
[1977] proposed its application in paleointensity determina-
tions as a nondestructive alternative.
[4] In a series of studies [Wohlfarth, 1964; Kneller,

1968] of ARM in SD particles the classical Stoner-Wolf-
arth theory [Stoner and Wohlfarth, 1948] was used. This
theory ignores the effect of thermal energy fluctuations on
the magnetic moment of the particles. It predicts an
infinite susceptibility of ARM for noninteracting SD
particles. However, experimental values are finite, and to
account for this, the effect of magnetic interactions
between the particles was introduced [Wohlfarth, 1964;
Dunlop and West, 1969]. Consequently, Kneller [1968]
proposed that ARM measurements could be used to study
the interaction fields. Eldridge [1961] showed that intui-
tive interaction models, which assume the mean interaction
field to be proportional to the magnetization [Néel, 1954],
fail to predict a finite susceptibility of ARM. In order to
explain the finite susceptibility of ARM in SD particles
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more complex interaction models, based on the Preisach-
Néel theory were developed [Wohlfarth, 1964; Dunlop and
West, 1969].
[5] These models do not take into account thermody-

namic effects. The theory of thermoremanent magnetiza-
tion (TRM) and its coercivity parameters in single-domain
particles depends strongly on the concept of a fluctuation
field, which was first introduced by Néel [1955] and later
utilized by Dunlop [1965] and Kneller and Wolfarth
[1966]. The fluctuation field is a key factor in explaining
the dependence of coercivity parameters on temperature,
particle volume and time. For example, it allowed Kneller
and Wolfarth [1966] to predict how ARM intensity varies
with the temperature of acquisition.
[6] The approach to the problem of thermodynamic

effects on the magnetization of SD particles is based on
the thermal fluctuation analysis of Néel [1949]. Several
later studies based on more general physical models of
thermally induced activation processes resulted in improved
versions of the Néel theory [Brown, 1959, 1963] but for
practical proposes lead to substantially the same results
[Brown, 1959].
[7] Jaep [1969] first proposed a semiquantitative model

for ARM in SD particles, based entirely on thermal
fluctuation analysis, which predicts a finite ARM suscept-
ibility even in the noninteracting case. According to this
model, thermodynamic fluctuation theory is not merely an
additional factor which affects ARM, it is the key mech-
anism in understanding the acquisition process. Later, Jaep
evaluated the effect of magnetic interactions in his ther-
modynamic model, focusing on materials used for mag-
netic tapes. In these materials interactions play a major
role because of the high volume concentration of magnetic
particles [Jaep, 1971].
[8] This paper presents a strictly quantitative theory of

ARM acquisition in SD particles. On the basis of Jaep’s
approach and on the thermal fluctuation analysis of Néel, it
demonstrates that the intensity of ARM is strongly con-
trolled by thermodynamic conditions. The theory is ex-
tended to alternating field (AF) demagnetization and
includes calculation of the fluctuation field. Finally, meas-
urements on natural samples are presented as an exper-

imental confirmation of the theory. The possible results of
the modified Lowrie-Fuller test [Johnson et al., 1975] for
noninteracting SD particles with different volume and
microcoercivity distributions are also discussed.

2. ARM Acquisition Without Thermal Activation

[9] In this paper the following notationswill be used for the
alternating (AC) and direct (DC) field components (Figure 1):

HDC DC field, superimposed on the AC field;
~H amplitude of the AC field;
~H0 maximum amplitude of the AC field;
fAC frequency of the AC field;
�~H decay rate of the AC field in field units per half

cycle.

Common values in real ARM experiments are HDC = 0.1–1
mT, ~H0 > = 10–300 mT, fAC = 50–400 Hz, �~H = 1..10 mT/
half cycle. In the following calculations we assume HDC >
�~H , which is generally valid in real ARM experiments.
[10] Consider the acquisition of ARM by a uniaxial SD

particle in an assemblage of noninteracting grains. We
model the behavior of this particle in a magnetic field H
with the Stoner-Wolfarth theory [Stoner and Wohlfarth,
1948]. Assume that its magnetization is homogeneous and
that it defines an angle q with the easy axis, which in
turn defines an angle j with the applied field H, as in
Figure 2.
[11] Let m = MsV be the magnetic moment of the particle

with volume V and saturation magnetization Ms, and let HK

be its microcoercivity. The free energy E of this particle in a
field H is given by

E=E0 ¼ sin2 q� 2h cos j� qð Þ ð1Þ

with E0 = m0mHK/2 and h = H/HK. Let e = E/E0 be the
reduced free energy. At equilibrium, q defines a local
minimum in e, according to the conditions @e/@q = 0 and
@2e/@q2 < 0 for the orientation of m. Note that in the
Stoner-Wolfarth model expressed in equation (1), the
thermal energy kT is neglected. The magnetic moment

Figure 1. The applied field during an ARM cycle. Notations are explained in the text.

EPM 2 - 2 EGLI AND LOWRIE: ARM OF FINE MAGNETIC PARTICLES



component mk parallel to the applied field gives a
hysteresis loop. The absolute value of the field Hsw at
whichmk is discontinuous and changes sign will be called the
switching field. The shape of the hysteresis loop and the value
ofHsw depend onj. Some examples are given byDunlop and
Özdemir [1997].
[12] At H = Hsw the local minima of equation (1)

disappears, and @2e/@q2 = 0, with following solution:

hsw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2 þ t4

p

1þ t2
; t ¼ tan1=3j;

tan qsw ¼
ffiffiffi
3

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4h2sw � 1

p
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2sw

p ð2Þ

where hsw = Hsw/HK and qsw is the value of q at which
switching occurs [Stoner and Wohlfarth, 1948]. In general,
0.5 < hsw< 1.
[13] We consider now the behavior of such a SD

particle with switching field Hsw during an ARM repre-
sented in Figure 3a. The arrows represent the direction of
mk, parallel (upward arrow) or antiparallel (downward
arrow) to the applied DC field. If Hsw < ~H0, mk is always
parallel to the applied DC field at the end of the ARM
acquisition, independently of the initial state of the par-
ticle. Extending the model to all particles with different
switching fields, we conclude that all particles with Hsw �
~H0 are reoriented with a positive mk during the ARM.
[14] According to this model, the ARM acquired by all

the particles is identical to an IRM given in a DC field
equal to ~H0. However, it is well known experimentally
that ARM intensities are always a fraction of the IRM,
even for an assembly of SD noninteracting particles.
Moreover, according to this model the ARM intensity is
independent of HDC, and gives an infinite ARM suscept-
ibility, in contradiction of experimental observations.

3. ARM Acquisition With Thermal Activation

[15] We extend now the model of section 1 in order to
take into account the thermal energy kT of the particles,
and develop the kinetic equations for SD particles in a
biased AC field.

3.1. Previous Studies

[16] Néel [1949] developed the kinetic equations for an
array of aligned noninteracting particles, in order to model
thermoremanent magnetization. Jaep [1969] applied the
work of Néel to anhysteretic magnetization processes.

Figure 3. Magnetic moment of a particle during an ARM cycle (a) according to the Stoner-Wolfarth
model and (b) according to a thermodynamic model. Arrows represent the direction of the magnetic
moment parallel (upward arrow) or antiparallel (downward) to the DC field. In Figure 3a the moment is
frozen-in once the amplitude of the AC field becomes smaller than the switching field. In Figure 3b,
thermodynamically activated switching events occur when the AC field is smaller than the switching field.

Figure 2. The magnetization of a SD particle in the
Stoner-Wolfarth model. The dashed line indicates the easy
axis of the particle.
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Later he introduced the effect of magnetic interactions
through the thermodynamic formalism and obtained the
following expression for the acquisition of ARM by
aligned interacting particles:

M

Mrs

¼ tanh
m0m
kT

b HDC � lM=Mrsð Þ
h i

b ¼ Msð ÞB
Ms

T

TB

� �1=2

� 1

ð3Þ

where Ms is the saturation magnetization, Mrs is the
saturation of remanence, T is the absolute temperature and
(Ms)B is the saturation magnetization at the blocking
temperature TB of the particles. The parameter l is a
measure of the average interaction field. Equation (3)
predicts a finite susceptibility of ARM even in the
noninteracting case, but is independent of the characteristics
of the AC field (i.e., its frequency fAC and its decay rate per
half cycle �~H).
[17] Most studies of thermal activation in SD particles

assumed an alignment between applied field and easy axis
of the particles, to reduce the mathematical complexity of
the models used. However, in a set of randomly oriented
particles, only a negligible part of them satisfy this con-
dition. Victora [1989] pointed out that the energy barrier for
randomly oriented particles exhibits a 3/2 power depend-
ence on the applied field, in contrast to the quadratic
dependence for aligned particles. This may introduce sig-
nificant differences in modeling relaxation processes.
[18] Walton [1990] introduced a new approach to the

problem, trying to partially solve the kinetic equations for
noninteracting SD particles in an AC field. He also
extended his calculations to the more general case of a
particle whose easy axis defines an angle j with the applied
field, and obtained the following expression for the suscept-
ibility of ARM:

cARM jð Þ ¼ m0
2r

3m0q jð ÞHK

m0mHK

2kT

� �1=r

ð4Þ
ln1�1=r F0

2pfAC

2kT

m0mHK

� �3=2
" #

where 1 � q � 2 and 1.5 � r � 2 are functions of j, and F0

	 109 Hz is the frequency of the thermal activations.
Because of the presence of r as exponent in equation (4), it
is impossible to generalize this expression for the case of an
assembly of randomly oriented particles. However, equation
(4) with r = 1.5 (and j = p/4) is very similar to the result of
this paper, given by (32) for randomly oriented particles.
Equation (4) shows a weak dependence on fAC but curiously
no dependence on �~H . This may be a consequence of some
approximations adopted to simplify the calculations.
[19] The results mentioned above are all based on some

simplifications which reduce their general validity. For this
reason, we here apply the thermal relaxation theory to the
most general case of a set of noninteracting randomly
oriented particles and solve directly the resulting kinetic
equations. A similar result to equation (4) is obtained for
the anhysteretic magnetization. However, a well-defined
dependence on the moment m, the temperature T, and the
microcoercivity HK is found. In addition, our result shows

a weak dependence on both frequency and ramp rate of
the AC field used for the ARM.

