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S U M M A R Y
Magnetic grain-size and coercivity distributions of a superparamagnetic (SP) particle ensem-
ble together determine its frequency dependence of susceptibility (FDS). Investigating the
mathematical theory of this dependence leads to a general dispersion relation between real and
imaginary parts of the complex susceptibility for SP particle ensembles, which extends the
previous treatment by Néel. Using the new theory, it is demonstrated that the inverse problem
of determining the combined grain-size and coercivity distribution from FDS measurements
is not uniquely solvable. The inversion of the FDS at one temperature can be described by a
deconvolution integral, the kernel of which is analytically calculated. The deconvolved FDS
corresponds to an energy barrier distribution. Only using a priori assumptions about the re-
lation between particle volume and coercivity it can be interpreted in terms of a volume or
grain-size distribution. In order to deconvolve natural rock measurements, a semi-analytical
parametric deconvolution method has been developed, which allows to reconstruct the SP
grain-size distribution even from relatively noisy data. Dense measurements of FDS at several
temperatures can be used to check for the applicability of the above theory. Observed devia-
tions can be interpreted in terms of magnetostatic particle interaction. A quantitative estimate
is presented, which allows to determine the average interaction field together with the volume
distribution.

Key words: deconvolution, environmental magnetism, frequency-dependent susceptibility,
measurement techniques, stochastic resonance, superparamagnetism.

1 I N T RO D U C T I O N

During the last two decades the results from environmental mag-
netism have been recognized to be of major importance for the
study of Quaternary climate change (Thompson & Oldfield 1986;
Maher & Thompson 1999; Evans & Heller 2003). The ubiquitous
magnetic mineral fraction represents a reliable fingerprint of source
and transport processes in marine as well as in continental sedimen-
tary systems and, in addition, allows to reconstruct post-depositional
processes (Tarduno 1994). Therefore, detailed knowledge of grain-
size-dependent magnetic characteristics is an essential prerequisite
for environmental studies. In particular, the submicroscopically fine
ferrimagnetic fraction provides information about iron mobiliza-
tion, migration and precipitation during soil formation (Le Borgne
1955; Mullins & Tite 1973; Dearing et al. 1996) and also acts as sen-
sitive magnetic recorder of palaeoclimatic and palaeoenvironmen-
tal change in marine sedimentary environments (Frederichs et al.
1999). Fine magnetite grains also constitute the physical basis for
magnetoreception in living organisms (Blakemore 1975; Kirschvink
et al. 1985; Wiltschko & Wiltschko 1995). Magnetite particles hav-
ing grain sizes below approximately 30 nm cannot support a stable

magnetic moment at room temperature due to thermally induced
spontaneous magnetization changes (Néel 1949). This behaviour is
known as superparamagnetism (SP) because the particles behave
similar to paramagnetic atoms although their magnetic moment is
by many orders of magnitude larger (Bean & Livingston 1959).
Stephenson proposed a theoretical method for the determination of
SP grain-size distribution f (v) using a polynomial representation
of f (v) (Stephenson 1971). In the same paper he proposed also a
practical method of its determination based on measurement of the
decay of thermomagnetization (TRM) or saturation remanence M rs

as the sample warms up in zero magnetic field H . Worm and Jackson
used the latter method to determine the grain-size distribution of the
SP fraction of three extraordinary tuff samples (Worm & Jackson
1999). Stephenson’s method determines the coefficients of some
specific form for the distribution function f (v) by comparing theo-
retical predictions with experimental results (Stephenson 1971). It
relies upon a priori knowledge about the possible distribution func-
tions, a fixed relation between coercivity and particle volume, and
the complete lack of interaction effects. It has not yet been investi-
gated whether more exact and rigorous information can be obtained
by inverse modelling of the distribution function f (v) by using large
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experimental data sets. It is well known that very detailed infor-
mation can be obtained from the measurement of the frequency-
dependent susceptibility (FDS) at a number of temperatures
(Stephenson 1971; Eyre 1997; Worm & Jackson 1999). Measur-
ing room temperature FDS at only two frequencies (usually 400 Hz
and 4 kHz) is a standard procedure in environmental magnetism to
infer the presence of SP particles (Thompson & Oldfield 1986). Its
problems and limits have been thoroughly discussed (Dabas et al.
1992; Dearing et al. 1996; Eyre 1997; Worm 1998). The present
article gives a complete analysis of the problem of determining the
grain-size distribution of SP particle ensembles from FDS mea-
surements at several temperatures for the case of non-interacting
ideal Stoner–Wohlfarth (Stoner & Wohlfarth 1948) single-domain
(SD) particles. Moreover, it is shown that not even an arbitrarily
dense data set allows to infer the 2-D grain distribution in volume
and coercivity. On the other hand, we demonstrate that magneto-
static particle interaction distorts the FDS signal and derive a new
method to estimate average interaction field and magnetic freez-
ing temperature of the SP particle ensemble. It should be consid-
ered that FDS measurements at several temperatures could be much
easier included into a routine measurement scheme than other low
temperature measurements which are usually applied to obtain SP
grain-size distributions.

