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[1] A new method to calculate and analyze coercivity distributions of measured
acquisition/demagnetization curves of remanent magnetization is presented. The
acquisition/demagnetization curves are linearized by rescaling both the field and the
magnetization axes. An appropriate filtering of the linearized curves efficiently removes
measurement errors prior to evaluating the coercivity distributions. The filtered coercivity
distributions are modeled using a set of generalized probability density functions in order
to estimate the contributions of different magnetic components. An error estimation is
calculated for these functions with analytical and numerical methods in order to evaluate
whether the model is significantly different from the measured data. Three sediment
samples from Baldeggersee (Switzerland) and three samples of urban atmospheric
particulate matter (PM) have been analyzed using this method. It is found that the
coercivity distributions of some of the magnetic components show significant and
consistent deviations from a logarithmic Gaussian function. Large deviations are found
also in the coercivity distributions of theoretical AF demagnetization curves of single-
domain and multidomain particles. Constraints in the shape of model functions affect the
identification and quantification of magnetic components from remanent magnetization
curves and should be avoided as far as possible. The generalized probability density
function presented in this paper is suitable for appropriate modeling of Gaussian and a
large number of non-Gaussian coercivity distributions. INDEX TERMS: 1540 Geomagnetism

and Paleomagnetism: Rock and mineral magnetism; 1519 Geomagnetism and Paleomagnetism: Magnetic

mineralogy and petrology; 1512 Geomagnetism and Paleomagnetism: Environmental magnetism
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1. Introduction

[2] Two of the main tasks of environmental magnetism
are the identification and the quantification of different
magnetic phases in a sample, a procedure usually referred
to as the unmixing of magnetic components. Two
approaches have been developed for this purpose: multi-
parameter records [Thompson, 1986; Yu and Oldfield, 1989;
Verosub and Roberts, 1995; Geiss and Banerjee, 1997] and
analysis of magnetization curves [Thompson, 1986; Rob-
ertson and France, 1994; Carter-Stiglitz et al., 2001]. The
multiparameter approach is experimentally simple and relies
on the measurement of different bulk magnetic properties
such as isothermal remanent magnetization (IRM), anhyste-
retic remanent magnetization (ARM), susceptibility, and
hysteresis parameters. Each parameter is a function of the
concentration of the various magnetic components. The
concentrations can be estimated if the measured parameters
are known individually for each component (forward mod-
eling). However, the relation between the physical and
chemical properties of the magnetic grains (e.g., composi-
tion, grain size, and grain shape) on the one hand and their

magnetic properties on the other is complex and usually
unknown. Many rock magnetic studies are based on syn-
thetic samples, but the magnetic properties of such samples
can differ substantially from their natural counterparts. On
the other hand, natural magnetic components can rarely be
measured alone, since natural samples often represent com-
plex mixtures of more or less altered magnetic crystals with
different origins and histories.
[3] The second approach is based on detailed measure-

ment of induced magnetizations (hysteresis loops) or rema-
nent magnetizations (IRM, ARM, and thermoremanent
magnetization (TRM)) in variable magnetizing or demag-
netizing fields. The absolute value of the first derivative of
these curves is proportional to the contribution of all
magnetic grains with a given intrinsic coercivity to the total
magnetization of the sample and is called the coercivity
distribution. If magnetic interactions between the grains of
different components are negligible, the magnetization of a
sample is a simple linear combination of the contributions
of each magnetic component (finite mixture model with
linear additivity). The coercivity distribution of each mag-
netic component is given by a particular (unknown) func-
tion of the magnetizing or demagnetizing field (end-member
distribution), and the measured coercivity distribution is a
linear combination of these model functions. If all end-
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member distributions are compatible with a parameterized
function, such model functions can be used to fit the
measured data. If n is the number of components and k
the number of parameters of the model function, there are nk
parameters which can be adjusted to obtain a model curve
that best reproduces the measurements. This operation,
called component analysis, is performed with nonlinear
fitting algorithms [Heslop et al., 2002]. The coefficient,
which multiplies each model function, is a measure of the
magnetic contribution of the corresponding component.
This approach was first proposed by Robertson and France
[1994] by assuming that the IRM acquisition curve of each
magnetic component can be closely approximated by a
cumulative logarithmic Gaussian function with three param-
eters (amplitude, median destructive field, and dispersion
parameter). They also proposed a physical model to explain
this assumption. A first application of component analysis
with IRM acquisition curves was described by Eyre [1996]
on Chinese loess samples. The intriguing advantage of this
approach is that a detailed knowledge of the magnetic
properties of the components is not necessary. The magnetic
properties are described by the parameters of the model
function used in the component analysis, and the value of
these parameters is deduced from the shape of the measured
magnetization curve. Furthermore, the same type of magnet-
ization is measured under the same physical conditions for
all components, allowing a direct comparison between all
magnetic contributions. This approach, however, is limited
by its extreme sensitivity to measurement errors and to the
shape of the function chosen to model the end-member
distributions. Stockhausen [1998] handled the effect of
measurement noise by introducing goodness-of-fit parame-
ters to indicate how well a measured curve is fitted by a set of
model functions. Kruiver et al. [2002] proposed a statistical
test to compare different models for the component analysis
and to decide the number of end-member distributions that
are necessary to fit the measured data sufficiently well. They
also developed an alternative approach to component
analysis, based on a rescaling of the IRM acquisition
curve (called linear acquisition plots (LAP)) so that a
cumulative Gaussian function is transformed into a straight
line (called standardized acquisition plot (SAP)). The SAP
of a mixture of slightly overlapped components with
logarithmic Gaussian coercivity distributions is character-
ized by straight segments separated by inflections.
[4] Another important aspect of component analysis is

the modeling of end-member coercivity distributions. Pre-
vious work has shown that natural and artificial end-
member distributions can be approximated with logarithmic
Gaussian functions [Robertson and France, 1994; Stock-
hausen, 1998; Kruiver et al., 2001]. However, this is not
necessarily true for all samples, since many factors,
including magnetic interactions, affect the shape of
magnetization curves. Theoretical AF demagnetization
curves of noninteracting single-domain particles [Egli and
Lowrie, 2002] and of multidomain particles [Xu and
Dunlop, 1995] cannot be modeled with logarithmic
Gaussian functions. This also applies for experimental AF
demagnetization curves of artificial samples of sized
magnetite [Bailey and Dunlop, 1983; Halgedahl, 1998].
In all the cases mentioned above there is only one magnetic
component, however, deviations from a logarithmic Gaus-

sian function could be interpreted as the result of the sum of
two components with strongly overlapping coercivities. The
latter argument is of fundamental importance in the
interpretation of component analysis, since it is directly
related to the number of inferred components.
[5] We propose here a new approach to the component

analysis of acquisition and demagnetization curves. First,
we handle the problem of evaluation and removal of
measurement noise without the use of component analysis.
In this way, filtered coercivity distributions and confidence
margins can be calculated without any assumptions about
the magnetic composition of the sample. We then handle the
problem of component analysis by introducing the use of
generalized probability distribution functions (PDFs) to
model end-member coercivity distributions without any
restrictive assumptions about their shape. We also obtain
an error estimation for the distribution parameters used for
the component analysis. The latter is of fundamental
importance when end-member coercivity distributions of
different samples are compared. Finally, this approach is
tested on three lake sediment samples.

2. Calculation of Coercivity Distributions

2.1. General Properties of Coercivity Distributions

[6] Coercivity distributions are defined as the absolute
value of the first derivative of progressive acquisition or
demagnetization curves. We indicate the coercivity distri-
bution with fX(H), where the index X indicates the original
acquisition or demagnetization curve used to calculate f, and
H is the magnetic field. Furthermore, fX(H)dH is the
contribution of all coercivities between H and H + dH to the
magnetization indicated by X. Magnetic interactions and
thermal activation effects produce differences between the
different kinds of magnetizations (IRM and ARM) and the
different kinds of demagnetizations (DC or AF), so that a
rigorous physical interpretation of fX(H) is almost impos-
sible. However, coercivity distributions can supply a lot of
information about the carriers of magnetization and help in
the discrimination between different magnetic components.
We define here a magnetic component as a set of particles
with identical mineralogy and similar physical properties
(e.g., grain size and grain shape, morphology, crystallization
degree, and concentration of defects): examples are the
bacterial magnetosomes [Moskowitz et al., 1988], chemically
grown fine magnetite in soils [Maher and Taylor, 1988], and
detritial magnetite or hematite from a given host rock. The
coercivity distribution of a component is characterized by a
simple-shaped functions (e.g., a lognormal distribution or a
negative exponential distribution), whose shape is controlled
by the statistical distribution of the magnetic properties of the
particles. Often, coercivity distributions of different compo-
nents cover the same range of coercivities (e.g., different
magnetites) or the contribution of one of them is orders of
magnitude weaker with respect to the others (e.g., hematite
compared to magnetite). For this reason, the contributions of
different components are difficult to recognize directly from
the acquisition or demagnetization curves but are evident in
the coercivity distributions.
[7] Coercivity distributions are mathematically described

by PDFs and can be calculated on different field scales for
better isolation of different components. The shape of a
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coercivity distribution changes according to the field scale
adopted, because the integration over all coercivities corre-
sponds to the total magnetization of the sample (normal-
ization property). The scale change of a distribution f
generates a new distribution f * defined by the following
transformation rule:

H* ¼ g H*ð Þ; f * H*ð Þ ¼ f g�1 H*ð Þ
� � d

dH*
g�1 H*ð Þ ð1Þ

where H* is the new field scale, g the transformation rule
between the old and the new scale, expressed by an injective
function with inverse g�1, and f * the coercivity distribution
with respect to the new scale. For example, the transforma-
tion rule from a linear to a logarithmic scale is expressed as
follows:

H* ¼ logH ; f * H*ð Þ ¼ ln 10 � 10H*f 10H*
� �

ð2Þ

Another useful transformation is the following:

H* ¼ Hp; f * H*ð Þ ¼ H*ð Þ1=p�1

p
f H*ð Þ1=p
� �

ð3Þ

where p is a positive exponent. We will refer to this
transformation as the power transformation. The power
transformation converges for p ! 0 to the logarithmic
transformation. If 0 < p < 1, high coercivities are quenched
on the field scale, and distributions with large coercivities
are enhanced. The same effect is obtained with a
logarithmic scale and the opposite effect with p > 1. The
effect of the field scale transformation on the shape of a
coercivity distribution is illustrated in Figure 1.