3.2. Derivation of the Field-Antiparallel Switching
Frequency

[20] We consider again the moment of a particle in the
ARM field, as represented in Figure 3. At a given point,
when the AC peak field becomes smaller than Hsw, the
particle moment is ‘‘frozen’’ in a stable position (a local
minimum of e). For several cycles, the applied field reaches
values very near to Hsw. The energy barrier represented by
the difference between the local maximum and minimum is
reduced to small values, of the same order of magnitude as
the thermal energy.
[21] According to Figure 1, we define

H tð Þ ¼ HDC þ �H tð Þ cos 2pfACtð Þ
�H tð Þ ¼ Hsw � �H tð Þ cos 2pfACtð Þj j
��H tð Þ ¼ Hsw � �H tð Þj j

ð5Þ

H(t) is the total applied field at instant t during the ARM
acquisition. It is the sum of the constant bias field HDC and
the amplitude of the alternating field at time t. The energy
barrier �E to overcome a local minimum in E is a function
of �H, namely, �E = �E(�H); in particular, �E = 0 when
�H = 0. In this situation, if �H is small enough, thermally
activated switching of m is possible. The frequency of
switching is given according to the Gibb’s principle of
statistical thermodynamics by

f ¼ f0 exp �E �Hð Þ=kT½ � ð6Þ

in which t0 = 1/f0 	 10�9 s is the atomic reorganization time
(time interval between two thermal excitations), f0 = f0(T, m,
HK, H, j) is a function of the temperature T, the particle
magnetic moment m, the microcoercivity HK, and the
applied field H and its orientation j with respect to the easy
axis. The frequency f0 results from the solution of physical
equations which describe thermal activation processes in
terms of Brownian motion of the particle moment [Brown,
1963]. For j = 0 and m0mHK  kT, Brown [1963] gives the
following approximate solution when the initial magnetiza-
tion is antiparallel to the applied field:

f0 	
m0g0
2

HK

ffiffiffiffi
a
p

r
1þ hð Þ 1� hð Þ2 1þ 1þ h

1� h
e�4ah

� �
ð7Þ

in which g0 is the gyromagnetic ratio, a = m0mHK/2kT the
reduced energy barrier and h = H/HK the reduced field.
Aharoni [1964] calculated f0 numerically for j = 0 and
different values of a and h, showing that the relative error
of equation (7) is within 30% when a > 5 and h < 0.5. For
a > 5 and h > 0.7 the relative error of equation (7) can
reach one order of magnitude. Néel [1949] gives a similar
expression for f0, based on piezomagnetic induced
activation.
[22] In our case, with H = HK � �H, we obtain from

equation (7) for �H � HK and a > 20 (SD particles):

f0 	 m0g0HK

ffiffiffiffi
a
p

r
�H

HK

� �2

ð8Þ

EPM 2 - 4 EGLI AND LOWRIE: ARM OF FINE MAGNETIC PARTICLES



This approximation is not accurate for �H ! 0 and is
strictly valid only in the special case of j = 0. Since an
accurate and general solution for f0 is not reported in the
literature, we assume

f0 ¼ F0 T ;m;HKð Þ�hq ð9Þ

where�h =�H/HK and q is an exponent which depends on
the model chosen to explain thermal activation. For q = 0
one has the intuitive model in which F0 = 1/t0 = const.
Equation (8) is a particular case of equation (9) with q = 2
when the initial magnetization is antiparallel to the applied
field. For the same configuration and �h � 1, Néel [1949]
gives q = 3/2. Brown [1959] demonstrated that different
theories with q ranging from 1 to 2 lead substantially to the
same results, because the dependence of the activation
frequency on the exponential term of equation (6)
dominates over the dependence of f0 on the applied field.
We will show later in this section that the calculated ARM is
almost independent from the value chosen for q, so that a
precise estimation of f0 is not necessary.
[23] Now, in contrast to section 1, both orientations of the

particle moment, parallel (upward arrow) and antiparallel
(downward arrow) to hDC, are possible, even if |H| < Hsw.
This can be considered as a reduction of the effective
switching field of the particle by a ‘‘fluctuation field’’,
according to Néel [1955]. We consider a large number N
of identical particles with the same orientation of their easy
axis and the same HK. Let mk be the component of the
magnetic moment parallel to the applied field. We assume
that mk of a proportion p of these particles (0 � p � 1) is
positive (upward arrow), and the remainder (1 � p) is
negative (downward arrow). Switching events occur with
high probability at minima of the applied field for the
positively magnetized part p and at maxima of the applied
field for the other part, according to Figure 3b.
[24] The switching frequency f± in the two cases is given

according to equations (6) and (9) and hDC = HDC/HK by

f� ¼ F0 �h� hDCð Þq exp ��E �h� hDCð Þ
kT

� �
ð10Þ

3.3. Estimation of the Energy Barriers

[25] Let qsw be the value of q at which a switching of the
moment occurs in the Stoner-Wolfarth model. Except when
j = 0 and j = p/2, qsw represents a horizontal flex point on
the plot of e(q) (Figure 4a). Since the amount of particles
whose easy axis define an angle j with the applied field is
proportional to sin j, and their contribution to the remanent
magnetization parallel to the applied field is proportional to
sin j cos j, the special cases j = 0 and j = p/2 do not
contribute to the ARM and can be ignored. Victora [1989]
estimated the energy barrier �E to overcome for a moment
switching when the applied field is slightly smaller than Hsw

by setting @E/@q = @2E/@q2 = 0 and j 6¼ 0, p/2:

�E ¼ eswm0mHK�h3=2 ð11Þ

with esw ¼ 2=3ð Þ3=2sin 2qsw=h3=2sw . This expression is sub-
stantially different from the result obtained by Néel [1949]
for aligned particles: �E = m0mHK�h2/2. In Figure 5 the
approximate solution for �E given in equation (11) for a
small energy barrier is compared to the numerical result
obtained directly from equation (1). A very good agreement
is found also with higher energy barriers.

3.4. Changes of the Particle Moment With Time in a
Biased Alternating Field

[26] Equation (10) can now be rewritten as

f� ¼ F0�hq 1� hDC

�h

� �q

exp �a�h3=2 1� hDC

�h

� �3=2
" #

ð12Þ

with a = eswm0mHK/kT. The switching frequency f± is
modulated in time by the frequency of the AC field. This
allows us to define the mean switching frequency �f ±. For
simplicity, we consider first

f ¼ F0�hq exp �a�h3=2

 �

ð13Þ

The switching frequency f± can be obtained from equation
(13) by substitution of �h with �h ± hDC. The modulation

Figure 4. Free energy of a SD particle as a function of the angle q of the magnetic moment with respect
to the easy axis (a) when a field equal to the switching field is applied and (b) when a field slightly
smaller than the switching field is applied. �E is the energy barrier to overcome for a switching event.
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in time of f = f (t) according to equation (13) is represented
in Figure 6b over one period. The corresponding mean
frequency �f is given by

�f tð Þ ¼ 2fAC

Ztþ1=2fAC

t

f tð Þdt ð14Þ

Equation (14) cannt be evaluated analytically, except for
the limit cases of ��h ! 0 and ��h ! hsw. Since ��h
changes with time, the two limits are reached at the

beginning and at the end of the acquisition process,
respectively. The magnetic moment of a particle blocks
when ��h grows from 0 to hsw. Superparamagnetic
particles are thermally activated even without the help of
an external field: they remain unblocked at the end of the
acquisition process, when ��h = hsw, and their magnetiza-
tion is unstable. In this case the mean switching frequency
is given by (13) when �h is replaced by ��h:

�f tð Þ 	 F0��h
q
exp �a��h

3=2
h i

ð15Þ

The moment of larger particles blocks earlier, when ��h <
hsw. The limit case of��h� hsw is a good approximation for
large, stable SD particles. In this case, since f decreases
rapidly with increasing values of�h, as shown in Figure 6a,
�h(t) can be conveniently approximated by a parabola:

�h tð Þ 	 ��hþ 1

2
hsw ���h
 �

2pfACtð Þ2 ð16Þ

and equation (13) becomes

f tð Þ ¼ F0��h
q
1þ bt2
 �q

exp �a 1þ bt2
 �3=2h i

a ¼ a��h
3=2

b ¼ hsw ���h

2��h
2pfACð Þ2

ð17Þ

The magnetic moment of a particle blocks when ��h
reaches a value ��h0 given later in this section by equation
(25). In general, a  1 when ��h is of the same order of
magnitude as ��h0: a 	 14 with m0HK = 60 mT and m = 5
� 10�17 A m2. For SD magnetite grains that switch by
coherent rotation, m0HK < 300 mT and m < 10�16 A m2

[Newell and Merrill, 1999], and consequently, using
equation (25), a > 8. For reasons explained later, the

Figure 5. Energy barrier of a SD particle which has to be
overcome for a switching event, when a field Hsw � �H is
applied. The solid line represents the exact solution. The
analytical approximation given in the text is represented by
the dashed line, computed for the symmetrical points j =
p/6 and j = p/3 in Figure 3b.