2 B A S I C FA C T S F RO M T H E T H E O RY
O F F D S

In SD particles below some critical size the exchange interaction en-
forces coherent rotation of all quantum mechanical spin moments.
This case of coherent rotation is valid throughout for SP mag-
netite particles (Néel 1949; Mullins & Tite 1973; Dabas et al. 1992;
Winklhofer et al. 1997). In Néel’s (Néel 1949) theory of superpara-
magnetism it is assumed that an uniaxial SD particle is in one of two
possible states which in zero external magnetic field are separated by
an energy barrier Eb, small enough to be overcome by thermal acti-
vation energy kBT , where kB denotes the Boltzmann constant and T
is the absolute temperature. The name superparamagnetism refers
to the fact that the physical description of such a non-interacting
magnetic particle ensemble is analogous to the theory of paramag-
netism.

For an ensemble of particles, each of which has the same volume
v and energy barrier Eb, the Ising approximation gives the average
magnetization

M(H, T, v) = n v Ms tanh

[
µ0 MsvH

kB T

]
, (1)

where H is the magnetic field, Ms is the saturation magnetization
and n denotes the number of particles per unit volume. Accordingly,
c = nv corresponds to the volume concentration of the magnetic
fraction. If the anisotropy axes of a particle ensemble are randomly
oriented in space, the static initial susceptibility χ 0 is given by

χ0 = d M

d H
(0) = α(T ) v2 n = α(T ) v c, (2)

where α(T ) = µ0 M2
s (T )

3kB T . Though derived here using the simple Ising
approximation, eq. (2) remains valid for uniaxial particles even if
the magnetization varies continuously (Néel 1949).

In zero field the time-dependent average magnetization M(t) of a
random ensemble of SP particles with the same Eb relaxes toward
its equilibrium magnetization M 0 = 0 according to

d M

dt
= − 1

τ
M, (3)

where

τ = τ0 exp(ε/2), (4)

and ε = Eb(T )/(kBT) is the normalized (to the thermal energy)
energy of the potential barrier and τ 0 is the spin relaxation time (Néel
1949). This equation assumes that the typical timescale of dynamic
spin movement is small compared to τ and relaxation essentially is
a thermally driven process. The energy barrier usually is expressed
in terms of a microcoercivity Hk(T ) as

Eb(T ) = µ0 Hk(T )Ms(T ) v. (5)

According to (Brown 1959), the spin relaxation time τ 0 varies with
volume and temperature:

τ0 = 1

γ ′µ0 Hk

√
2π kB T

µ0 Hk(T )Ms(T )v
= 1

γ ′µ0 Hk

√
2π

ε
. (6)

In this equation, γ ′ is defined as

γ ′ = η Ms

(η Ms)2 + γ −2
, (7)

where γ is the gyromagnetic ratio and η is a damping constant the
value of which is badly known. In order to resolve this uncertainty,
Brown recommends to set η = (γ Ms)−1 in practical applications
(Brown 1963). As seen from (7), for this value γ ′(η) assumes its
maximum equal to γ /2, while

τ0 = 2
√

2π

γµ0 Hk

√
1

ε
(8)

is minimal. Since for magnetite SD grains Hk typically is in the
range of 104–105 A m−1, the most likely value of τ 0 is (10−9 to
10−8) ε−1/2. The values of ε considered here satisfy the condition
ωτ 0 ∼ exp (−ε/2) or ε ≈ −2 ln ω τ 0. The frequency range of usual
FDS measurements is 0.1–105 Hz, thus the corresponding range of ε

is 10–50. Therefore, in good approximation we can set
√

ε � 5 and
within the range of its inevitable uncertainty τ 0 can be considered
as independent of ε.