2.2. Calculation of Coercivity Distributions From a
Measured Remanence Curve

[8] As pointed out in section 2.1, a coercivity distribution
is the absolute value of the first derivative of a stepwise

Figure 1. Effect of field rescaling on the shape of a coercivity distribution (sediment sample G010 from
Baldeggersee, Switzerland). Four different field scales were chosen: (a) linear field scale, (b) power field
scale according to (3) with exponent p = 0.5, (c) power field scale according to (3) with exponent p = 0.2,
and (d) logarithmic field scale. Notice how the second peak of the coercivity distribution increases in
amplitude when the field scale approaches a logarithmic scale. The thickness of the curve represents the
estimated error of the coercivity distribution. The field scale transformation has an effect also on the
absolute error of the coercivity distribution.
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acquisition or demagnetization curve. In terms of Fourier
analysis, the first derivative is equivalent to a high pass
filter, whose effect is to enhance small details of the original
curve. For this reason, any information contained in the
original curve will be more evident in the resulting coer-
civity distribution. This applies also to the measurement
errors, which are generally small in the measured curve but
are enhanced in the resulting derivative. The increase of
small measurement errors is the main reason why coercivity
distributions have not been used very often in the interpre-
tation of magnetic measurements, despite the potential
advantages. Possible sources of measurement errors are
discussed in section 2.5. Depending on the curvature of
the acquisition/demagnetization curve, a minimum number
of steps are required to reproduce the coercivity distribution
free from aliasing effects. The amplitude of measurement
errors and the number of measured points strongly affect the
calculated coercivity distributions, so that changes in the
measuring procedure can produce apparently different
results. Figure 2 shows the effects of measurement errors
on two coercivity distributions of the same sample meas-
ured with different degrees of precision.
[9] Measurement errors are commonly removed by fitting

the measured acquisition/demagnetization curve with an
arbitrary number of given model curves (cumulative loga-

rithmic Gaussian distributions). These model curves are
identified with the magnetic signal of individual compo-
nents. In this way, the calculation of a coercivity distribution
rely on its interpretation in terms of component analysis. A
way to calculate coercivity distributions without any further
interpretation consists in filtering the measurements or the
resulting coercivity distributions in order to remove the
measurement noise. Often, the measured curves are asym-
metric and require a different degree of filtering at different
fields. A standard low-pass filter would therefore be ineffi-
cient in some regions of the curve, while it would signifi-
cantly affect the shape of the curve in others.
[10] In the following, we present a technique that permits

the removal of the measurement noise homogeneously along
the entire curve and simultaneously estimates the error of the
resulting coercivity distribution. The latter is particularly
useful to avoid misinterpretations of numerical artifacts. The
method presented here is based only on the following
assumption: all acquisition/demagnetization curves have
two regions where the corresponding coercivity distribu-
tion is zero on a logarithmic field scale, one at H ! 0 and
the other at H ! 1. In other words, any acquisition/
demagnetization curve has two horizontal asymptotes on a
logarithmic field scale. The physical meaning of this
assumption for H ! 1 is obvious: all magnetic minerals
have a maximum finite coercivity. For H !0, the physical
explanation is related to thermal activation processes in SD
and PSD particles and with domain wall motions in MD
particles. Measurements with a sufficient number of points
near H = 0 are necessary in order to obtain a correct
coercivity distribution for small fields. Appropriate scaling
of field and magnetization allows linearization of the
acquisition/demagnetization curve. On the linearized curve,
each measurement point and the related error have the same
relative importance, so that a simple low-pass filter can be
applied to remove the measurement noise with the same
effectiveness for all coercivities. An acquisition/demagneti-
zation curve M = M(H) can be linearized in a simple way by
rescaling the field according to the transformation rule H* =
M(H). However, because of the measurement errors, the
functionM(H) is unknown. A good degree of linearization is
reached when a model function M0(H) expressed by
analytical functions is taken as transformation rule instead
of M(H). The choice of the appropriate model function
M0(H) becomes simpler if field and magnetization are both
rescaled. If M* = m(M) and H* = g(H) are the rescaling
functions for the field and the magnetization, respectively,
then the model function is given byM0(H) = m�1(g(H)). The
relation M*(H*) between scaled field and scaled magnetiza-
tion approaches a straight line when the model function
M0(H) approaches the (unknown) noise-free magnetization
curve. The curve defined by e(H*) = M*(H*) � H*
represents the deviations of M*(H*) from a perfect linear
relation. We call e(H*) the residual curve. If the model
function M0(H) used for the scaling procedure is identical
with the noise-free magnetization curve, then the residual
curve contains only the measurement errors. In reality, since
it is impossible to guess the noise-free magnetization curve,
the residual curve is a superposition of the nonlinear
component of M*(H*) and the measurement errors. The
fundamental advantage of considering the residual curve
instead of the original curve is that the measurement errors

Figure 2. Effect of the measurement precision on the
shape and significance of the resulting coercivity distribu-
tions. The black line represents the coercivity distribution
calculated from the average of eight demagnetization curves
of the same sample shown in Figure 1 (G010). The
thickness of the line is the estimated error of the
distribution. The gray band represents the coercivity
distribution calculated form only one demagnetization curve
of the same sample; its thickness is the corresponding error
estimation. The two distributions are identical within the
estimated error, indicating the significance of the error
estimation. The presence of two peaks in the coercivity
distribution is evident already from the result of a single
measurement curve. However, a third peak at 105 mT is not
significant and disappears when more precise measurements
are done. This demonstrates the importance of an appro-
priate error estimation for the correct interpretation of
coercivity distributions.
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are highly enhanced in the residual curve and can be
homogeneously removed with a low-pass filter. The choice
of the filter parameters is not critical and has little effect on
the shape of the resulting coercivity distribution. Under ideal
conditions, e(H*) represents the measurement errors, which
can be simply removed by fixing e(H*) = 0.
[11] The filtered residual curve can be transformed back

into a magnetization curve as follows:

M Hð Þ ¼ m�1 L e g�1 Hð Þ
� �� �

þ g�1 Hð Þ
� �

ð4Þ

where L(.) is the low-pass filter operator. M(H) is now
supposedly free of measurement errors.

2.3. Coercivity Distribution Calculator (CODICA): A
Computer Program for Coercivity Spectra Calculation

[12] CODICA is a computer program based on the scaling
method described in section 2.2. It calculates a coercivity
distribution from an acquisition/demagnetization curve and
gives an estimation of the maximal error of the calculated
distribution. The latter is important for evaluating the sig-
nificance of component analysis on the resulting coercivity
distribution. CODICA is available from the author on request.
[13] CODICA runs on a Mathematica interface and uses

several built-in mathematical routines. The functions of the
program are discussed step by step in Appendix B. The
results of the main processing steps of a real measurement
are shown in Figure 3. The original demagnetization curve
is shown in Figure 3a and is characterized by a typical
heavy-tailed behavior at high fields. A first scale transfor-
mation is applied to the field axis in order to approach a
symmetric sigmoidal function (Figure 3b). The second scale
transformation is applied to the magnetization axis in order
to linearize the demagnetization curve (Figure 3c). Devia-
tions of the linearized demagnetization curve from a best-fit
line are plotted in the next step (Figure 3d): the resulting
curve corresponds to the residual curve discussed in section
2.2. Further rescaling of the field axis allows to obtain a
residual curve that is almost sinusoidal (Figure 3e). Its
Fourier spectrum is concentrated in a narrow band around a
dominant wavelength, so that a simple low-pass filter easily
removes the high-frequency measurement noise with little
effect on the final shape of the filtered demagnetization
curve. Finally, the filtered residuals (Figure 3f ) are converted
back to the original demagnetization curve by reversing the
previous rescaling steps. The result is a demagnetization
curve, which is supposed to be free from measurement
errors. A coercivity distribution is obtained from the first
derivative of the filtered demagnetization curve (Figure 1).
The error estimation is displayed as an error band on the plot
(Figure 1) and in a separated plot as a relative error.

2.4. Testing CODICA

[14] CODICA was tested using a synthetic coercivity
distribution given by f (log H) = N(log H, 24, 0.36) +
0.04N(log H, 56, 0.12) + 0.01w(log H), where N(x, m, s) is a
Gaussian function with median m in mT and dispersion
parameter s, and w(x) is a Gaussian white noise with
variance 1 (Figure 4). This coercivity distribution is the sum
of two components with overlapping coercivities and
different concentrations, which are similar to those encoun-
tered in the natural samples presented later in this paper. The

efficiency of CODICA in removing the measurement errors
is compared with a common low-pass filter. Different cutoff
frequencies were chosen, and the mean square difference
between the filtered and the noise-free distributions was
calculated. The results are given in Figure 5a. Because the
distorting effects introduced by a low-pass filter are mostly
avoided after rescaling the magnetization curve, better results
are obtained with CODICA. The distorting effects introduced
by the application of low-pass filters were further tested by
comparing the component analysis of the noise-free and the
filtered coercivity distributions. Changes in the shape of the
coercivity distribution are related to changes in the fitting
parameters. The difference between the original parameters
of the synthetic coercivity distribution and the best-fit
parameters of the filtered distributions are plotted in Figure
5b. Optimum removal of the measurement noise can be
obtained without significant changes of the fitting para-
meters. Consequently, the results of a component analysis are
not affected by the filtering procedure of CODICA.

2.5. Measurement Errors

[15] Measurement errors are the main limiting factor in the
interpretation of finite mixture models. Some knowledge
about the measurement errors is useful to evaluate the
significance of a component analysis and to optimize the
measurement procedure. Measurement errors may arise from
(1) errors in the magnetization measurement, (2) errors in the
application of the magnetization/demagnetization field, (3)
errors induced by viscosity effects if the time interval between
the application of the field and the measurement is not the
same for all steps, and (4) errors induced by mechanical
unblocking of magnetic particles under application of high
magnetic fields on unconsolidated samples. These error
sources generate different noise signals that affect the meas-
urement. Simple error propagation equations can be used to
estimate the amplitude of the errors; some results are listed in
AppendixA. The effect of the fourmeasurement error sources
on the calculation of a coercivity distribution is simulated
graphically in Figure 6. Mechanical unblocking effects can
account for large errors at high fields, which are occasionally
observed in some unconsolidated samples obtained by press-
ing a powder in plastic boxes. Magnetic grains that are
electrostatically attached to larger clay particles are good
candidates for such undesired effects. Mixing the sample
powder with nonmagnetic wax before pressing it has been
found to be a good solution to reduce measurement problems
at high fields (S. Spassov, personal communication).

3. Component Analysis With Coercivity
Distributions

[16] In section 2, we have shown how measurement noise
in acquisition/demagnetization curves can be filtered so that
errors affecting the calculation of coercivity distributions are
minimized. Now we turn to the problem of component
analysis.

3.1. The Finite Mixture Model

[17] Consider a sample which contains a mixture of n
different magnetic components (finite mixture model). Each
component has a probability distribution fi(HjQi) for the
intrinsic coercivity, which depends on a set of distribution
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parameters Qi = (qi1, . . ., qil). If the magnetization of each
component adds linearly to the others (linear additivity), the
bulk coercivity distribution of the sample is given by:

f Hð Þ ¼
Xn
i¼1

ciMri fi H jQið Þ ð5Þ

where ci and Mri are the concentration and the saturated
magnetization of the ith component, respectively. The bulk
magnetization is given by the sum of the magnetizations of
each component. Generally, fi(HjQi) is modeled with a
logarithmic Gaussian function [Robertson and France,
1994].