Figure 6. (a) The instantaneous net switching frequency (solid line) over a complete ARM cycle for a
magnetite SD particle and the mean net switching frequency, averaged over one period of the AF field.
The switching frequency was calculated with following data: T = 300 K, m = 4 � 10�17 A m2, m0HK = 60
mT, and m0HDC = 100 mT. The number of periods over the ARM cycle has been reduced for clarity: an
ARM cycle contains typically several hundreds of periods. (b) Calculation of the mean switching
frequency (dashed line) over one period. The area under the curve represents the number of switching
events over one period, which is identical to that defined by the instantaneous switching frequency (solid
line). The scale on the frequency axis is linear.
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estimation of f± is important only for values of ��h around
��h0, and a  1 can be assumed in equation (17). Then
equation (14) has the approximate analytical solution:

�f tð Þ 	 F��h
q�1=4

exp �a��h
3=2

h i
ð18Þ

valid for the limit case of ��h � hsw, whereby F =
F0(3phswa)

�1/2. Equations (15) and (18) differ only in the
preexponential factor, which has little influence on the
final result. Since the measured ARM magnetization is
carried mainly by stable particles, equation (18) is adopted
as a general solution of (14). From equations (12) and (18)
we have then the mean switching frequency:

�f � tð Þ ¼ F ��h� hDC
 �q�1=4

exp �a ��h� hDC
 �3=2h i

ð19Þ

We assume hDC � ��h for the DC fields normally used in
ARM experiments, and in the critical time interval during
which the magnetic moment blocks, that is, when ��h 	
��h0. For example, m0Hk��h > 1 mT for particles with
m0HK > 2 mT and m < 10�16 A m2 (practically all SD
magnetites that switch by coherent rotation). When ��h 	
��h0, then ��h  a�2/3 and equation (19) simplifies to

�f � tð Þ ¼ F��h
q�1=4

exp �a��h
3=2

h i
exp � 3

2
a��h

1=2
hDC

� �
ð20Þ

Defining Ms = Nm as the saturation magnetization, the net
magnetization Mk parallel to the applied field is given by
Mk = (2p � 1)Ms cos j and the net change in time by

dMk

dt
¼ 2Ms 1� pð Þf� � pfþ½ �cos j ð21Þ

Normalizing the magnetization with m = Mk/Ms cos j and
substituting equation (20) in equation (21) gives the
following differential equation in m(��h):

dm
d��h

¼ �a m� m1ð Þ

a ¼ F

fAC�~h
��h

q�1=4
cosh 3��h

1=2ahDC=2
h i

exp 3��h
3=2a=2

h i

m1 ¼ tanh
3

2
a��h

1=2
hDC

� �
ð22Þ

which does not have an analytical solution. The coeffi-
cients of equation (22) depend on time through ��h(t) =
2fAC�~Ht. To find an approximate solution of equation
(22), we solve first the stationary case, in which ��h is
constant. Thus, we put ��h = ��h0 on the right side of
equation (22) and obtain with the initial condition m = 0 at
t = 0 the solution:

m ��h;��h0
 �

¼ m1 1� exp �a ��h0
 �

��h
 �� �

ð23Þ

[27] Thermodynamic equilibrium is given by the value
m1(��h0) of m as t ! 1, and is reached after a character-

istic time which corresponds to ��heq = 1/a. If the time-
dependent coefficient a in equation (22) does not change
significantly over the characteristic time which corresponds
to ��heq, that is, when ��h0  ��heq, the asymptotic
solution m = m1(��h0) in equation (23) is a good approx-
imation of the general solution, and the magnetization is in
thermodynamical equilibrium with the applied field. As
time proceeds, ��h0 increases and the coefficient becomes
progressively smaller. As a consequence, also the change in
magnetization with time becomes smaller, until a final
value of m is reached. Because of the exponential depend-
ence of a on time, the blocking process is sharp, and we
can assume the final magnetization to represent the ther-
modynamic equilibrium m1 reached just before it becomes
frozen in. We assume that this occurs when ��h0 = g��heq,
where g is an unknown constant in the order of 1. This
leads to the following transcendental equation in ��h0:

��h0 ¼
g fAC�~h

F
��h

1=4�q

0

exp a��h
3=2
0

h i
cos h 3a��h

1=2
0 hDC=2

h i ð24Þ

With a  1 and assuming q = 3/4, for reasons explained
later, equation (24) has the approximate solution:

��h0 	 a�2=3 ln2=3
5:7F0

gfAC�~h h
1=2
sw a3=2

" #
ð25Þ

Inserting this result in equation (23) gives the final
magnetization m1 as t ! 1:

m1 	 tan h
3

2
a2=3 ln1=3

5:7F0

g fAC�~hh
1=2
sw a3=2

 !
hDC

" #
ð26Þ

To estimate a numerical value of g, we linearize equation
(23) for hDC ! 0 and obtain

dm
d��h

¼ � F

fAC�~h
��h

q�1=4
exp � 3

2
a��h

3=2
� �

m� 3

2
a��h

1=2
hDC

� �
ð27Þ

Equation (27) can be scaled as follows:

y0 ¼ �kt2qþ1=2 y� 3

2
t

� �
exp �t3
 �

k ¼ 2F0ffiffiffiffiffiffiffiffiffiffiffiffi
3phsw

p
fAC�~ha1þ2q=3

ð28Þ

where t ¼ a1=3
ffiffiffiffiffiffiffi
��h

p
is the scaled time, y = a�2/3hDC

�1m is
the scaled magnetization and k a parameter of the equation.
Equation (28) is not analytically solvable and has
nonconstant coefficients. Numerical solutions of equation
(28) for different values of k, ranging from 100 to 1014, and
for q = 0, 1, 3/2, 2 were computed with the software
Mathematica, starting from the initial condition y(t = 0) = 0,
until saturation was reached, at t 	 5. Results for q = 0 are
plotted in Figure 7a. For high values of k the sharp
transition from thermodynamic equilibrium to a ‘‘frozen’’
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situation is evident. The asymptotic value for t ! 1 from
the numerical solutions, which represents the final ARM
acquisition, is plotted in Figure 7b. The ln1/3 term in
equation (26) is confirmed by the numerical solutions. A
linear interpolation of the solutions of Figure 7b gives

y3 t ! 1ð Þ ffi c1 þ c2 ln k c1 ¼ �4:918þ 4:196q;

c2 ¼ 3:275þ 0:135q ð29Þ

for 0 � q � 2. Table 1 gives the numerical solutions of
y(t ! 1) for typical SD magnetite with m = 4 � 10�17

A m2, m0HK = 60 mT, T = 300 K, fAC = 400 Hz, and
m0�~H = 5 mT and different thermal activation models.
Models with different values of q, representing signifi-
cantly different activation models, result in very similar
solutions for y(t ! 1) ranging from 3.1 to 3.9.

3.5. Solution for ARM From the Kinetic Equation

[28] Next we adopt the solution given by q = 3/4 because
of its algebraic simplicity. For hDC ! 0 we then obtain from
equation (29) the approximate solution:

m1 ¼ 3

2
a2=3ln1=3

1:18F0

fAC�~h h
1=2
sw a3=2

" #
hDC ð30Þ

The solutions given in equations (26) and (30) are almost
identical for hDC ! 0. We recall that these solutions are
valid for a given direction j of the easy axis with respect

to the applied field. For an isotropic assembly of particles
the distribution density of their easy axis is given by sin j.
The contribution of all orientations to the bulk magnetiza-
tion parallel to the applied field is then given by

M ¼ 0:5Ms

Zp=2
0

m1 jð Þ sin 2j dj ð31Þ

which finally gives together with equation (30): M =
cARMHDC, with a finite susceptibility of ARM:

cARM ¼ 1:797m0Mrs

m

kT
ffiffiffiffiffiffiffiffiffiffiffi
m0HK

p
� �2=3

ln1=3

� 0:35F0

fAC�~H
ffiffiffiffiffiffiffiffiffiffiffi
m0HK

p
kT

m

� �3=2
" #

ð32Þ

and Mrs = 0.5Ms. Equation (32) is formally equivalent to a
special case of equation (30) with hsw = 0.528, which
corresponds to j = 61�. It is also very similar to equation
(4) with j = p/4. According to the result of section 1,
where thermodynamic activation was ignored, cARM ! 1
for T ! 0.
[29] Considering equation (30) as a limit case of equation

(26), we obtain the final expression for the ARM acquisition
curve:

M HDCð Þ ¼ Mrs tanh cARMHDC=Mrsð Þ ð33Þ

Figure 7. (a) Solutions of the differential equation (29) for different values of the parameter k. The
parameter t is an expression for the time during an ARM cycle, and y(t) an expression of the
magnetization acquired by a SD particle. The flat part of the curves represents the final magnetization
acquired, and is a function of k. (b) The final value of the magnetization as a function of the parameter k
for different switching models expressed by the parameter q. The solutions show only a weak dependence
on the switching model.