Figure 3. Calculation of a coercivity distribution using CODICA. Each plot is the original output of a
program step, as discussed in the text. (a) Original data for the AF demagnetization of an ARM (sample
G010, as in Figures 1 and 2). (b) Demagnetization curve with rescaled field compared with a best-fitting
tanh function (solid line). The scaling exponent was p = 0.064. (c) Demagnetization curve with rescaled
magnetization and best-fitting line. (d) Residual curve. (e) The residual curve in (d) was rescaled in order
to approach a sinusoidal curve. (f ) A low-pass filter was applied to the residual curve in order to remove
the measurement errors. A back-transformation of the filtered residuals through the steps shown in (d),
(c), and (b) and subsequent numerical derivation gives the coercivity distribution plotted in Figure 1.
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[18] In case of interactions, linear additivity no longer
holds. The shape of f (H) depends on the magnetization
process and may differ for acquisition and demagnetization
curves [Cisowski, 1981]. Linear additivity is destroyed by
interaction effects which may easily occur in synthetic
mixtures [Lees, 1997]. Carter-Stiglitz et al. [2001] avoided
this problem in their synthetic samples by dispersing
potentially interacting pure components in a diamagnetic
matrix before mixing them. Their dispersed pure samples
were taken as end-member components for their unmixing
tests. A particular case is given in samples where each
magnetic component is formed by clusters of similar
particles. Consequently, strong interactions exist within
but not between the clusters, provided the volume
concentration of the clusters is low enough. In this case,
(5) can be rewritten to:

fint Hð Þ ¼
Xn
i¼1

ciMri Cið Þfi* H jQi;Cið Þ ð6Þ

where Ci is the volume concentration of the grains of the ith
component within the clusters. Linear additivity is preserved
in this case. Equation (6) may apply for the synthetic samples
of Carter-Stiglitz et al. [2001] and in natural samples.

3.2. Generalized Coercivity Distributions

[19] Except for artificial samples, the end-member coer-
civity distributions of a mineral mixture are unknown, and
model functions f (xjQ) with a set Q of parameters are used
instead. A lognormal function is commonly assumed for
f (xjQ). In this case Q = (H1/2, DP), where H1/2 is the median
destructive field and DP the dispersion parameter [Robert-
son and France, 1994; Kruiver et al., 2001; Heslop et al.,
2002]. On a logarithmic field scale, the lognormal function
coincide with the Gauss distribution. Accordingly, an end-
member distribution is forced to be symmetrical about log
H1/2 and to have a fixed ‘‘curvature.’’ Skewed, more
‘‘squared’’ or less ‘‘squared’’ distributions cannot be
represented in this way. Deviations of f (xjQ) from a
logarithmic Gaussian function are possible, since the
relation between chemical and geometric properties of the
grains on the one hand and magnetic properties on the other
are rather complex and nonlinear. In this paper, we will
demonstrate the existence of consistent and systematic
deviations from the logarithmic Gaussian distribution model
in some natural and artificial samples. These deviations can
significantly affect the results of unmixing models.
[20] As shown in section 3.1, an end-member coercivity

distribution is conveniently described by a PDF called f (x)
in the following. The shape of f(x) is controlled by a set of
distribution centers mn with related dispersion parameters sn,
with n 2 N [Tarantola, 1987]. Special cases are given when
n = 1 (m1 is the median, s1 the mean deviation), n = 2 (m2 is
the mean, s2 the standard deviation), and n ! 1 (m1 is the
midrange and s1 the half-range). The parameters H1/2 and
DP used by Robertson and France [1993] correspond to m2
and s2 on a logarithmic field scale. The symmetry of a PDF
is described by the coefficient of skewness s, where s = s3

3/s2
3

[Evans et al., 2000]. Symmetric distributions are
characterized by s = 0 and mn = m2. The curvature of a
PDF is described by the coefficient of excess kurtosis k,
where k = s4

4/s2
4 � 3 [Evans et al., 2000]. The Gaussian

PDF is characterized by k = 0.

[21] The description of small deviations from a Gaussian
PDF involves the use of functions with more than two
independent parameters. It is of great advantage if such
functions maintain the general properties of a Gauss PDF:
the nth derivative should exist over R and sn < 1 for all
values of n 2 N. Furthermore, the Gaussian PDF should be a
particular case of such functions. A good candidate is the
generalized Gaussian distribution GG [Tarantola, 1987],
known also as the general error distribution [Evans et al.,
2000]. The Gaussian PDF is a special case of GG distri-
butions. Other special cases are the Laplace distribution and
the box distribution. TheGG distribution is symmetric: s = 0.
[22] Skewed distributions can be obtained from a sym-

metric PDF through an appropriate variable substitution
x* = g(x,q), where q is a parameter related to the skewness
and g(x,q0) � x for a given value q0 of q. If these conditions
are met, the variable substitution generates a set of
distributions with parameter q, wherein the original PDF
is a special case. A suitable transformation applied to the
GG distribution gives the following function:

SGG x; m;s; q; pð Þ ¼ 1

21þ1=ps� 1þ 1=pð Þ
qeqx* þ q�1ex*=q
��� ���

eqx* þ ex*=q

� exp � 1

2
ln

eqx* þ ex*=q

2

 !�����
�����
p" #

ð7Þ

with x* = (x� m)/s and 0 < jqj � 1. We will call this PDF the
Skewed Generalized Gauss Distribution (SGG). The GG
distribution is a special case of (7) for q = 1, and the Gauss
distribution is a special case of (7) for q = 1 and p = 2.
Approximate relations between the distribution parameters
and m2, s2, s and k for p! 2, q! 1 are listed in Appendix A.
Some examples of SGG distributions are shown in Figure 7.
The four parameters of a SGG distribution have a hierarchic
structure: m and s control the most evident properties of the
PDF, namely the position along the x axis and the ‘‘width.’’
On the other hand, q and p influence the symmetry and the
curvature of the PDF.
[23] The need of generalized distribution functions to

model the coercivity distribution of a magnetic component
is evident on the examples shown in Figures 8 and 9.
Figure 8a shows the theoretical AF demagnetization curve of
an ARM for an assemblage of noninteracting, uniaxial
single-domain magnetite particles with lognormally distrib-
uted volumes and microcoercivities [Egli and Lowrie,
2002]. Figure 8c shows the theoretical AF demagnetization
curve of an ARM for multidomain particles with a Gaussian
distribution of microcoercivities [Xu and Dunlop, 1995].
Both cases can be regarded as a single magnetic component.
The related coercivity distributions are not Gaussian on a
logarithmic field scale but can be fitted well with a SGG
distribution. Similar coercivity distributions are also found
in natural sediments, as the ODP sample of Figures 8e and
8f. The magnetic materials presented in Figure 8 are very
different; nevertheless, they have similar coercivity dis-
tributions with a negative skewness of �1.3 to �1.7.
Similar results are obtained also from AF demagnetization
curves of SIRM. Both the magnetic interactions and the
magnetic viscosity generally increase the initial slope of an
AF demagnetization curve, because they affect mainly low
coercivity contributions to the total magnetization. As a
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consequence, the related coercivity distributions are left-
skewed, and the crossing point between normalized
acquisition and demagnetization curves is <0.5 [Cisowski,
1981]. However, magnetic interactions and magnetic
viscosity can be excluded in the model demagnetization
curves of Figures 8a and 8c. In this case, the skewness of
the related coercivity distributions is controlled by intrinsic

properties of the magnetic grains. In single-domain grains,
thermal activation effects produce an asymmetrical shift of
the coercivity distribution toward lower fields [Egli and
Lowrie, 2002], so that a symmetrical distribution of
microcoercivities (s = 0) generates a left-skewed coercivity
distribution (s < 0). In multidomain grains, the negative
exponential distribution (Figure 7b) plays a critical rule.

Figure 4. A synthetic example of measurement noise removal with the procedure described in the text.
A synthetic coercivity distribution was generated according to the text. The coercivity distribution is the
sum of two components with overlapping coercivities and different concentrations. The demagnetization
curve in (a) was calculated by numerical integration of f(log H). This curve was then rescaled according
to the procedure described in the text and subsequently low-pass filtered with different cutoff frequencies.
The corresponding coercivity distributions (open circles) in (b), (c), and (d) are the numerical
differentiation of the filtered curves. A component analysis has been performed on these coercivity
distributions. The single components are dashed. At the bottom of each plot, the difference between the
original noise-free coercivity distribution and the coercivity distribution calculated from the filtered
curves is presented as well. In (b), the cutoff frequency n was too large and the measurement errors have
not been removed. In (d), the cutoff frequency was too small: the measurement errors have been removed
completely, but the shape of the coercivity distribution is altered. In (c), the cutoff frequency nopt was
sufficient to remove the measurement errors without a significant alteration of the coercivity distribution.
The difference between noise-free and calculated coercivity distribution is minimal, and the result of
component analysis is unaffected.
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Bailey and Dunlop [1983] have shown that magnetic grains
with a multidomain-type result of the modified Lowrie–
Fuller test [Johnson et al., 1975] have a microcoercivity
distribution which is more convex than the negative
exponential distribution. These coercivity distributions are
characterized by s < �1. Left-skewed coercivity distribu-
tions are also needed to fit AF demagnetization curves of a
SIRM in artificial samples of sized magnetite with grain
sizes between 0.1 and 100 mm [Bailey and Dunlop, 1983;
Halgedahl, 1998], as shown in Figure 9. The coercivity dis-
tributions of all grain sizes have a skewness of s = �0.93 ±
0.1, which is close to that of a negative exponential
distribution (s = �0.997). However, the importance of
magnetic interactions in these samples is not clear.

3.3. Error Estimation

[24] Component analysis can be extremely sensitive to
measurement errors, especially in case of magnetic compo-
nents with highly overlapped coercivity distributions. Thus,
some distribution parameter estimates may not be significant
at all, even if the quality of the measurement is excellent for
the usual standards in rock magnetism. An error estimation
of each distribution parameter is important to avoid mis-
interpretations. This problem was first recognized by Stock-

hausen [1998]: he attempted to evaluate the significance of
his results by introducing parameters that indicate how well
a measured curve is fitted by a set model functions. Kruiver
et al. [2002] proposed a statistical test to compare different
models for the component analysis. However, these
approaches are useful to evaluate the overall significance
of component analysis (see section 3.4) but do not provide
any information about the single components. The latter is
obtained with an error estimation for each distribution
parameter. Error estimates for each parameter are provided
in the following for a general PDF f (xjQ).
[25] We assume the measured distribution to be given by

yi = f (xi) + dyi, where (xi, yi) is a measurement point and dyi
the related measurement error. Several methods can be used
to obtain an unbiased estimation Q̂ of Q [Stockhausen, 1998;
Kruiver et al., 2001; Heslop et al., 2002]. A best-case error
estimate is obtained by means of the Rao-Cramér-Frechet
inequality (RCF). If f (xjq) is a Gauss distribution with
variance s2, measured at regular intervals �x of x, and if
dyi = dy is independent of xi, the variance of one unknown
distribution parameter q is given by:

var q̂
� �


 2p1=2s�x dyð Þ2R
X

@qf xjqð Þ½ �2
f xjqð Þ dx

ð8Þ

Figure 5. Comparison between measurement noise removal with and without the rescaling procedure
described in the text. The same coercivity distribution of Figure 4 was calculated and the operation was
repeated 1000 times with different simulations of the measurement error w(log H). Each of the 1000
distributions was filtered in the same way as in Figure 4. In (a), the mean squared difference between the
filtered and the noise-free distributions has been plotted as a function of the normalized cutoff frequency
n of the low-pass filter. Filled symbols refer to the output of CODICA, open symbols to the results
obtained by filtering the data without the rescaling procedure of CODICA. The normalizing factor for the
cutoff frequency is chosen to be identical with the value of the cutoff frequency, which minimizes the
squared residuals. The noise removal is more efficient after the rescaling procedure. In (b), the relative
error of the best-fit parameters m, m, and s of the two Gaussian distributions are plotted as a function of
the normalized cutoff frequency of the low-pass filter. For n < 0.7nopt, a low-pass filter induces
significant distortions in the shape of the coercivity distribution. Open symbols refer to the best-fit
parameters of the component defined by m = 0.04, m = 56 mT, and s = 0.12. Solid symbols to the other
component. Circles refer to m, squares to m, and triangles to s.
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A proof of equation (8) starting from the standard
formulation of the RCF inequality is given in Appendix
C. Equation (8) can be used to estimate the minimum errors
of the parameter estimates of a SGG distribution with p! 2

and q ! 1. The results are listed in Appendix A. More
precise analytical error estimations, which apply asympto-
tically to all unbiased parameter estimates, are obtained with
error propagation methods, however, only in the limiting

Figure 6. Simulated effect of some measurement error sources on the calculation of a coercivity
distribution with following parameters: m = 1, m = 10 mT, and s = 0.38 according to the calculations of
Appendix A. The two curves of each plot give the upper and lower limit of a coercivity distribution
calculated from a demagnetization curve measured at fixed field intervals of 0.2 on a logarithmic field
scale (�H/H � 0.585). Measurements are performed with (a) an absolute measurement error dM = 0.01,
(b) a relative measurement error dM/M = 0.01, (c) an absolute error of 0.2 mT affecting the applied peak
field, and (d) a relative error of 2% affecting the applied peak field. In (e) and (f ), measurement errors
arise from mechanical unblocking of a part e = 0.3% of all magnetic particles in an unconsolidated
sample. In (f ), a magnetically harder component (e.g., hematite) with an unremovable magnetization of
5% is added to the soft component.
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case of one component. Then, the variance of an unknown
distribution parameter q is given by:

var q ¼ �x dyð Þ2R
X

@qf xjqð Þ½ �2dx
ð9Þ

A proof of equation (9) is given in Appendix C. Errors of
the unbiased parameter estimates for one SGG distribution
are listed in Appendix A.

3.4. Significance Tests

[26] The finite mixture model of equation (6) has n(l + 1)
independent parameters. If a smaller number of parameters
is assumed, the mixture model will not fit well the measured
data. There are two possibilities for increasing the number
of model parameters. The first one consists of adding more
components to the model, as discussed in the literature
[Robertson and France, 1994: 2 components; Eyre, 1996: 4
components; Stockhausen, 1998: 2 components; Kruiver et
al., 2001: up to 3 components; Heslop et al., 2002: up to 4
components]. The second possibility is presented in this
paper and consists of a better definition of the end-member
PDF. Both strategies can suggest wrong conclusions, as
discussed in section 4, if the unmixing results are not
evaluated critically. The problem of finite mixing models is
related to the fundamental question of how many para-
meters should be used to fit experimental data. The addition
of new parameters always improves the goodness of fit of a
mixture model; however, this improvement is not necessa-
rily significant. Kruiver et al. [2001] proposed a combina-
tion of statistical tests to determine whether the addition of
extra parameters significantly improves the goodness of fit.
They apply an F test and a t test to the squared residuals of
one fit model with respect to another model to decide if the
two models are significantly different. We propose here the
use of a Pearson’s c2 goodness of fit test [Cowan, 1998],

which allows us to test if an experimental probability
distribution is compatible with a given model distribution
f (xjQ) with l unknown parameters q1. . .ql. According to this
test, the two distributions are incompatible at a confidence
level a (generally a = 0.05) if c2(Q) > c2

n�l�1;1�a, where
c2

n�l�1;1�a is the value of the c2 distribution with n � l � 1
degrees of freedom, evaluated at 1 � a. A coercivity
distribution calculated with the method presented in section 2
can be used as reference distribution for the Pearson’s c2

goodness of fit test, since this method is not based on finite
mixture models.
[27] A statistical test alone is not sufficient to evaluate the

significance of a mixing model, as demonstrated in section 4.
Sometimes, the coercivity distributions of two magnetic
components are widely overlapped, and an extremely high
measurement precision is required in order to identify these
components. A stack of six demagnetization curves with 72
steps each has been used for the analysis of some samples
presented in this paper. Such a high measurement precision
cannot be used as a standard for systematic investigations.
Nevertheless, an integrated approach to this problem is
possible, as shown in section 4 on the example of urban
atmospheric particulate samples. In this case, the component
analysis of an individual sample was very critical. The
accurate choice of three samples with extremely different
degrees of pollution allowed to define the number of
magnetic components and their magnetic properties. Much
less precision would be required for an extended study of
urban atmospheric particles. The component analysis of
‘‘standard quality’’ measurements would be supported by
the detailed information acquired with the accurate analysis
of few reference samples. A similar strategy has been
applied to the measurement of the lake sediments presented
in section 4. In this case, different sources of magnetic
minerals in the sediments were investigated by accurate
measurements of each sedimentary unit and of samples

Figure 7. Examples of SGG distributions, given by f (x) = SGG (x, m, s, q, and p). (a) Some particular
cases with, m2 = 0, s2 = 1, and q = 1 are plotted. The skewness of all curves is zero. Furthermore, p = 1 for
a Laplace distribution, p = 2 for a Gauss distribution, and p ! 1 defines a box distribution. (b) Some
left-skewed SGG distributions with m2 = 0 and s2 = 0.5484 are plotted. Right-skewed distributions with
the same shape can be obtained by changing the sign of m and q. Demagnetization curves of multidomain
magnetite can be modeled with exponential functions. The corresponding coercivity distribution on a
logarithmic field scale can be approximated by a SGG distribution with s = 0.6656, q = 0.4951, and p =
2.3273, plotted in (b). The difference between an exponential PDF and its approximation by a SGG
distribution is smaller than the thickness of the curves.
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Figure 8. Examples of significant deviations of calculated and measured coercivity distributions from a
logarithmic Gaussian function. (a) Theoretical AF demagnetization curve of an ARM imparted to a set of
random oriented, noninteracting single domain magnetite particles [Egli and Lowrie, 2002]. The particles
have lognormally distributed volumes and microcoercivities. The corresponding coercivity distribution
(b) is plotted with points and the solid line is the best-fitting SGG function. (c) Theoretical AF
demagnetization curve of an ARM imparted to a set of multidomain particles with Gaussian distributed
microcoercivities (redrawn from the study of Xu and Dunlop [1995]). The corresponding coercivity
distribution (d) is plotted with points and the solid line is the best-fitting SGG function. (e) AF
demagnetization curve of an ARM imparted to an ODP sediment sample (leg 145) taken in the North
Pacific (courtesy of M. Fuller). The corresponding coercivity distribution is shown in (f ) together with a
component analysis performed with SGG functions. The coercivity distribution of the soft component
(solid line) clearly differs from a log-Gaussian function.
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from the catchment area. Then, AF demagnetization curves
with 20 steps were measured for the entire sediment
column. The measurements were fitted with the coercivity
distributions of the magnetic components identified in three
reference samples. Changes in the amount of biogenic
magnetite during the last 120 years could be reconstructed
in this way.
[28] We propose the following set of conditions to apply

and test mixing models to a large set of samples:
1. Choice of reference samples. Reference samples

containing the most varied amounts of the same set of
magnetic components should be chosen for detailed and
precise measurements. These samples should define the
most extreme conditions to be taken into account by the
mixing model.
2. Statistical tests. The mixing model has to pass a

statistical significance test (goodness of fit test) for each
reference sample; in other words it should be compatible
with the measured data within the experimental errors.
3. Errors. All model parameters should be significant,

i.e., they should not be affected by large errors.
4. Consistency. The coercivity distributions of the same

components should be identical within the experimental
error, or they alternatively should show variations which are

consistent with some physical or chemical changes.
Furthermore, variations in the concentration of each
magnetic component should be explained with the help of
some independent information (geological setting, chemical
and physical processes).
[29] Point 4 implies some knowledge about the potential

sources of magnetic minerals (e.g., magnetite formation in
soils [Maher, 1988], titanomagnetites in volcanic rocks
[Worm and Jackson, 1999], biogenic magnetite [Moskowitz
et al., 1993], and maghemite in loess [Eyre, 1996]) and
about the properties of magnetization and demagnetization
curves [Dunlop, 1981, 1986; Bailey and Dunlop, 1983;
Johnson et al., 1975; Halgedahl, 1998; Cisowski, 1980;
Hartstra, 1982; Robertson and France, 1994].

4. Interpretation of Coercivity Distributions by
Component Analysis

4.1. Comparison Between Different PDFs

[30] As discussed above, the results of a component
analysis depend upon the PDF chosen to model the end-
member coercivity distributions and particularly on the
number of parameters assigned to each PDF. In this section,
we will compare results obtained with a linear combination

Figure 9. Coercivity distribution parameters m, s, q, and p (see text) for the AF demagnetization of IRM
in various synthetic samples of sized magnetite. The magnetic components identified in lake sediments
and PM10 dust samples are also shown for comparison. Numbers beside each point indicate the grain
size in mm. (a) Scatterplot of m and s, which are a measure of the median and the width of a coercivity
distribution, respectively. The dashed line indicates the value of s for a negative exponential distribution
(Figure 7). Large grains are characterized by low values of m and high values of s. Notice the extremely
low value of s measured for component I2 (probably biogenic magnetite). An inverse correlation
between m and s is evident. (b) Scatterplot of q and p, which are related to the skewness and the kurtosis
of a coercivity distribution, respectively. The cross point of the dashed lines corresponds to the values of
q and p for a log-Gaussian distribution. All samples of sized magnetite show values of q that are
significantly different from those of a log-Gaussian distribution. They group around mean values of q �
0.46. All parameters of the sized magnetites are intermediate between those of a log-Gaussian
distribution and those of a negative exponential distribution. The coercivity distribution of larger grain
sizes approaches an exponential distribution.
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of Gaussian distributions on the one hand and a linear
combination of SGG distributions on the other. Since finite
mixture models with non-Gaussian coercivity distributions
have not been reported in the literature, it is not possible to
decide from a priori informations which kind of PDF should
be used as a basis for a mixture model. From the
mathematical point of view, all PDFs are equivalent, since
the goodness of fit, which can be reached with a particular
model, depends only upon the total number of parameters
assumed, regardless of how they are assigned to individual
components. Starting from these considerations, and from
the fact that coercivity distributions of natural and artificial

samples are nearly log-Gaussian, one could ask if the use of
more complicated PDFs has any physical meaning. We will
handle this problem in the following.
[31] To better understand the problem, we first illustrate

the strong similarities that exist between a SGG distribution
with p ! 1 and q ! 2 on one hand and a linear
combination of two Gaussian distributions on the other. We
consider three different situations, which are shown in
Figure 10. In the first case, two Gaussian distributions with
identical amplitudes and same s, but slightly different
values of m, are fitted with a SGG distribution with p = 1
and q > 2. If �m/s > 1, where �m is the difference between