Table 1. Comparison of the Numerical Solutions of Different Activation Models

Activation Model q F0, GHz Estimation Source y(t ! 1)

Intuitive model 0 1–10 Butler and Banerjee [1975] 3.7–3.9
Gyrom. precession 1 1–10 Brown [1959] 3.3–3.5
Magnetostriction 1.5 10,000 Néel [1955] 3.9
Brownian motion 2 20–200 Brown [1959] 3.1–3.4
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Equation (32) is extremely weakly dependent on the
parameters of the AC field: a change of a factor 10 in
frequency or decay rate produces a change of only 4% in
cARM of typical SD magnetite.
[30] The results of this section were obtained assuming

uniform rotation of the magnetization during the switching
of the particle moment. However, several studies [e.g.,
Aharoni and Shtrikman, 1958] have shown that the mag-
netization of large SD grains during a moment switching is
nonuniform, and exhibits a so-called curling or vortex
configuration. This configuration lowers the energy barrier
necessary to switch the moment and consequently the
coercivity of the particle. Results of micromagnetic calcu-
lations of the energy barrier in magnetite cubes by Enkin
and Williams [1994] are reproduced in Figure 12 in
section 5 and show a drop of the energy barrier for sizes
larger than 60 nm. As result, the energy barrier calculated
in equation (11) may be considered as an upper limit,
especially for grain sizes near the SD/PSD boundary.
Other expressions for the field dependence of the energy
barrier do not affect the form of the differential equation
(22), which leads to the same kind of solution as in
equation (32). A lower energy barrier increases the relative
importance of the thermal energy and is therefore equiv-
alent to an apparent increase of temperature. This produces
a decrease of the suceptibility of ARM, so that equations
(32) and (33) have to be considered as an upper limit for
the ARM acquisition of SD particles.
[31] Equation (32) predicts an increase of the suscepti-

biltiy of ARM with grain size in the SD range. For SD
magnetite, according to the coherent rotation model, HK is
independent of the grain size, and thus, the susceptibility of
ARM is proportional to d2, where d is the diameter of the
particles. The dependence of ARM on the grain size for
particles smaller than 60 nm will be verified experimentally
in sections 5 and 6.

4. Fluctuation Field

4.1. Previous Studies

[32] The field which is necessary to reverse the magnetic
moment of a SD particle by overcoming the energy barrier
due to anisotropy was called switching field Hsw in section
2. Thermal activation is responsible for the moment switch-
ing even when the applied field is smaller than Hsw. It has
the effect of reducing Hsw by an amount Hq, which Néel
[1949] called a ‘‘fluctuation field’’. The fluctuation field
depends on the moment of the particle and the time needed
to switch its direction. In the literature a distinction is made
between Hsw, often called the ‘‘microscopic coercive force
Hc’’, and the field at which a moment-reversal occurs under
specified conditions of time and temperature. The latter is
called the ‘‘unblocking field HB’’ and is the difference
between Hc and Hq; that is, HB = Hc = Hq [Dunlop and
West, 1969]. Simple calculations based on the application of
thermal activation theory to a set of oriented particles give
the following commonly quoted expression for Hq [Dunlop
and West, 1969]:

Hq ¼ HK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kTHq

m0mHK

ln
F0t
2

H2
q

H2
K

� �s
ð34Þ

where t is the time necessary to switch the magnetic
moment. In case of AF demagnetization, t 	 1/fAC [Kneller
and Wolfarth, 1966].

4.2. Fluctuation Field of Identical, Aligned Particles

[33] In this paragraph we define the fluctuation field on
the base of AF demagnetization curves as the difference
between the real median destructive field and the theoretical
value obtained by ignoring thermal activation effects. AF
demagnetization can be conveniently described in a similar
way as in section 3 by considering it to be a special case of
ARM with HDC = 0. An expression is obtained for the
fluctuation field of randomly oriented particles, which
shows important differences in comparison to equation (34).
[34] Again we consider the behavior of noninteracting

SD particles in the magnetic field of Figure 1, but now
HDC = 0. The particles are identical and have a given
orientation j of their easy axes with respect to the applied
field. If thermodynamic effects are neglected, the initial
magnetization M0 remains unaffected if the initial amplitude
~H0 of the alternating field is less than the switching field
Hsw = hsw(j)HK. For ~H0 � Hsw, the sample is fully
demagnetized, leading to a final magnetization M = 0.
[35] Thermal activation is responsible for the switching

of the particle moments even when ~H0 < HSW. The problem
of thermal activation in a decaying AC field was analyzed in
section 3, leading to the differential equation (22). The
special case hDC = 0 of equation (22):

dm
d��h

¼ �F

fAC�~h
��h
 �q�1=4

exp �a��h
3=2

h i
m ð35Þ

describes the time evolution of the normalized magnetiza-
tion m during the demagnetization. We assume an initial
magnetization m = 1, when ��h(t = 0) = ��h0. Integration of
equation (35) gives

ln m ��h
 �

¼ �F

fAC�~h

Z��h

��h0

uq�1=4exp �au3=2

 �

du ð36Þ

Equation (36) has an analytical solution in the special case
of q=3/4. Since equation (22) is almost independent of q, as
demonstrated in section 3, we choose q = 3/4 as an excellent
approximation for the general case and obtain

m ��h0;��h
 �

¼ exp
2F

3fAC�~ha
exp �a��h

3=2

 �

� exp �a��h
3=2
0


 �
 �� �
ð37Þ

The end of the demagnetization process can be identified
with ��h ! 1, leading to the final magnetization expressed
by

m1 ��h0
 �

¼ exp � 2F

3fAC�~ha
exp �a��h

3=2
0


 �� �
ð38Þ

The final magnetization m1 as a function of the initial
value �h0 of �h is plotted in Figure 8 for different values
of HK and m and is characterized by a sharp transition
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from m1 ! 0 for small values of ��h0 to m1 ! 1 for large
values of ��h0. We define the fluctuation field Hq as the
value of ��h0 for which the magnetization is reduced to
half its initial value. Since the transition is sharp, the
choice of the fraction of initial magnetization is not
relevant. From equation (38) we then obtain the equation
m1(Hq) = 0.5, with solution

Hq ¼
kT

m0 fswm

� �2=3

ln2=3
2F0

3ln2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3pm0hswHK

p
fAC�~H

kT

fswm

� �3=2
" #

ð39Þ

4.3. Fluctuation Field of Identical, Randomly
Oriented Particles

[36] We generalize now to the case of a sample with
identical randomly oriented particles. Let m(j) cos j sin j
be the contribution of all particles with orientation j to the
total magnetization. In case of an IRM, m(j) = 1. In case of
an ARM, m(j) is given by equation (30) when hDC ! 0.
The total magnetization m1

tot(��h0) after the AF demagnet-
ization is given by

mtot1 ��h0
 �

¼
Zp=2
0

m jð Þexp �k exp �a��h
3=2
0


 �h i
sin 2j dj ð40Þ

Equation (40) cannot be evaluated analytically. Numerical
solutions for SD grains with different moments and HK = 60
mT, fAC = 400 Hz,�~H = 5 mT are represented in Figure 9 as
a function of the maximun AC peak field ~H .
[37] Defining again Hq as the solution of the equation

m1
tot(Hq) = 0.5, one has the numerical results of Table 2,

given for different values of the particle moment with
HK = 60 mT and the same parameters as Figure 9. The

value of j in equation (39) which gives the calculated Hq in
(40) is also given in Table 2: it has a mean of j = 62� and
differs by no more than 1� when the particle moment varies
by over 3 orders of magnitude. We assume therefore equa-
tion (39) with j = 62� as an exellent approximation of the

Figure 8. Normalized magnetization of an oriented assemblage of noninteracting SD particles with
microcoercivity HK, after AF demagnetization with an initial peak field equal to Hsw � �H0, Hsw being
the switching field. (a) The dependence of Hq on the particle moment and (b) the dependence on the
microcoercivity. The value of �H0, at which m = 0.5, is defined as the fluctuating field Hq of
the particles. For large moments the fluctuation field is very small and the particles behave according to
the Stoner-Wolfarth theory. The magnetization is calculated with equation (38) with following
parameters: T = 300 K, fAC = 400 Hz, m0�~H = 5 mT, j = p/3, and (a) m0HK = 60 mT with m � 10�18, 5
� 10�17, 5 � 10�16, 5 � 10�15 A m2 from left to right, (b) m = 5 � 10�17 A m2 with m0HK = 100, 50,
20, 10 mT from left to right.

Figure 9. Normalized AF demagnetization curves of
randomly oriented, non-interacting magnetite SD particles
with m0HK = 60 mT and different magnetic moments, from
left to right: 2.0 � 10�18, 2.4 � 10�18, 3.0 � 10�18, 4.0 �
10�18, 6.0 � 10�18, 1.0 � 10�17, 2.0 � 10�17, 1.0 � 10�16

A m2. The last curve on the right is the AF demagnetization
without thermal activation, according to the classic Stoner-
Wolfarth model. Other parameters are T = 300 K, fAC = 400
Hz, and m0� = 5 mT. The difference between the median
destructive field of the curves with and without thermal
activation can be identified with the fluctuation field of the
particles. According to the Néel relaxation theory a moment
of 2.4 � 10�18 A m2 has a relaxation time of 10 s.
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fluctuation field of an assembly of random oriented SD
particles and get finally

Hq ¼ 0:801
kT

ffiffiffiffiffiffiffi
HK

p

m0m

� �2=3

ln2=3
F0

3:8fAC�~H
ffiffiffiffiffiffiffiffiffiffiffi
m0HK

p
kT

m

� �3=2
" #

ð41Þ

Equations (34) and (41) have the same qualitative depen-
dence on T, HK, and m but give quite different results. We
choose as example SD particles with HK = 60 mT and
following parameters: T = 300 K,�~H = 5 mT, fAC = 400 Hz.
Results for Hq from equations (34) and (41) as a function of
the particles moment are shown in Figure 10. Equation (34)
gives systematically higher values for Hq, especially near the
SD/PSD limit, where the difference inHq can reach up to one
order of magnitude. There are two reasons for this
difference. First, equation (41) is the direct solution of the
kinetic equations of a SD particle in an alternating field.
Second, equation (34) is strictly valid only in the very special
case of particles with their easy axes oriented parallel to the
field, whereby these particles do not contribute significantly
to the total magnetization of an isotropic sample.
[38] For classic Stoner-Wolfarth particles, the median

destructive field of a demagnetization curve is given by
H1/2 = 0.524HK. If the mean switching field Hsw of a set
of identical particles is identified with H1/2, in case of
thermal fluctuations one has Hsw = 0.524HK � Hq. The
shape of a demagnetization curve for a set particles with
different microcoercivities is then given by the distribution
of the values of Hsw.