Figure 10. Three cases where a linear combination of two Gaussian functions is very similar to a SGG
distribution. (a) mN(x, m1,s) + mN(x, m2, s) with jm1 � m2j < 2s is compared to a best-fit obtained with
SGG(x, m, s0, 1, p), where m = (m1 + m2)/2 and p > 2. (b) m1N(x, m, s1) + m2N(x, m, s2) is compared to a
best-fit obtained with SGG(x, m,s, 1, p), where p < 2. In (c), SGG(x, m,s, q, p) is compared with
m1N(x, m,s1) + m2N(x, m,s2). Below each plot, the difference between the two functions is plotted in
percent of the maximum value of these functions.
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the means of the two Gauss distributions, the resulting
function has two local maxima and is evidently bimodal.
However, as �m/s ! 0, the resulting distribution becomes
very similar to a slightly squared PDF (k < 0). In the second
case, a SGG distribution with q < 2 is fitted to a linear
combination of two Gaussian functions with the same m but
different values of s. The two distributions converge to the
same function for q ! 2. In the third case, a SGG
distribution with p 6¼ 1 is fitted to a linear combination of
two different Gaussian functions. Convergence of the two
distributions is obtained for jpj ! 1. In all three cases, the
SGG distribution and the combination of two Gaussian
functions can be very similar. The possibility of distin-
guishing two overlapping Gaussian functions from a SGG
distribution depends on the noise level of the data to be
fitted and can be tested with a Pearson’s c2 goodness of fit
test. If the test is not passed, the fitting models are
mathematically equivalent, but the corresponding interpre-
tations are drastically different, since the number of inferred
components is not the same. Generally, the use of more
complicated PDFs for the end-member coercivity distribu-
tions has the effect of reducing the number of components
needed to fit a measurement with a sufficient degree of
precision. Two components with widely overlapping
coercivity distributions may be modeled with one SGG
distribution, and vice versa, a single component with k 6¼ 0
or s 6¼ 0 may be modeled with a combination of two
Gaussian distributions. In both cases, incorrect interpreta-
tion may result. An example is given by the samples
described in section 4.2, which contain magnetic compo-
nents whose coercivity distribution are similar to the
functions plotted in Figures 10b and 10c.
[32] If two overlapping PDFs cannot be resolved at the

given confidence level, the sum of the estimated contribu-
tions may still be significant, despite the fact that the
individual values of the estimates are not significant. In
this case, the two PDF are conveniently modeled as a single
component, eventually by substituting them with a more
complex PDF. The use of PDFs with more distribution
parameters, instead of a large number of distributions with
fewer distribution parameters leads to results of the fitting
model which are more stable against measurement errors.
The stable behavior of a fitting with SGG distributions can
be explained by the fact that small deviations from an ideal
coercivity distribution, which arise from measurement
errors, are taken into account by variations in skewness
and kurtosis, rather than by variations in the contributions of
the single components. Obviously, the values obtained for
skewness and kurtosis may not be significant at all. A
similar stability can be obtained with Gaussian functions if
some of them are grouped as if they were one component.
However, it is not always evident which distributions group
together, and multiple solutions are often possible, as
illustrated by the examples described in the following
section.

4.2. Examples

[33] In this section, measurements of lake sediments and
urban atmospheric particulate matter (PM) are presented.
4.2.1. Lake Sediments
[34] Lake sediment samples were taken from Baldeg-

gersee, Switzerland. This lake is situated on the Swiss

Plateau at 463 m asl, it has a surface area of 5.2 km2 and a
maximum water depth of 66 m. The catchment area (67.8
km2) has been used intensively for agriculture since the
nineteenth century. The lake was formed more than 15,000
years ago after the retreat of the Reuss glacier. Hills
around the catchment area protect the lake from winds
and facilitate oxygen depletion in deep waters. Several
packets of varves indicate these depletion periods during
the last 6000 years. The last and most severe eutrophica-
tion event started in 1885, triggered by the development of
human activities in the catchment area. The depth to
anoxic water column was 60 m in 1885 and rose to 10 m
in 1970 [Wehrli et al., 1997]. A 1.2 m long gravity core
was taken in 1999 at the center of the lake and sampled
every centimeter. The samples were immediately freeze
dried to prevent oxidation and pressed into cylindrical
plastic boxes. The core covers the last 200 years of
sedimentation [Wehrli et al., 1997]. Magnetite is the major
magnetization carrier, with small amounts of a high-
coercivity material, probably fine-grained hematite. The
analysis of coercivity distributions is used here to separate
the detrital component of the magnetic signal from the
authigenic component (the magnetic particles produced by
chemical and biological processes in the lake). In order to
identify the detrital component, a sediment sample from a
small river delta of the lake was taken. Since the catchment
area is geologically and anthropogenically homogeneous
all around the lake, this sample is expected to be
representative of the detrital input. The sample was sieved
in acetone in order to isolate the fraction <20 mm, which is
the one that more easily reaches the center of the lake
under normal conditions. In order to separate the individual
contributions to the magnetic signal of the sediments and
their variation during the last eutrophication event, AF
demagnetization curves of ARM were measured on a
selected number of samples distributed across the transition
zone between the oxic and the anoxic part of the core. The
same measurements were also performed on the sample
taken from the river delta. After preliminary AF demagne-
tization with a 300 mT peak field, each sample was given
an ARM using a 0.1 mT DC field and a 300 mT AF peak
field. The samples were then stepwise AF demagnetized
with increasing peak fields up to 300 mT. From each
demagnetization curve, a coercivity distribution was
calculated with CODICA (see section 2). Figure 11 shows
detailed coercivity distributions and analyzed coercivity
components of three samples, labeled G010, G044, and
U03F. Sample G010 was taken at a depth of 11 cm from
the most anoxic level of the gravity core, and sample G044
corresponds to a depth of 44.5 cm, far below the onset of
eutrophication. Sample U03F is the <20 mm fraction of silt,
collected from the small river delta. Different fitting models
were used to analyze these samples; some results for G010
are summarized in Table 1. At least three magnetic
components can be distinguished directly from the shape
of the filtered coercivity distributions: a low-coercivity
component (hereafter called component D), a component
with intermediate coercivity values (component I) and a
high-coercivity component which is not saturated at 300
mT (component H). In sample G044, the intermediate
component seems to be composed of two PDFs with
similar values of median destructive field.
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[35] Adequate mixture models are obtained with three
or four SGG functions. Component H has generally low
quality parameter estimates, because the available max-
imum field of 300 mT was not sufficient to saturate it. For
each mixture model, a Pearson’s c2 goodness of fit test
was performed. The standard error of the distribution
parameters was also estimated using the following
procedure. An appropriate noise signal, which corresponds
to the measurement error estimated by CODICA, was
added to the coercivity distribution by means of a random
number generator. The component analysis was then

performed on the resulting distribution, and new values
were obtained for each distribution parameter. The
procedure was repeated many times (generally 100) in
order to sample a significant set of estimates of the
distribution parameters, which allow the calculation of the
standard deviation for each parameter. The results are
summarized in Table 2. Each end-member coercivity
distribution can be normalized to have a unit saturation
remanence and can be drawn separately, as shown in
Figure 13. In this way, the comparison of end-member
coercivity distributions is facilitated.

Figure 11. Example of integrated approach to the component analysis of coercivity distributions. (a)
Coercivity distribution of a PM10 sample (GMA) collected in a green area near the city of Zurich
(Switzerland). The thickness of the line is the standard deviation of the estimated error. The coercivity
distribution is fitted with one SGG distribution. The difference between measured and fitted curve is
plotted below (thick line) together with the measurement error estimation provided by CODICA (thin
line pairs). The smallest error estimation refers to the real measurement of six demagnetization curves
of ARM with 72 steps each. The largest error estimation is calculated for the measurement of one
demagnetization curve with 12 steps. The intermediate error estimation refers to the measurement of
six demagnetization curves with 12 steps each or one demagnetization curve with 72 steps. The
modeled curve is incompatible with the highest precision measurement. Therefore, two magnetic
components are used for the component analysis shown in (b). In this case, the coercivity distribution
is well fitted within the error of the highest precision measurement. Line pairs represent the upper and
lower limit for the coercivity distribution of each component. An alternative approach to high-precision
measurements was the investigation of similar samples. In (c) and (d), the coercivity distributions of
other two PM10 dust samples are shown. These samples were collected near a high-traffic road in the
center of Zurich (WDK) and inside a highway tunnel near Zurich (GUH). The presence of two
magnetic components (called N and A) is evident in these samples. Furthermore, the contribution of
component A to the total ARM is related to the degree of pollution of the area (in increasing order:
GMA, WDK, and GUH).
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[36] Models with <6 Gaussian PDFs do not fit the
measured data sufficiently well. On the other hand, models
with 
6 Gaussian PDFs are not realistic, and the inter-
pretation of each PDF in terms of magnetic components
would be problematic. Models with three or four SGG
distributions fit the measurements sufficiently well and
provide significant estimates for, m, m and s of each
component. Skewness and kurtosis are not significant for all
components. However, the coercivity distribution of
component D is similar to the function plotted in Figure
10b and shows consistent and systematic deviations from a

Gaussian PDF: for all three samples s = 0 and k � 0.5,
which corresponds to p � 1.6. The end-member coercivity
distributions of the three samples are compared in Figure
13. The coercivity distributions of component D are
identical within the measurement error in all three samples.
The absolute contribution of this component varies
moderately among the three samples, if compared with
the contribution of the intermediate component. Thus, it is
reasonable to assume that the magnetization of component
D is carried by the same set of magnetic particles, whose
magnetization is dominant in sample U03F, which should

Table 1. Component Analysis of Sample G010 (Anoxic Lake Sediment) Based on the AF Demagnetization of an ARM Acquired in a

0.1 mT Bias Fielda

Fitting PDF
c2 of Fitting

(c2
0.95)

Norm. Contrib.
m�dm
M300mT

MDF
m2 ± m2 mT

SD
s2 ± ds2

Skewness
s ± ds

Kurtosis
k ± dk Comment

1 G 611 ± 35 (68.7) 0.812 ± 0.004 27.1 ± 0.1 0.358 ± 0.002 0 0 Significantly different
from the measurements1 G 0.104 ± 0.005 75.3 ± 0.5 0.122 ± 0.002 0 0

1 G 0.088 ± 0.006 169 ± 6 0.23 ± 0.01 0 0
Total 1.005 ± 0.003
2 G 71 ± 22 (61.7) 0.63 ± 0.2 23 ± 2 0.33 ± 0.04 �0.09 ± 0.1 0.2 ± 0.1 Numerically unstable,

single components are not real2 G 0.12 ± 0.02 71 ± 1 0.124 ± 0.006 �0.01 ± 0.06 �0.3 ± 0.1
1 G 0.27 ± 0.2 95 ± 50 0.35 ± 0.09 0 0
Total 1.02 ± 0.003
1 SGG 76 ± 20 (61.7) 0.79 ± 0.01 26 ± 1 0.38 ± 0.02 0.07 ± 0.2 0.5 ± 0.3 Numerically stable, slight deviations from

Gaussian PDF, some are significant1 SGG 0.10 ± 0.01 69 ± 1 0.120 ± 0.004 �0.20 ± 0.06 �0.3 ± 0.1
1 SGG 0.14 ± 0.02 170 ± 10 0.40 ± 0.04 1.3 ± 0.3 3.5 ± 1
Total 1.031 ± 0.006
1 SGG 61 ± 20 (55.7) 0.77 ± 0.02 26 ± 1 0.38 ± 0.01 0.05 ± 0.1 0.5 ± 0.1 Numerically stable, slight deviations from

Gaussian PDF, some are significant2 SGG 0.11 ± 0.04 72 ± 2 0.12 ± 0.01 0.1 ± 0.3 �0.4 ± 0.1
1 SGG 0.14 ± 0.04 130 ± 20 0.33 ± 0.06 0.2 ± 0.2 0.1 ± 0.4
Total 1.019 ± 0.006
Component 1 0.79 ± 0.01 26 ± 1 0.38 ± 0.02 0 ± 0.2 0.5 ± 0.2 c1: positive k
Component 2 0.11 ± 0.04 70 ± 2 0.12 ± 0.01 ? �0.4 ± 0.1 c2: probably 2 comp.
Component 3 0.14 ± 0.04 150 ± 20 0.36 ± 0.06 ? ? c3: not saturated
Total 1.03 ± 0.01 tot: 3% unsaturation

aThe corresponding coercivity distribution has been plotted in Figure 11a. The following PDFs were assumed as end-member distributions: 3 Gaussian
distributions, 5 Gaussian distributions, 3 SGG distributions, 4 SGG distributions. The second column gives the result of a Pearson’s c2 goodness-of-fit test,
and the other columns give the distribution parameters of the end-member coercivity distributions. The last row shows the final interpretation in terms of
three components. Component 1 is characterized by a small MDF (m2 = 26 mT) and a significant positive kurtosis. Component 2 has an intermediate MDF,
a small DP (s2 = 0.11), and a significant negative kurtosis. A negative kurtosis is characteristic for two overlapping components with similar values of m2.
Component 3 is characterized by high values of the MDF and was not saturated at 300 mT.

Table 2. Summary of Distribution Parameters of the Magnetic Components Found in Samples G010, G044, and U03F From

Baldeggersee, Switzerland

Parameter U03F G010 G044 Comment

m ± dm, mA m2/kg 16 ± 0.6 14 ± 0.2 59 ± 3 Detrital soft component:
m2, s2, s, and k are almost identical100 (m ± dm)/Mrs 67 ± 3 77 ± 1 20 ± 1

m2 ± dm2, mT 29 ± 1 26 ± 1 25.5 ± 0.5
s2 ± ds2 0.389 ± 0.006 0.38 ± 0.02 0.40 ± 0.01
s ± ds 0 ± 0.08 0 ± 0.1 0 ± 0.002
k ± dk 0.54 ± 0.04 0.5 ± 0.2 0.42 ± 0.05
m ± dm, mA m2/kg 7.3 ± 0.6 2.5 ± 0.7 1.8 ± 0.6 Hard component:

significant differences in all parameters.100 (m ± dm)/Mrs 30 ± 3 14 ± 2 0.6 ± 0.2
m2 ± dm2, mT 320 ± 50 150 ± 20 180 ± 20
s2 ± ds2 0.52 ± 0.05 0.36 ± 0.06 0.18 ± 0.03
m ± dm, mA m2/kg 6 ± 3 59 ± 3 Intermediate component 1:

Relatively soft. Small DP.
Maybe not the same component in U03F and G044.

m2 ± dm2, mT 54 ± 2 41.8 ± 0.5
s2 ± ds2 0.11 ± 0.02 0.153 ± 0.002
s ± ds ? �0.55 ± 0.04
k ± dk ? 0.33 ± 0.08
m ± dm, mA m2/kg 1.9 ± 0.3 77 ± 4 Intermediate component 2:

Relatively hard. Very small DP. m2 and s2 are almost identical.m2 ± dm2, mT 70 ± 2 71.3 ± 0.6
s2 ± ds2 0.12 ± 0.01 0.095 ± 0.002
s ± ds ? �0.41 ± 0.04
k ± dk �0.4 ± 0.1 0.14 ± 0.07
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Table 3. Summary of Distribution Parameters of the Magnetic Components Found in PM10 Samples

Parameter GMA WDK GUH Comment

m ± dm, mA m2/kg 338 ± 2 590 ± 2 316 ± 5 Natural mineral dust (N):
Coercivity distributions of GMA and WDK are similar.
GUH was collected in a tunnel.

100 (m ± dm)/Mrs 73 ± 1 41 ± 1 31 ± 1
m2 ± dm2, mT 23.8 ± 0.1 19.6 ± 0.1 15.9 ± 0.3
s2 ± ds2 0.456 ± 0.001 0.438 ± 0.001 0.343 ± 0.01
s ± ds �0.58 ± 0.02 �0.65 ± 0.01 �1.05 ± 0.03
k ± dk 0.76 ± 0.01 0.928 ± 0.001 1.756 ± 0.02
m ± dm, mA m2/kg 128 ± 2 864 ± 2 709 ± 2 Vehicle pollution dust (A):

All coercivity distributions are similar.100 (m ± dm)/Mrs 27 ± 1 59 ± 1 69 ± 1
m2 ± dm2, mT 77.3 ± 0.2 74.7 ± 0.2 77.5 ± 0.3
s2 ± ds2 0.245 ± 0.001 0.275 ± 0.001 0.23 ± 0.01
s ± ds �0.20 ± 0.02 �0.65 ± 0.01 �0.2 ± 0.1
k ± dk �0.19 ± 0.01 0.785 ± 0.002 �0.12 ± 0.01

Figure 12. Finite mixture model for the three sediment samples presented in this paper. The solid line
represents the coercivity distribution of the sample. The thickness of the line being the standard deviation
of the estimated error. The other line pairs represent the upper and lower limit for the coercivity
distributions of each identified component (labeled with D, I, and H). Details of the component analysis
for the three samples are listed in Table 2.
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be representative for the detrital input into the lake.
Component I has extremely low values of the dispersion
parameter: s < 0.15. In the sample with strongest
magnetization (G044) it is evident that component I is
composed by at least two subcomponents, which can be
found individually in the other samples at lower
concentration. The magnetization of component I varies
from 6 mA m2/kg in U03F (2.6% of the bulk magnetiza-
tion) to 136 mA m2/kg in G044 (80% of the bulk
magnetization). The coercivity distribution of component I
is comparable to that of samples containing intact cells of
magnetotactic bacteria [Moskowitz, 1988]. Intact and
broken chains of magnetosomes were observed under the
electron microscope in sample G044. Therefore component

I is identified as magnetite grains of bacterial origin. The
magnetic signal of component I may reflect changes in the
production rate of biogenic magnetite or a possible
reductive dissolution process of fine magnetite grains
during eutrophication periods. Component H is badly
resolved, because saturation was not reached in any of the
three samples. The highest contribution of this component
is found in sample U03F. The parameters m and s of
components D, I, and H in all three samples are drawn in
a scatterplot in Figure 14. The three components are well
grouped in three different regions of the plot. Component I
is compatible with the magnetic properties of pure single-
domain magnetite, whereas component D contains a small
but significant amount of magnetic particles with coerciv-

Figure 13. Coercivity distributions of the magnetic components found in the samples analyzed in this
paper. The coercivity distributions are normalized so that the saturation remanence (area under the curve)
equals to 1 to facilitate the comparison between different samples. (a) Component D of lake sediment
samples G010, G044, and U03F. The coercivity distribution of this component is identical in all three
samples within the confidence levels given by the measurement errors. This component may represent
detrital particles transported toward the center of the lake. (b) Component I2 of lake sediment samples
G010 and G044. The coercivity distribution of this component is identical in both samples within the
confidence levels given by the measurement errors. The relatively high coercivity and the extremely
small value of s are indicative for intact magnetosomes, either isolated or arranged in chains. (c)
Component N of the PM10 samples GMA and WDK. The coercivity distribution of this component is
slightly different in the two samples. This component may represent the magnetic minerals contained in
the mineral part of natural dust. (d) Component A of PM10 samples GMA, WDK, and GUH. This
component may represent the magnetic minerals associated with the pollution products of motor
vehicles.
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ities >300 mT, probably representing oxidized magnetite.
Component H is associated with a magnetically hard
mineral.
4.2.2. Urban Atmospheric PM
[37] Urban atmospheric PM is the subject of several

studies because of its negative effects on human health
[Harrison and Yin, 2000]. Magnetic properties of urban PM
have been recently investigated by several authors [e.g., Shu
et al., 2001; Muxworthy et al., 2002] because of the high
concentration of magnetic minerals in urban pollution. The
identification of various sources of magnetic particles in
urban PM would be of great interest for environmental
studies. Three samples of urban PM <10 mm (called PM10
in the following) were taken in the region of Zurich
(Switzerland) with a high-volume air sampler DIGITEL
DHA-80. Each sample was taken during a 24 hour run by
pumping 720 m3 of air through a filter. All samples were
taken during summer 2001 under dry weather conditions.
Heavy industries are absent from the region, and the
heating systems of buildings were not working during that
period. Under these conditions, the major sources of
urban PM in the city center of Zurich are represented by
motor vehicles and waste combustion products [Hüglin,
2000].
[38] Sample GMA was taken in a green area adjacent to

our paleomagnetic laboratory outside the city of Zurich.
The area is located far away from any heavily traveled
road and a small amount of urban pollution is therefore
expected to be found in this sample. The measured daily
mean PM10 concentration was 14 mg/m3. Sample WDK
was taken in the city center of Zurich near a heavily

traveled road (Wiedikon). The daily mean PM10 concen-
tration was 66 mg/m3, and a large amount of pollution
produced by motor vehicles is expected. Sample GUH was
taken inside a 3.5 km long highway tunnel near Zurich
(Gubrist tunnel). The pollution by motor vehicles is
expected to be highest in this sample, with a daily mean
PM10 concentration of 91 mg/m3. The samples were
measured with the same procedure as the lake sediments.
Results of the component analysis are summarized in
Table 3 and the coercivity distributions are plotted in
Figure 12. The coercivity distribution of the GMA sample
is similar to the distribution plotted in Figure 10c, and it is
well fitted with one SGG function. This fitting would pass a
significance test with the measurement results of a common
AF demagnetization experiment. However, two components
are needed to model the results of a high-precision
measurement consisting in six stacked AF demagnetization
curves with 72 steps each. The GMA sample can be
considered as an experimental example of the interpretation
problems discussed in section 4.1.
[39] The presence of two magnetic components in the

WDK and GUH samples is evident already from a visual
inspection of the coercivity distributions calculated with
CODICA. The contribution of the component with higher
coercivity (component A in the following) to the total
magnetization is related to the amount of urban pollution
in the sampling area. Therefore, we identify component A
with the urban PM. The component with smaller coer-
civity (component N) shows the opposite trend and can
be associated to the magnetic minerals contained in
natural dust. The coercivity distributions of components
A and N are plotted separately in Figures 13c and 13d;
and the corresponding distribution parameters are plotted
in Figure 14.