5. Range of Anhysteretic SD Behavior of Fine
Particles

[39] The stability range of SD particles of magnetite and
other minerals has been investigated in several theoretical
and experimental studies [Dunlop and West, 1969; Butler
and Banerjee, 1975; Diaz Ricci and Kirschvink, 1992;
Newell and Merrill, 1999]. Often, single critical sizes are
assumed to define the size range of SD particles. In reality,
the critical sizes depend on the magnetic property under
consideration. For example, grains can have a SD satu-
ration remanent state and then develop domain walls in
reverse fields [Halgedahl and Fuller, 1980].
[40] In the following, we consider the stability range of

SD particles with shape-controlled anisotropy from the point
of view of anhysteretic processes, i.e., ARM and AF
demagnetization. We equate the stability range with the
validity range of the equations derived in section 3 for the
ARM. As already pointed out, the calculations of this paper
assume a uniform rotation as reversal mechanism for the

particle moment. Newell and Merrill [1999] used nucleation
theory to calculate the upper limit volume of ellipsoidal
magnetite particles which reverse by uniform rotation in a
magnetic field parallel to their easy axis. As discussed in
section 3, only a negligible part of all particles in an isotropic
sample satisfy this condition. However, the application of
nucleation theory in the general case is complex and still
unsolved. We assume therefore the results of Newell and
Merrill [1999] as an initial approximation. Their upper limit
for uniform rotation is almost independent of the shape of the
ellipsoid and varies between 50 and 70 nm in size. For larger
volumes, the particles can still exhibit a SD remanence, but
they reverse in the curling mode and this leads to smaller
values of the susceptibility of ARM. For comparison, Butler
and Banerjee [1975] give grain sizes between 100 nm and 1
mm as the upper limit of SD magnetite prisms.
[41] On the other hand, a reduction of the volume

increases the fluctuation field, and lowers therefore all
coercivity parameters (Hc, Hcr, and ~H1/2). In the extreme
case when a coercivity parameter is reduced to zero, the
particle can be considered to be effectively superparamag-
netic (SP). To define the SP/SD boundary we choose the
volume at which ~H1/2 = 0. The results, plotted in Figure 11a,
are slightly smaller in comparison to those of Butler and
Banerjee [1975] for a time constant of 100 s.

Figure 10. Comparison between the fluctuation field
predicted by Néel theory and by the present theory for
randomly oriented SD particles with m0HK = 60 mT, as a
function of the particle moment. The horizontal dashed line
represents ~H1/2 according to the Stoner-Wolfarth model, the
vertical dashed line represents particles with a time constant
t = 7.5 s, which is the time required by the AF field to
decrease from ~H1/2 to zero. A fluctuation field larger than
~H1/2 represents an impossible solution.

Table 2. Numerical Calculation of the Fluctuating Field for Different Particle Moments

Magnetic Moment,
A m2

Demagnetization of IRM Demagnetization of ARM Equation (34)Hq,
mTHq, mT j in Equation (39) Hq, mT j in Equation (39)

2.4 � 10�18 32.3 60.5 32.2 60.1 75.4
4.0 � 10�18 22.3 60.9 22.3 66.8 57.6
6.0 � 10�18 16.6 61.0 16.7 61.4 46.6
1.0 � 10�17 11.4 60.5 11.5 61.6 35.6
2.0 � 10�17 6.78 59.9 6.75 62.5 24.6
5.0 � 10�17 3.39 58.8 3.60 64.5 15.2
1.0 � 10�16 2.00 58.3 2.21 67.1 10.5
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[42] Stability ranges are commonly plotted as a function
of the inverse shape parameter 1/p, where p is the ratio of
the largest to the shortest axis of a grain. For better
characterization of the properties of SD magnetite, the
stability range is plotted in Figure 11b as a function of the
median destructive field or nucleation field. This method of
plotting demonstrates more clearly than Figure 11a the
transitional nature of the SP/SD and SD/PSD boundaries.
[43] The range of stability of SD particles increases with

the shape parameter p, from p = 0 (a sphere) to p = 1 (an
infinite cylinder). Grains with large values of p are less likely
to be observed in nature: often 0 � p � 2. Magnetosomes
have p	 1 (equant), p	 1.5–2 (prismatic), or p	 3 (bullet-
shaped); fine-grained magnetite in soils has p < 1.5. Acicular
magnetite can reach p 	 5, as in the sample described in
section 6. The parameter cARM/SIRM can be calculated with
equation (32) as a function of the magnetic moment m and
the microcoercivity HK, or the corresponding median
destructive field. In Figure 11c, lines with constant cARM/
SIRM are plotted together with the stability diagram of
Figure 11b. For common SD magnetite (0 � q � 2) and
no interactions, cARM/SIRM ranges from 2� 10�4 m/A (for
m = 1.3� 10�18 A m2 and m0 ~H1/2 = 20 mT) to 3.7� 10�3 m/
A (for m = 1 � 10�16 A m2 and m0 ~H1/2 = 70 mT). Values
between 2 � 10�4 m/A and 2.5 � 10�3 m/A are commonly
measured in natural inorganic magnetite [Moskowitz et al.,
1993; Maher, 1988] and values up to 3.8 � 10�3 m/A have
been reported in samples of intact magnetosomes [Mosko-
witz et al., 1993]. Magnetic interaction between grains
generally lowers the values of cARM/SIRM. This occurs
with increasing concentration of the magnetic particles and
has been observed experimentally [Banerjee and Mellema,
1974; Sugiura, 1979;Maher, 1988; Dunlop, 1981; Yamazaki

Figure 11. (opposite) Theoretical stability range for
prolate ellipsoids of magnetite with shape anisotopy only.
(a) Solid lines represent in order from bottom to top: upper
limit for SP particles (Hq = ~H1/2 in this paper); upper limit
for a moment reversal by uniform rotation; upper limit for
stable SD remanence (both after Newell and Merrill [1999]).
Dashed lines represent the median destructive field for
randomly oriented particles in the lower part of the stability
diagram (H1/2 = Hsw � Hq in this paper), and the nucleation
field Hcurl for curling in aligned particles in the upper part
[after Newell and Merrill, 1999]. Numbers in the plot refer
to H1/2 and to 0.524Hcurl, respectively. (b) The solid line
represents the upper limit for a moment switching by
uniform rotation. Dashed lines represent lines of constant
particle elongation p; numbers refer to 1/p. The lower part of
the stability field represents the smallest volume of
randomly oriented SD particles with elongation p as a
function of their median destructive field. The upper part of
the stability range represents the maximum volume of
aligned particles with SD remanence as a function of the
nucleation field for a moment switching by curling. (c) Same
plot as Figure 11b for the region of moment switching by
coherent rotation. Solid curves represent particles with same
values of cARM/SIRM, expressed in 10�3 m/A by the
numbers on the right. These values range from 10�4 to 2 �
10�3 m/A for common SD particles; the same values are
measured in natural samples with SD grains.
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and Ioka, 1997]. The effect of interactions cannot be
neglected in synthetic samples, where clustering of the
magnetite particles is very difficult to avoid. Therefore
ARM experiments on synthetic samples may not be repre-
sentative for the situation encountered in natural samples
with a low concentration of well-distributed magnetic grains.
[44] As already mentioned, the range of validity of equa-

tions (32) and (33) is limited to grain sizes related to a
moment switching by coherent rotation. As demonstrated
with micromagnetic calculations, the energy barrier of the
moment switching drops significantly for grain sizes >60 nm
(Figure 12). A significant change in the microcoercivity is

also expected. If the grains still exhibit SD remanence when
the AF field is removed, new estimates of both micro-
coercivity and energy barrier allow extension of the thermal
activation model toward larger grain sizes. Above the upper
limit for SD remanence, magnetic grains can exhibit differ-
ent remanence states which are influenced by the past history
of the grain. The field applied during an ARM may induce
the remanence state which minimizes the magnetic energy of
the grain in the DC field, and this state is not influenced by
thermal activation effects. The acquisition process of such
grains is therefore fundamentally different.
[45] A summary of experimental results for ARM acquis-

ition in magnetite samples is shown in Figure 13a. Particles
with grain sizes <60 nm exhibit the d2 dependence on grain
size predicted by the model of this paper. A drastic change
in the grain-size dependence of ARM occurs for d > 60 nm,
as expected from micromagnetic calculations. Between 60
and 200 nm, the ARM intensity decreases as d�0.8 with
grain size d. In this grain-size range, the ARM may be
controlled by thermal activations of nonuniform reversal
modes. Above 200 nm (the upper limit for SD remanence),
the ARM intensity depends weakly on grain size, and is
related to a multidomain remanence. Experimental results
for the median destructive field of SIRM and ARM are
summarized in Figure 13b. The coercivity of small particles
is reduced by the fluctuation field, and the observed trend
for particles smaller than 100 nm is compatible with the
result predicted by equation (41).

6. An Experimental Proof

[46] In this section, the theory of the ARM acquisition by
noninteracting SD particles is verified experimentally on a

Figure 12. Energy barrier to magnetic moment reversal as
a function of grain size in magnetite cubes. Incoherent
rotation lowers the energy barrier over 60 nm grain size
[from Enkin and Williams, 1994].