5. Conclusions

[40] The component analysis of coercivity distributions
offers a way to estimate the contribution of different
magnetic materials to the total magnetization of a sample.
Component analysis is very sensitive to measurement errors
and to the shape of the function used to model the end-
member distributions. Nevertheless, it allows to discrimi-
nate and quantify different magnetic components of the
same mineral, a result that is impossible to achieve with
standard rock magnetic investigations based on bulk meas-
urements. Careful experimental design and data treatment
allow to reduce the effect of measurement errors into
acceptable limits. Unjustified constrains on the shape of
the model functions used for component analysis should be
avoided. For this reason, generalized distribution functions
have been introduced, which are able to fit a large number
of different statistical distributions. In this way, a precise
estimation of magnetite components with widely overlap-
ped coercivity distributions was possible on lake sediments.
Different aspects related to the calculation and the inter-
pretation of coercivity distributions were analyzed and
tested on synthetic and natural coercivity distributions.
The results of these tests can be summarized into the
following points:
1. Not all end-member coercivity distributions can be

modeled using a logarithmic Gaussian function. General-

Figure 14. Summary of the mean properties of the
magnetic components found in the samples presented in
this paper. For each component, the median destructive field
and the dispersion parameter have been plotted. The ellipses
indicate the standard deviation of the estimated errors. The
dashed line delimitates the range of values of the MDF and
the DP for pure magnetite. The lower limit for the DP is
defined by the coercivity distribution of a set of identical,
uniaxial, and randomly oriented magnetite particles accord-
ing to the Stoner-Wolfarth model. The upper limit is defined
by all coercivity distributions that reach 99% saturation at
300 mT.
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ized distributions with five parameters can take into
account variations in the symmetry (skewness) and the
curvature (kurtosis). End-member coercivity distributions
with significant and systematic deviations from a logarith-
mic Gaussian function are needed to interpret theoretical
AF demagnetization curves of single-domain and multi-
domain magnetite, as well as measured demagnetization
curves of synthetic samples containing sized magnetite
grains.
2. The significance of the component analysis of

coercivity distributions should be evaluated with statistical
tests and with an error estimation of each distribution
parameter. Analytical expressions for the error estimations
have been developed.
3. Multiple solutions for the component analysis are

possible. In this case, other informations are needed to
identify the correct solution. A comparison between the
component analysis of different sediments, which belong to
the same ecological system, is useful for the identification
of magnetic components.
4. Component analysis is applicable to large sets of

samples with standard precision measurements, provid-
ing the number of magnetic components and their
coercivity distribution parameters is known from detailed
measurements on a selection of few, adequate reference
samples.

Appendix A: Error Calculations

Appendix B: A Short Guide to CODICA

[41] The elaboration of an acquisition/demagnetization
curve with CODICA consists in the following steps.

B1. Data Checking

[42] The measurement curve is always displayed as a
demagnetization curve (Figure 3a): this does not affect the
calculation of the coercivity distribution. The user is asked
to enter an estimation of the measurement error (if known).
This estimate may come from inspection of the measure-
ment curve and/or experimental experience with the instru-
ments used. A combination of a relative and an absolute
error is assumed to affect the measurements and the AF
field. Systematic errors, like magnetization offsets and
temperature effects on the sample and on the AF coil do
not affect significantly the shape of the measured curve and
may not be included. The calculation of a coercivity
distribution and the related error is independent of the
error estimate entered by the user. This first estimate is
needed by the program in order to display a rough
estimation of the confidence limits of the measured curve,
which should help the user through the following steps of
the program.

B2. Scaling the Magnetic Field (Figure 3b)

[43] As discussed in section 2.2, an acquisition/demag-
netization curve is supposed to have a sigmoidal shape
on a logarithmic field scale. However, the measured
curves are not symmetrical. Often, they show a long tail
at high fields. In case of lognormal coercivity distribu-
tions, the measured curve represented on a logarithmic
field scale becomes symmetric. In all other cases the
curve is asymmetric on both a linear and a logarithmic
field scale. An appropriate scale change which offers a
set of intermediate scales between linear and logarithmic
is defined by the power function H* = Hp, p being a
positive exponent. An appropriate value of p is chosen, so
that the scaled curve reaches maximum symmetry. The
symmetry of the curve is compared with a reference
sigmoidal curve, expressed by an analytical function (a tanh
function in our program). The scaled curve is therefore
represented together with the best fitting tanh function. An
automatic routine optimizes the scaling exponent p so that
the difference between the original curve and the model
curve is minimal.

B3. Scaling the Magnetization (Figure 3c)

[44] A tanh function was chosen as a reference in order to
scale the field, because of its mathematical simplicity. It
does not have a particular meaning and any other similar
function could be used instead. If the measured curve M(H)
coincides with a tanh function, the application of the inverse
function arctanh to the magnetization values generates a
linear relation between scaled field and scaled magnetiza-
tion. The scale transformation applied to the magnetization
values is based on the following model for the relationship
between the scaled field H* and the measured magnetiza-
tion M(H*) in a demagnetization curve:

M H*ð Þ ¼ Mrs 1� tanh a H*� H1=2
*

� �� �� �
þM0 ðB1Þ

Table A1. Effect of Different Measurement Error Sources on the

Calculation of a Coercivity Distributiona

Error Source Magnetization Curve Coercivity Distribution

General,
h = H/�H

Mi = M (Hi) + �M
�M = total error

fi ¼ Hiþ1þHi

2
Miþ1�Mi

Hiþ1�Hi

Measurement
error: dM

(�M )2 = (dM )2

+ f 2(dH )2
(�f )2 = 2h2 (dM )2 + 2f 2 (dH )2

Applied field error:
dH

Absolute
measurement
error: dM = e

�M = e �f ¼
ffiffiffi
2

p
he

Relative
measurement
error: dM/M = e

�M/M = e �f ¼
ffiffiffi
2

p
heM

Absolute
applied field
error: dH = e

�M = ef �f =f ¼
ffiffiffi
2

p
he=H

Relative
applied field
error: dH/H = e

�M = efH �f =f ¼
ffiffiffi
2

p
he

Mechanical
instability:
dM = eHM

�M = eHM �f ¼
ffiffiffi
2

p
heHM

aThe numerical calculation of a coercivity distribution from an
acquisition/demagnetization curve with finite differences is given in the
first row. In the second row, general equations for the error estimation are
given by assuming an error dM in the measurement of the magnetization
M and an error dH in the applied field H. In the other rows, error
estimations are given for particular cases where the absolute or the relative
error of M or H are described by a white noise of amplitude e. The last
row gives an error estimation in the case where a small part e of all
magnetic particles, which are not magnetically unblocked by the applied
field, becomes mechanically unstable and rotates under the influence of a
torque T / H. The amount of these particles is assumed to be proportional
to T and thus to H. The corresponding magnetization is then proportional
to HM(H), where M(H) is the magnetization of all magnetically blocked
particles.
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where Mrs has the physical meaning of a saturation
remanence (if the measured curve is saturated at the highest
field value), M0 has the physical meaning of a residual
magnetization (M0 = 0 if saturation can be reached), H*

1/2 is
the scaled median destructive field, and a is a parameter that
controls the steepness of the curve. The following scale
transformation

M* ¼ artanh 1�M �M0

Mrs

� �
ðB2Þ

generates the linear relation M* = a(H* � H*
1/2) between

scaled field and scaled magnetization. The four parameters
Mrs, H*

1/2, M0, and a have to be chosen in a way that the
scaled magnetization curve as linear as possible. The
program optimizes the parameters H*

1/2 and a automatically
using a Levenberg–Marquard algorithm for nonlinear
fitting. The parameters M0 and M0 + Mrs represent the
asymptotic values of the magnetization curve. Their
optimization is controlled by the user, since it was found
that the optimization is very unstable with respect to these
parameters. The scaled curve is represented together with a
least squares linear fitting. Deviation from the least squares
line can be minimized with an appropriate choice of M0

and M0 + Mrs. In general, too small values of M0 or too

high values of M0 + Mrs produce a flattening at the right
and left end of the scaled curve, respectively. In contrast,
too high values of M0 or too small values of M0 + Mrs

produce a steepening of the scaled curve at the right and
left end of the scaled curve, respectively. Random
deviations from the least squares line indicate the presence
of measurement noise, systematic smooth deviations
indicate a divergence of the measured curve from (B1).
Best results are achieved using samples in which one
magnetic component is dominant or in which different
components have a wide range of overlapping coercivities.
In both cases the choice of 5 independent parameters for
the two scaling operations ( p, Mrs, H*

1/2, M0, and a) is
sufficient to achieve an excellent linear relationship
between scaled field and scaled magnetization. In case of
populations with drastically different coercivity ranges (i.e.,
magnetite and hematite) the scaling method is less
effective, but in this case the separation of the different
components is also less critical and can be performed even
directly on the measured curve.

B4. Plotting the Residuals (Figure 3d)

[45] Once the measured curve is scaled with respect to
field and magnetization, the deviation of the scaled curve
from the least squares line is plotted. We will call this

Table A2. A Summary of Properties of the SGG Distribution and the Relative Error Estimationsa

Distribution Properties Relation With the Distribution Parameters RCF Inequality
Minimum c2 Fitting

(One Unknown Parameter)

Optimized c2(q) : n � l � 1
a confidence limits: [cn�l�1;a, cn�l�1;1�a]

for n � l � 1: n� lð Þ � ua
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 n� lð Þ

p
General parameter q �q 


ffiffi
2

p
p1=4dy

ffiffiffiffiffiffiffi
s�x

p

R1
�1

@f xð Þ
@qð Þ2 dx

f xð Þ

� �1=2 �q ¼ dy
ffiffiffiffiffi
�x

p

R1
�1

@f xð Þ
@qð Þ2dx

� �1=2

Amplitude m dm 

ffiffiffi
2

p
p1=4dy

ffiffiffiffiffiffiffiffiffi
s�x

p
dm ¼

ffiffiffi
2

p
p1=4dy

ffiffiffiffiffiffiffiffiffi
s�x

p

Mean m2 = E(x) mþ s
6
1þ 0:856kð Þ dm2 


ffiffiffi
2

p
p1=4 dy

m

ffiffiffiffiffiffiffiffiffiffiffi
s3�x

p
dm2 ¼ 2p1=4 dy

m

ffiffiffiffiffiffiffiffiffiffiffi
s3�x

p

SD: s22 = E[(x � m2)
2] s2(1 + 1.856k)(1 � jsj/3) ds2 
 p1=4 dy

m

ffiffiffiffiffiffiffiffiffiffiffi
s3�x

p
ds2 ¼ 2

ffiffiffi
2

p
3p1=4 dy

m

ffiffiffiffiffiffiffiffiffiffiffi
s3�x

p

Skewness s: E[(x � m2)
3]/s2

3 �6 sgn q (1 � q)2 (1 + 1.856k) ds 
 4 2pð Þ1=4dy
m

ffiffiffiffiffiffiffiffiffi
s�x

p
ds ¼ 48ffiffiffiffi

13
p p1=4 dy

m

ffiffiffiffiffiffiffiffiffi
s�x

p

Kurtosis k: E[(x � m2)
4]/s2

2 � 3 2 � p dk 
 3:204 dy
m

ffiffiffiffiffiffiffiffiffi
s�x

p
dk ¼ 8:243 dy

m

ffiffiffiffiffiffiffiffiffi
s�x

p

aThe following notations are used: n is the number of measurements, l the number of estimated parameters, and ua the a-quantile of the standardized
Gaussian distribution (u0.95 = 1.6). Other notations are explained in the text. The second column gives approximate estimations of some distribution
properties when p ! 1 and q ! 2. The third column gives the minimum error estimations of all distribution parameters, according to the RCF inequality.
The last column gives the error estimations of the minimum c2 fitting method, when only one parameter is unknown.