Figure 13. Summary of experimental results for ARM and IRM magnetizations in synthetic magnetite
samples as a function of grain size. (a) Susceptibility of ARM. Data of Schmidbauer and Schembra
[1987] are corrected to a magnetite concentration of �1% according to the experimental dependence of
the ARM on concentration reported by Sugiura [1979]. The solid line represent the quadratic dependence
of the ARM on the grain size, predicted by the theory of this paper for SD particles. Experimental results
are compatible with the theory for grain sizes up to 50 nm, close to the limit of 60 nm reported by Enkin
and Williams [1994] for a magnetic moment reversal by coherent rotation. (b) Median destructive fields
of SIRM (symbols in the left legend) and ARM (symbols in the right legend). The solid line represents
the median destructive field calculated with the theory of this paper assuming a lognormal grain size
distribution for each sample. The disperison parameter of the lognormal distribution (s = 0.37) is a best
fit of the grain size distributions reported for the samples of Maher [1988].
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sample from the Yucca Mountain Tuff [Worm and Jackson,
1999]. The Yucca Mountain Tuff is an ash flow tuff from the
Tiva Canyon member of the Paintbrush Tuff at Yucca Moun-
tain (Nevada). It contains small titanomagnetite grains with a
narrow size distribution over the SP and finest SD range. The
concentration of the magnetic grains is low (<0.5% by
weight) and is not affected by clustering, so thatmagnetostatic
interactions are expected to be small. The grains are Ti-poor
titanomagnetites with a Curie temperature of 521�C, which
corresponds to an ulvospinel content of x = 0.1. A room
temperature saturationmagnetization of 407 kA/m is assumed
for the grains, according to Worm and Jackson [1999].
[47] Among the three samples mentioned by Worm and

Jackson [1999], the more coarse-grained (CS914) is inves-
tigated here for its ARM properties. CS914 is the only
sample with a significant amount of particles in the SD state
at room temperature. According to electron microscopy and
X-ray diffraction analysis, the grains have uniaxially prolate
shapes with mean dimensions of 8.5 � 45 nm. The grains
are much smaller than the upper limit for the SD state, and
are therefore expected to switch by coherent rotation, with a
microcoercivity of 221 mT. According to the properties
illustrated above, the sample is therefore expected to behave
as predicted by the model presented in this paper.
[48] The experimental proof is divided in two parts. In the

first part, the dependence of the ARM intensity on the ramp
rate of the AF field predicted by equation (32) is verified
experimentally. The experiments allow a new estimation of
the atomic reorganisation time at room temperature. In the
second part, the grain volumes distribution calculated by
Worm and Jackson [1999] from thermal demagnetization
curves is used to predict the ARM properties of the sample,
which are then compared with the measurements.

6.1. Dependence of ARM Intensity on the Decay
Rate of the AF Field

[49] The ARM model of this paper can be tested by
investigating the predicted dependence of the ARM inten-
sity on parameters which can be experimentally varied, like
the temperature and the AF field decay rate. The product
fAC�~H in equation (32) is equivalent to half the decay rate
a, expressed in T/s, which represents the drop of the AC
peak field per unit time. The dependence on the decay rate
is expected to be extremely weak, on the order of 30% when
a changes over 3 orders of magnitude. The temperature
dependence is stronger, however, its interpretation is diffi-
cult, because the intrinsic properties of the magnetic grains
(e.g., saturation magnetization and microcoercivity) are
temperature-dependent as well. In addition, in samples with
a high proportion of SP particles, as is the case with the
Yucca Mountain Tuff, an appreciable amount of particles
becomes blocked or unblocked with little temperature
change. For these reasons, the temperature dependence
cannot be predicted with the necessary precision.
[50] The experimental verification of the dependence of

the ARM intensity on the decay rate allows experimental
evaluation of the atomic reorganization time, expressed by
the frequency F0 in equation (32). This estimation is
important, since the atomic reorganization time depends
on several experimental conditions, and the values given in
the literature vary from 10�8 to 10�11 s [Brown, 1959;
McNab et al., 1968].

[51] In order to measure the weak effect of the field decay
rate, the widest range of decay rates made possible by the
laboratory instrumentation was tested. Two types of demag-
netization apparatus were used for this purpose: a GSD-1
Schoensted specimen demagnetizer with selectable nominal
decay rates between 0.1 and 5 mT/half cycle and an operat-
ing frequency of 400 Hz, and a custom-built 2G degausser
system with selectable decay rates between 9 and 78 mT/half
cycle and an operating frequency of 150 Hz. The systems
have overlapping decay rates from 0.059 to 24 mT/s, which
cover 3 orders of magnitude. The 2G degausser system has
a built-in facility for ARM acquisition. A supplementary
coil was built around the Schoensted demagnetizer, in order
to produce a DC field. The coil was connected to a high-
precision current generator through an inductive filter, in
order to avoid feedback effects with the demagnetization
coil. Ramp rate, DC field, initial AF peak field and
frequency were measured at each ARM acquisition.
Because of the weak effect to be tested, extreme precision
was required for the experiment. A comparison between the
ARM acquisition with different ramp rates has to be
performed at constant temperature. For this reason, special
care was taken to avoid temperature changes during the
acquisition process. The time required for the ARM acquis-
ition at the lowest ramp rate (20 min) was long enough to
transfer the Joule heat loss of the coil to the sample. For this
reason, coil and sample were preheated with several AF
cycles to achieve an equilibrium temperature before starting
the acquisition. The temperature was controlled within
±2�C, so that the related temperature effect was <0.5% of
the total ARM. The ARM acquisitions were repeated 9
times for each decay rate, in order to increase the precision
and estimate the experimental errors. The results are plotted
in Figure 14.

Figure 14. Dependence of the ARM intensity on the
decay rate of the AF field for sample CS914. The error bars
represent the double standard deviation of nine identical
measurements for each point. The ARM intensity is
normalized by its value for a decay rate of 3.31 mT/s,
which is normally used in our laboratory.
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[52] In order to linearize the dependence of cARM on the
decay rate a, equation (32) can be rewritten as follows:

cARM að Þ
cARM

0

� �q

¼ aþ b log a

q ¼ 3; a ¼ 1þ ln a0

ln 0:7F0

a0

ffiffiffiffiffi
HK

p kT
m

 �3=2h i ; b ¼ �ln10

ln 0:7F0

a0

ffiffiffiffiffi
HK

p kT
m

 �3=2h i ð42Þ

whereby a0 is a reference value of a and cARM
0 = cARM(a0).

A comparison of equation (42) with the experimental results
allows verification of the expected linear relation and to
estimate the constants a and b with least squares fitting. The
linearity of (42) was tested by fitting the measurements of
Figure 14 with different values of the exponent q. The effect
of the measurement errors was simulated by adding an
adequate Gaussian noise to each measurement. The result of
10,000 simulations gives q = 3.11 ± 0.12, in good agreement
with the theoretical value q = 3.
[53] The frequency F0 can be estimated from equation

(42):

F0 ¼ 1:44a0

ffiffiffiffiffiffiffi
HK

p
101=b

m

kT


 �3=2
ð43Þ

The mean values of m and HK for the Yucca Mountain Tuff
can be deduced from Worm and Jackson [1999]: m = 2.1 �
10�18 A m2 and HK = 220 mT. They were taken as starting
values of equation (43). From Figure 14, a0 = 3.31 mT/s
and b = 0.129 ± 0.00002. A better estimation of m and HK

can be obtained with the AF demagnetization curve of
ARM discussed in section 6.2 and shown in Figure 16b.
Equation (32) can be solved with respect to m, obtaining

m ¼ kT
ffiffiffiffiffiffiffi
HK

p cARM

1:797m0Mrs

� �3=2

ln�1=2 0:696F0

a
kT

m

� �3=2
" #

ð44Þ

As first estimation, HK = 1.91( ~H1/2 + Hq) was chosen, with
~H1/2 being the median destructive field of the AF
demagnetization curve of ARM. Equations (41), (43), and
(44) were then iteratively evaluated in order to get better
estimates of m and HK. The final values obtained are m =
(2.8 ± 0.7) � 10�18 A m2 and HK = 184 ± 40 mT, in good
agreement with the initial values taken from Worm and
Jackson [1999]. Finally, equation (43) gives the following
estimate: F0 = (1.3 ± 0.4) GHz or t0 = (7.7 ± 2) � 10�10 s,
in good agreement with the values found in the literature.
McNab et al. [1968] estimated t0 = (9.5 ± 1.5) � 10�10 s for
superparamagnetic magnetite grains using Mössbauer
spectra, which is compatible with the result of this paper
within the error range. For comparison, Worm and Jackson
[1999] estimated F0 	 109–1011 Hz by modeling the
frequency dependence of the susceptibility on the same
sample. Their lower estimation limit of F0 	 109 fits better
the measured susceptibility at low frequencies (0.1–1 Hz),
which is controlled mainly by relatively stable particles with
time constants of 1–10 s. These particles are only slightly
smaller than the stable SD particles which are contributing
to the ARM. The reason for the apparent dependence of F0

on the particles size in CS914 is not clear: it is maybe due to

the difficulty of modeling the susceptibility of particles near
the SP/SD boundary.

6.2. A Comparison Between Calculated and
Measured ARM Properties

[54] In section 3, a relation between the microscopic
properties of fine particles (magnetic moment and micro-
coercivity) and ARM was found. The Yucca Mountain Tuff
is a suitable material for testing this relation, since size,
shape and mineralogy of the magnetic grains is well known.
[55] Knowledge of the distribution of volumes and

microcoercivities of the grains (magnetic granulometry
[Dunlop, 1976]) allows us to predict their magnetic
properties, including the ARM. In this section, the mag-
netic granulometry will be deduced from IRM experi-
ments. The results will be then used to calculate the
ARM properties with equations (32), (33), and (41), which
are then compared with the ARM measurements.
[56] Worm and Jackson [1999] calculated the volume

distribution of the magnetic particles in sample CS914 using
thermal demagnetization curves of IRM. Their result is
shown in Figure 15a for volumes up to 6 � 10�24 m3.
The shape of the volume distribution suggests the presence
of larger particles. In order to extrapolate the contribution of
larger volumes, the distribution was fitted in the SD region
(V > 2 � 10�24 m3) with two lognormal functions. Since the
measurements of this paper are performed at room temper-
ature, a misfit below the SP/SD boundary is irrelevant. The
extrapolated distribution suggests significant amounts of
particles with volumes up to 8 � 10�24 m3. Assuming a
mean microcoercivity of 220 mT from microscopic obser-
vations of the grain shapes, and with equation (41), the
coercivity of the particles is expected to range from 0 to 110
mT. This broad coercivity distribution is controlled by the
strong dependence of the fluctuation field on the volume of
fine SD particles. It is reasonable to assume some kind of
variations in the grain shape, which is related to a distribu-
tion of microcoercivities around 220 mT. This distribution
can be deduced from the volume distribution and from the
coercivity distribution calculated with IRM acquisition or
demagnetization curves. Let N(HK, V) and M 0(Hsw) be the
distributions of HK, V, and the switching field Hsw, respec-
tively. Further, Hsw = 0.524HK � Hq (HK, V), as discussed
in section 4. The distribution N(HK, V) was called magnetic
granulometry by Dunlop [1976]. The relation between
magnetic granulometry and coercivity distribution is then
given approximately by

M 0 Hswð Þ ¼
Z1
0

N HK;Vð Þ
0:524� dHq=dHK

MsVdV ð45Þ

Except the SP/SD boundary, dHq/dHK � 1, and equation
(45) reduces to

M 0 Hswð Þ ffi 1:91Ms

Z1
0

N HK;Vð ÞVdV ð46Þ

The AF demagnetization curve of SIRM is shown in Figure
16a, the related coercivity distribution M 0(Hsw) is given by
the first derivative. In order to solve (45), N(HK, V) is
assumed to be the sum of two distributions, which are
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expressed with lognormal functions of V, and Gaussian
functions ofHK. The parameters of the functions were varied
until the best agreement with the volume distributions of
Worm and Jackson [1999] and with M 0(Hsw) was reached.
The resulting magnetic granulometry is plotted in Figure
15b, together with the SD boundaries calculated in section 5.
The mean values of volume and microcoercivity are V = 4.3
� 10�24 and HK= 190 mT, in good agreement with Worm
and Jackson [1999]. From Figure 15b, a typical coercivity of

40 mT can be deduced, and this value corresponds to the
median destructive field of the AF demagnetization curve of
Figure 16a. Notice that ARM properties were not used to
estimate the magnetic granulometry.
[57] In order to calculate the ARM properties for sample

CS914, an artificial set of 50,000 particles was created
according to the magnetic granulometry of Figure 15. With
this set of particles, AF demagnetization curves of SIRM
and ARM were calculated assuming a negligeable degree of

Figure 16. Comparison between measured and modeled AF demagnetization curves of SIRM and of
ARM, both for sample CS914. The modeled curves are calculated from the distribution of volumes and
microcoercivities of Figure 15b. (a) AF demagnetization of room temperature SIRM. Dots are measured
points; the dashed line is the model. (b) AF demagnetization curve of room temperature ARM (0.1 mT
DC field, 300 mT AF peak field). Dots are measured points; the dashed line is the model. Both curves
have similar shape and identical amplitude. This agreement is excellent, considering that the magnetic
properties of the particles were deduced only from IRM measurements.

Figure 15. (a) Volumes distribution of the magnetite particles in sample CS914. The stepped line is the
volume distribution calculated from the thermal demagnetization of IRM (from Worm and Jackson
[1999]). The solid line is a best fit of the volume distribution in the SD range (V > 2.5 � 10�24 m3) with
two lognormal distributions. The dashed line is the volume distribution of all particles that can carry a
remanence at room temperature. (b) Distribution of volumes and microcoercivities in sample CS914
(contours and shaded surface), plotted together with the stability range for SD particles. This distribution
gives a best fit to both thermal and AF demagnetization curves of SIRM. The density of the distribution is
proportional to the contribution of all particles with given volume and microcoercivity to the SIRM. The
dashed lines in the SD range represent all particles with the same coercivity, indicated by the numbers in
the plot field. A typical coercivity of 45 mT can be deduced from the plot: this value coincides with the
median destructive field of the AF demagnetization.

EPM 2 - 16 EGLI AND LOWRIE: ARM OF FINE MAGNETIC PARTICLES



magnetic interactions. The ARM curve was calculated using
equation (32) with the atomic reorganization frequency
estimated in section 6.1. The calculated demagnetization
curve of ARM is in excellent agreement with the measure-
ments (Figure 16b), both in intensity and shape. The
calculated ARM intensity differs only by 1% from the
measured value. Differences between modeled and meas-
ured coercivity distributions of ARM are within 10% over
all the coercivity range.
[58] Furthermore, the dependence of the ARM on the

DC-field predicted by equation (33) was also calculated
with the magnetic granulometry assumed in Figure 15.
Considering the small grain sizes, saturation of ARM is
expected to occur at relatively high values of the DC field.
An ARM with 80 mT AC peak field and different DC field
values up to 4 mT was given to the sample. Since the ARM
model discussed in section 3 assumes HDC � HK, the
magnetization of the particles that do not satisfy this
condition was removed with a 40 mT AF demagnetization.
The results are shown in Figure 17. The initial part of the
acquisition curve is controlled only by the susceptibility of
ARM, and is in excellent agreement with the model of this
paper. A disagreement is found in the range of saturation,
above 1 mT. This may be due to interaction effects.

7. Interpretation of the Modified Lowrie-Fuller
Test for SD Particles

[59] Experiments based on ARM and IRM acquisition and
their demagnetization curves are commonly used as an
indicator for the domain state of the particles. In the original

Lowrie-Fuller test [Lowrie and Fuller, 1971] a comparison of
normalized AF demagnetization curves of TRM and SIRM
was used to distinguish between SD and MD grains. For
multidomain carriers of remanence, saturation IRM is rela-
tively more stable than weak-field TRM; for single domain
carriers, the opposite is true. Soon after the test was proposed,
Schmidt [1976] predicted that MD grains could pass the SD
criterion and vice versa. Later, the more easily produced
ARM was substituted for TRM, and a modified Lowrie-
Fuller test based on ARM characteristics was proposed
[Johnson et al., 1975]. Newell [2000] calculated that the
Lowrie-Fuller test for SD particles can give opposite results,
depending on such particle properties as volume and coer-
civity. A similar result for the ARM is shown in this section.
Also, cases of MD particles which show SD-type behavior
are reported in the literature [Hartstra, 1982; Bailey and
Dunlop, 1983; Heider et al., 1992]. Xu and Dunlop [1995]
modeled the result of the Lowrie-Fuller test for MD particles
and came to the conclusion that the Lowrie-Fuller test is
sensitive not only to the grain size of the particles: other
factors like the density of dislocations in the crystals and the
microcoercivity distribution are also important. They there-
fore replaced the confusing terms ‘‘SD-type’’ by ‘‘L-type’’
(low-field remanence is more stable), and ‘‘MD-type’’ by
‘‘H-type’’ (high-field remanence is more stable).
[60] Results of the modified Lowrie-Fuller test for a set of

identical, randomly oriented and noninteracting SD particles
are shown in Figure 18. The shapes of the normalized
demagnetization curves of ARM and IRM are practically
identical. According to the classical interpretation of the
Lowrie-Fuller test, the small differences in the shapes of the
demagnetization curves are characteristic for SD particles
only if their volume is very close to the SP boundary.
Significant and systematic differences in the shape of the
demagnetization curves cannot arise from a set of identical,
noninteracting SD particles. The result of the modified
Lowrie-Fuller test for SD particles is therefore not related
to their intrinsic magnetic properties.
[61] Significant differences in the shape of normalized

AF demagnetization curves of ARM and IRM can be
produced with a combination of different populations of
SD particles. Results of the modified Lowrie-Fuller test
obtained from synthetic sets of noninteracting SD particles
with different volumes and microcoercivities are shown in
Figure 19. In general, the result of the modified Lowrie-
Fuller test depends on the statistical relation between the
volume and the coercivity distribution of the particles. If the
volume and the coercivity distribution are statistically
uncorrelated, the normalized demagnetization curves of
ARM and IRM do not differ systematically. In case of a
positive correlation between the two distributions, the size
of the particles increases as the coercivity increases. Since
the ARM to IRM ratio depends mainly on the volume of the
particles, large particles acquire a relatively strong ARM,
and the related demagnetization curve is steeper at large
coercivities and flatter at small coercivities, if compared to
the demagnetization of IRM. Consequently, the normalized
demagnetization curve of ARM lies above the demagnet-
ization curve of IRM. In other words, the ARM is appa-
rently more resistant against demagnetization than IRM, and
the modified Lowrie-Fuller test is positive for SD particles.
On the other hand, in the case of a negative correlation