Table A3. Summary of Error Estimations for the Parameters of a SGG Distributiona

Distribution
Moments

Minimum c2 Fitting
(With l = 1)

Num. Est.
(l = 1)

Minimum c2

Fitting (With l = 3)
Num. Est.
(l = 3)

Num. Est.
(l = 5)

Amplitude m dm ¼
ffiffiffi
2

p
p1=4dy

ffiffiffiffiffiffiffiffiffi
s�x

p
0.993 dm ¼

ffiffiffi
3

p
p1=4dy

ffiffiffiffiffiffiffiffiffi
s�x

p
1.203 1.293

Mean m2 dm2 ¼ 2p1=4 dy
m

ffiffiffiffiffiffiffiffiffiffiffi
s3�x

p
0.990 dm2 ¼ 2p1=4 dy

m

ffiffiffiffiffiffiffiffiffiffiffi
s3�x

p
1.021 1.032

SD s2 ds2 ¼
ffiffi
8
3

q
p1=4 dy

m

ffiffiffiffiffiffiffiffiffiffiffi
s3�x

p
0.997 ds2 ¼ p1=4 dy

m

ffiffiffiffiffiffiffiffiffiffiffi
s3�x

p
1.139 2.643

Skewness s ds ¼ 48ffiffiffiffi
13

p p1=4 dy
m

ffiffiffiffiffiffiffiffiffi
s�x

p
0.883 1.411

Kurtosis k dk ¼ 8:243 dy
m

ffiffiffiffiffiffiffiffiffi
s�x

p
0.698 2.032

aThe errors are calculated analytically and numerically for the minimum c2 fitting method. The numerical error estimation is obtained by fitting 1000
simulated SGG distributions. These distributions are obtained by adding a Gaussian noise signal of known amplitude to a standardized SGG distribution
(m = 1, m = 0, s = 1, q = 1, and p = 2). The numerical estimates are reported as the ratio between the results of the numerical simulation and the analytical
equations reported in the second column. The second and the third columns refer to a minimum c2 fitting with one unknown parameter (m, m, s, q, or p),
the fourth and fifth columns to a minimum c2 fitting with three unknown parameters (m, m, and s), and the last column to a minimum c2 fitting where all
parameters are unknown.
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deviation the residuals curve. At this step, measurement
errors are enormously enhanced, as can be seen by compar-
ing the residuals with the original measured curve (not
shown in Figure 3d). The estimated maximum measurement
error is plotted in the form of a band around the residual
curve. If the error estimation entered by the user was
correct, the amplitude of the random oscillations of the
residual curve should show the same order of magnitude as
the displayed errors.

B5. Scaling the Residuals (Figure 3e)

[46] Generally, the residuals generate a sinusoidal curve,
which is more or less ‘‘quenched’’ at one end. As in step 2,
the field axis can be rescaled with a power transformation
in order to approach a quite regular sinusoidal curve, which
later can be filtered in a more effective way. After this new
rescaling step, the residual curve is almost sinusoidal. Its
Fourier spectrum is concentrated in a narrow band around a
dominant wavelength, so that a simple low-pass filter
would easily remove the high-frequency measurement
noise.

B6. Filtering the Residuals (Figure 3f )

[47] The residual curve is now ready to be filtered in
order to remove the measurement noise. The filter applied
by the program is a modified Butterworth low-pass filter,
defined by:

F nð Þ ¼ 1

1þ nb0=nb
� �1=2b ðB3Þ

where n is the frequency of the spectrum, n0 the so-called
cutoff frequency, and b3 1 the order of the filter. The filter
parameters n0 and b are chosen by the user. Details of the
residual curve with an extension smaller than 1/n0 on the
field axis are filtered out. The sharpness of the filter is
controlled by its order b: b ! 1 gives a cutoff filter. The
filter parameters should be chosen so that the measurement
error is suppressed without changing the global shape of the
curve. This condition is met by choosing the smallest value
of n0, by which the difference between the filtered and the
unfiltered curve attains the same maximal amplitude as the
estimated measurement errors. The choice of larger values
of n0 leads to a coercivity spectrum that fits the measured
curve better but still contains an unremoved component of
the measurement errors. The choice of larger values of n0
may produce a change in the shape of the curve and
suppress significant details.

B7. Calculating the Filtered Demagnetization Curve

[48] Now, the filtered residuals are converted back to the
original curve by applying the steps 2–5 in reverse order.
The result is a demagnetization curve, which is supposed to
be free of measurement errors.

B8. Calculating and Plotting the Coercivity
Distribution

[49] The filtered demagnetization curve obtained at point
7, the coercivity distribution is calculated as the absolute
value of the demagnetization curve. The user can choose
between a linear, a logarithmic and a power field scale. The
maximum amplitude of the error of the coercivity distribu-
tion is estimated in the program by comparing the measure-

ment curve with the filtered curve. The error estimation is
displayed as an error band on the plot (Figure 1).

Appendix C: Error Estimation

[50] A measured distribution is given by yi = f (xi) + dyi,
where (xi,yi) is a measurement point and dyi the related
measurement error. In following we assume the measure-
ment error to be ergodic (i.e., statistically independent of x)

C1. The RCF Theorem

[51] Let f (xjq) be a PDF with distribution parameter q, and
X1, . . ., XN a set of N realizations of the statistic variate X.
The variance var q̂ of the parameter q̂ estimated with this set
of realizations obey the RCF inequality [Cowan, 1998]:

var q̂
� �


 1

N
PN
i¼1

f xijqð Þ @q ln f xijqð Þ½ �2
ðC1Þ

We use the RCF inequality to calculate var q̂ when f (xjq) is
measured directly, instead of X1, . . ., XN. For this propose,
we imagine that f (xjq) is calculated from a set of N
realizations by counting the numbers Ni of realizations
which belong to given intervals of amplitude �xi around a
set of reference points x1, . . ., xn. Consequently, yi = Ni/�xi
and yi ! f (xijq) for N ! 1, �xi ! 0. The probability
distribution of Ni is a Poisson distribution with expected
value E(Ni) = Nf(xi)�xi and variance var(Ni) = E(Ni).
Because var(Ni)/E

2(Ni) = var dyi/yi
2, we obtain E(Ni) = yi

2/var
dyi. Inserting the sum of all Ni into (C1) gives:

var q̂
� �


 1Pn
i¼1

yi
vardyi

� �2Pn
i¼1

@qf xijqð Þ½ �2
f xijqð Þ

ðC2Þ

For equally spaced reference points, xi+1 � xi = �x, and if
�x! 0 the summands in (C2) are conveniently replaced by
integrals:

var q̂
� �


 �xR1
�1

f 2 xjqð Þ
vardy xð Þ dx

R1
�1

@qf xjqð Þ½ �2
f xjqð Þ dx

ðC3Þ

A further simplification is obtained by assuming the
measurement error dyi to be ergodic. Then, var dyi = (dy)2 and:

var q̂
� �


 �x dyð Þ2R1
�1

f 2 xjqð Þdx
R1

�1

@qf xjqð Þ½ �2
f xjqð Þ dx

ðC4Þ

If f (xjq) is a Gauss distribution with variance s2, simplifies
finally to (8).

C2. Error Estimation With Unbiased Fitting
Methods
[52] Both the maximum likelihood (ML) and the mini-

mum c2 fitting method are asymptotically identical and
absolute efficient for n ! 1, where n is the number of
measured points [Cowan, 1998]. We handle therefore only
the minimum c2 method, which is directly related to the
Pearson’s c2 goodness of fit test (see section 2.3). Consider
a set of N realizations X1, . . ., XN of the statistic variate X,

EGLI: REMANENT MAGNETIZATION CURVES EPM 4 - 23



and a model distribution f (xjQ) which depends on the
distribution parameters Q = (q1, . . ., qk). The c

2 estimator is
given by:

c2 Qð Þ ¼
Xn
i¼1

Ni ��xi f xijQð Þ½ �2

�xi f xijQð Þ ðC5Þ

where Ni is the number of realizations which belong to an
interval of amplitude �xi around a given value xi. The
minimum c2 estimate Q̂ is the value of q which minimizes
c2(Q). In our case, the individual realizations are unknown,
but a measure of f (x, Q) is given. As shown before, each
measurement yi of f (xi, Q) is related to a number ni = yi

2/var
dyi of realizations. In this case, (C5) can be written as:

c2 Qð Þ ¼
Xm
i¼1

yi � f xijQð Þ½ �2

var dyi
ðC6Þ

If the measurement error is ergodic, var dyi = (dy)2 and (C6)
simplifies to:

c2 Qð Þ ffi 1

dyð Þ2
Xm
i¼1

yi � f xijQð Þ½ �2 ðC7Þ

Equation (C7) is proportional to the mean quadratic error,
and the c2 fitting method converge to a simple least squares
fitting. It should be noted that this result holds only as far as
dy(x) is independent of x, and jdyij � f (xijQ). If for instance
the relative error dyi/yi is ergodic instead of dyi, c

2(Q) is no
longer related to the mean quadratic error. The minimization
of c2(Q) is performed by setting:

@c2 Qð Þ=@qi ¼ 0 ; i ¼ 1 . . . k ðC8Þ

The estimate Q̂ is a solution of (C8). The variance Q̂ of Q is
obtained by linearizing (C8) for Q ! Q̂:

var p ¼ JTJ
� ��1

Jyð Þ

J ¼ J1; . . . ; Jn½ �T ; y ¼ dy21; . . . ; dy
2
n

� �
Ji ¼ J 2i1; . . . ; J

2
ik

� �
; Jij ¼

@f xijQð Þ
@pj

ðC9Þ

If y is ergodic and the measuring points are equally spaced,
(C9) can be conveniently approximated with integrals:

var p ¼ �x dyð Þ2C�1�

C ¼ C1; . . . ;Ck½ �T ;Ci ¼ C2
i1; . . . ;C

2
ik

� �
;� ¼ C11; . . . ;Ckk½ �

Cij ¼
R
X

@f xjQð Þ
@pi

@f xjQð Þ
@pj

dx

ðC10Þ

A particularly simple case of (C10) is (9), where only one
parameter is optimized (Q = q).

Notation

H Magnetic field
M Sample magnetization
m Magnetization of a component

f A general distribution function
q A general distribution parameter
q̂ An estimate of q

GG Generalized Gauss distribution
SGG Skewed Generalized Gauss distribution

m2 Mean value of a distribution
s2 Standard deviation of a distribution
s Skewness of a distribution
k Coefficient of excess kurtosis of a distribution
m Distribution parameter for the mean
s Distribution parameter for the standard deviation
q Distribution parameter for the skewness
p Distribution parameter for the kurtosis
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