Figure 17. ARM intensity of sample CS914 as a function
of the DC field. The sample was given an ARM with 80 mT
AF peak field, and subsequently, it was demagnetized with
40 mT AF peak field in order to measure the magnetization
of all particles with coercivities between 40 and 80 mT. The
ARM model of this paper assumes the DC field to be much
smaller than the coercivity of the particles. Since DC fields
up to 4 mT are necessary to approach saturation, the 40 mT
AF demagnetization will allow us to compare the measure-
ments (solid line) with the modeled curve (dashed line). The
ARM model is able to predict the value of the ARM
susceptibility within an error of 1%. Disagreement between
model and measurements in the saturation range, for DC
fields >1 mT, may be due to interaction effects.
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between the volume and the coercivity distribution, the
opposite situation occurs, and the ARM is apparently less
resistant against demagnetization than IRM. The result of
the modified Lowrie-Fuller test would indicate the presence
of multidomain particles. Mixed situations where the two
demagnetizazion curves cross each other are also possible.
[62] From the considerations above, it seems that the

result of the modified Lowrie-Fuller test for SD particles
can be either negative or positive, depending on their
volume and coercivity distributions. On the other hand,
many experimental observations [Dunlop and West, 1969;
Johnson et al., 1975] suggest that the result of the modified
Lowrie-Fuller test is generally consistent with the domain
state of the particles. This consistence can be explained if a
positive correlation between the volume and the coercivity
distribution is assumed to be a typical feature of SD
particles. Figure 20 shows how this correlation can be

generated with no assumption about the intrinsic magnetic
properties of the particles other than a mean value for the
distribution of volumes and microcoercivities. First, an
artificial set of 100,000 particles was generated. The volume
and the axial ratio of the particles were chosen to be
lognormally distributed and uncorrelated. The resulting
microcoercivity distribution is also not correlated to the
volumes. Consider now two particles with identical shape
(microcoercivity) and different volumes. The smaller par-
ticle has a larger fluctuation field and consequently a
smaller coercivity. In this way, volumes and coercivities
of a random set of particles are positively correlated, and the
modified Lowrie-Fuller test is positive for SD particles, as
shown in Figure 20c. The shape difference between the
normalized demagnetization curves of ARM and IRM
increases with the amount of dispersion of the volume
distribution: particles with similar volumes produce demag-
netization curves of ARM and IRM with similar shape.
[63] Magnetic interaction effects can also produce sys-

tematic differences between the normalized demagnetiza-
tion curves of ARM and IRM. Interaction models based on
the Preisach-Néel theory predict that the ARM acquisition
of particles with a small coercivity is reduced by the
interaction field produced by the particles with large coer-
civity [Wohlfarth, 1964]. This process is equivalent to a
volume reduction by an amount which increases as the
coercivity decreases or, in other words, to a positive
correlation between volumes and coercivities. Therefore
magnetic interactions apparently increase the relative resist-
ance of ARM against demagnetization. The modified Low-
rie-Fuller test is also affected by the fact that the size at
which the coercivity of a SD grain is maximum differs from
the maximum size a grain can be uniformly magnetized in
zero field [Newell and Merrill, 1999].
[64] To conclude, a relation between the result of the

modified Lowrie-Fuller test and the domain state of the
particles does not necessarily exist. Shape differences
between the normalized demagnetization curves of ARM
and IRM are related to the statistical distribution of the
intrinsic magnetic properties of the particles and not to the
properties themselves. Some volume and microcoercivity
distributions of SD particles can produce H-type properties.
On the other hand, a random distribution of well-dispersed
volumes and microcoercivities in the SD range is always of
L-type. Therefore, the modified Lowrie-Fuller test is effec-
tive in the identification of one population of SD particles,
but can fail with special combinations of two or more
populations of SD particles. Figure 21 summarizes various
results of the modified Lowrie-Fuller test as a function of
the grain size. The result of the test is represented by the
parameter MDFARM/MDFSIRM, which is the ratio between
the median destructive fields of ARM and SIRM. A general
trend toward the classical interpretation of the test is
evident: all SD samples are of L-type. On the other hand,
the majority but not all MD samples are of H-type. The SD
samples have highly scattered values ofMDFARM/MDFSIRM,
although they all contain a single population of particles. The
theory of this paper predicts values slightly larger than 1 for
those samples. The observed scattering is probably due to
magnetic interaction effects: samples with virtually no inter-
actions (CS914 in this paper and Moskowitz et al. [1988])
have MDF ratios between 1 and 1.1, whereas the others can

Figure 18. Normalized AF demagnetization curves of
ARM (dashed lines) and IRM (solid lines) for a set of
identical, randomly oriented and non-interacting SD
particles with m0HK = 80 mT. Particles with a moment of
(a) 2 � 10�17 A m2 and (b) 2.4 � 10�18 A m2 show
opposite relative stabilities of ARM and IRM in the
modified Lowrie-Fuller test, although both sets are SD
particles.
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reachMDF ratios up to 2.2. An increase of theMDF ratio due
to interaction effects is predicted by the Preisach-Néel theory.
[65] A conclusive statement about the result of the Low-

rie-Fuller test for small SD particles is the following: (1) SD

particles with a random distribution of volumes and micro-
cercivities have an L-type behavior, which is eventually
enhanced by magnetic interactions and (2) samples that
contain different populations of SD particles with a suffi-

Figure 19. Results of the modified Lowrie-Fuller test for three sets of 12,000 noninteracting SD
particles with different volumes (right axis) and microcoercivities (left axis). Each point in the left plots
indicates the volume and the microcoercivity of a single particle. The sum of the two particle populations
in Figure 19a gives a positive test for SD particles, plotted in Figure 19b. The opposite result is obtained
in Figure 19d with another combination of SD particles, plotted in Figure 19c. For comparison, the result
of the modified Lowrie-Fuller test for sample CS914 is plotted in Figure 19f. The corresponding volume
and microcoercivity distribution are plotted in Figure 19e.
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ciently high negative correlation between volumes and
microcoercivities can show an H-type behavior.

8. Conclusions

[66] The ARM acquisition process in small noninteract-
ing SD particles can be explained in terms of thermal
activation processes. Equations (32) and (33) describe the
dependence of ARM on the properties of the particles. The
ARM intensity depends on the grain size (/ d2), the
microcoercivity (/ HK

�1/3), the temperature (/ T�2/3)
and weakly on the ramp rate a of the alternating magnetic
field (/ ln1/3 (104 a�1)). These dependences are valid in a
range where the grains switch their moment by coherent
rotation. Other reversal modes occur in grains larger than 60
nm. Various ARM measurements performed by different
authors confirm the d2 dependence of the ARM for d < 60
nm. For larger grain sizes up to the upper limit for SD
remanence, the thermal activation model discussed in this
paper may still be valid, but microcoercivities and energy
barriers have to be recalculated for the case of nonuniform
moment switching. A decrease of the ARM intensity with
grain size is expected over 60 nm.
[67] The thermal activation model presented in this paper

allowed also a new estimation of the fluctuation field, given
in equation (41), and consequently also of the coercivity of
SD grains. The model was tested with a natural sample of
well-dispersed acicular magnetite grains. Precise ARM
measurements confirmed the results predicted by equations
(32) and (33) within an error of 1%. Measurements of the
dependence of the ARM intensity on the AF field decay rate
allowed a precise estimation of the atomic reorganization
time, in agreement with values given byMcNab et al. [1968].
[68] This paper demonstrates that ARM of well-dispersed

fine SD particles is controlled by intrinsic properties such as
grain size and shape. Magnetic interactions are not neces-
sary to explain the ARM acquisition process of SD grains.

Figure 20. Result of the modified Lowrie-Fuller test for a
set of 100,000 noninteracting SD particles. The axial ratio
and the volume of the particles were chosen to be lognormal
distributed and uncorrelated. (a) Magnetic moment and
microcoercivity of a random selection of 10,000 particles
(points) among the 100,000 calculated. (b)Magnetic moment
and median destructive field for the same selection of
particles as in Figure 20a. Because of the volume dependence
of the fluctuation field, the magnetic moment and the median
destructive field are correlated. (c) Normalized AF demag-
netization curves of ARM (dashed line) and IRM (solid line)
calculated for the entire set of 100,000 particles.

Figure 21. Summary of experimental results of the
modified Lowrie-Fuller test in synthetic and natural
magnetite samples as a function of the grain size. On the
vertical axis, the ratio between the median destructive fields
of ARM and SIRM is shown. Values >1 of this ratio denote
a L-type behavior (see text), which is conisdered typical for
SD particles. The opposite is true for a H-type behavior. Not
all MD particles are characterized a H-type behavior.
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However, as shown by different authors, interactions can
play a dominant role in samples with a high concentration
of clustered grains, as likely occur in some natural rocks and
in many artificial samples. The ARM/SIRM ratio can
therefore be a useful parameter for the characterization
and identification of populations of well-dispersed magnetic
particles over the entire range of grain sizes.
[69] It has also been shown that the modified Lowrie-

Fuller test for small noninteracting SD particles does not
depend on their intrinsic properties, and can give contra-
dictory results. However, the calculated result of the modi-
fied Lowrie-Fuller test for a random distribution of volumes
and microcoercivities is compatible with the results reported
by Johnson et al. [1975].
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Néel, L., Remarques sur la théorie des propriétés magnétiques des sub-
stances dures, Appl. Sci. Res., 4, 13–24, 1954.

Néel, L., Some theoretical aspects of rock magnetism, Adv. Phys., 4, 191–
243, 1955.

Newell, A. J., The Lowrie-Fuller test: Single-domain and micromagnetic
theory, Earth Planet. Sci. Lett., 183, 335–346, 2000.

Newell, A. J., and R. T. Merrill, Single-domain critical sizes for coercivity
and remanence, J. Geophys. Res., 104, 617–628, 1999.
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8093 Zürich, Switzerland. (egli@mag.ig.erdw.ethz.ch)

EGLI AND LOWRIE: ARM OF FINE MAGNETIC PARTICLES EPM 2 - 21