In a static small magnetic field H the equilibrium magnetization
is M 0 = χ 0 H and the relaxation is described by

d M

dt
= − 1

τ
(M − M0) ⇒ τ

d M

dt
+ M = χ0 H. (9)

When a time-dependent field H (t) = Heiωt is applied, where ω is
small with respect to 2π/τ 0, the ‘equilibrium’ towards which the
sample relaxes varies with time as M 0(t) = χ 0 H (t). Substituting
the latter into (9) yields Néel’s (Néel 1949) expressions for the time-
varying sample magnetization M(t) = χ (ω) H (t) and susceptibility

τ
d M

dt
+ M = χ0 H (t),

(iω τ + 1) χ (ω) = χ0.
(10)

The second line results from substituting for H(t) and M(t). Thus, the
complex FDS for an isotropic SP ensemble of particles, all of which
have the same volume v and energy barrier ε, at a fixed temperature
T is

χ (ω, ε, v) = χp(ω, ε, v) − iχq (ω, ε, v)

= α

(
v c

1 + ω2τ 2
− i

v c ωτ

1 + ω2τ 2

)
, (11)

where in the last term χ 0 is substituted using (2).
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3 F D S O F I N H O M O G E N E O U S
PA RT I C L E E N S E M B L E S

To obtain the complex FDS for a realistic SP ensemble containing
particles with different volumes v and energy barriers ε, (11) must
be integrated over all these volumes and energy barriers. To this end,
the concentration c in (11) must be replaced by c(ε, v) dv dε which
denotes the concentration of SP particles having their volume in the
range [v, v + dv] and their energy barrier in the range [ε, ε + dε].
Of course, integrating c(ε, v) over ε and v gives the total volume
concentration c. The ensemble’s complex susceptibility now is

χ (ω) =
∫ ∞

0

∫ ∞

0
χ (ω, ε, v) dv dε = α

∫ ∞

0

∫ ∞

0

v c(ε, v)

1 + i ωτ
dv dε. (12)

Because the volume integration affects only the nominator, this can
be expressed in terms of

v(ε) =
∫ ∞

0
v c(ε, v) dv, (13)

where v(ε) dε corresponds to an effective volume of particles
with energy barrier within [ε, ε + dε]. With this convention, (12)
becomes

χ (ω) = α

∫ ∞

0

(
v(ε)

1 + ω2τ 2
− i

ωτ v(ε)

1 + ω2τ 2

)
dε. (14)

Using relation (4) and introducing the new variable λ =
−2log(ωτ 0) yields a representation of χ (λ) in terms of
convolutions

χ (λ, T ) = α

∫ ∞

0

v(ε)

1 + exp(−(λ − ε))
dε−iα

∫ ∞

0

v(ε)

2 cosh λ − ε

2

dε. (15)

of the functionv(ε) with the kernels K p(x) = 1
1 + exp(−x) and Kq (x) =

1
2 cosh x

2
, correspondingly. By setting c(ε, v) = 0 and consequently

v(ε) = 0 for ε < 0, the lower integration limit can equally be
chosen as −∞ in order to apply the convolution theorem for Fourier
transforms. When the Fourier transform of a function h is denoted
by

F (h)(y) =
∫ ∞

−∞
h(x) e−i xy dx (16)

and the inverse Fourier transform by

F−1(h)(x) = 1

2π

∫ ∞

−∞
h(y) eixy dy (17)

one obtains

F (χp)(y) = −α
iπ

sinh πy
F (v)(y), (18)

F (χq )(y) = α
π

cosh πy
F (v)(y). (19)

Here, −i π

sinh πy and π

cosh πy are the Fourier transforms of the kernels
Kp and Kq, respectively. Eliminating F (v)(y) results in the general
dispersion relation

F (χq )(y) = i tanh πy F (χp)(y), (20)

which holds for arbitrary non-interacting SP particle ensembles—
even for mixtures of different minerals. By application of the prop-
erties of the Fourier transform and the series expansion of tanh x ,
this relation can be expressed in terms of derivatives as

χq (λ) =
∞∑

k=1

π2k 22k
(
22k − 1

)
(2k)!

Bk χ (2k−1)
p (λ), (21)

where Bk is the kth Bernoulli number. The first three terms of this
expansion are

χq (λ) = πχ ′
p(λ) + π3

3
χ (3)

p (λ) + π5

15
χ (5)

p (λ) + . . . . (22)

If the higher derivatives are negligible, we obtain Néel’s approxima-
tion

χq (λ) ≈ πχ ′
p(λ). (23)

To the best of our knowledge, only this approximative form of dis-
persion relation (21) has been stated before (Néel 1949; Mullins &
Tite 1973; Dabas et al. 1992), but without discussion of the con-
ditions for its validity. Based on (20) and (21), it can be explained
why Néel’s approximation in most applications performs extremely
well. It only leads to errors if large wave numbers y in (20) are
dominant or, equivalently, if derivatives of χ p(λ) higher than the
second cannot be neglected. Thus, (23) assumes smooth functions
χ (λ) which over short intervals 
λ <∼ 1 can be nicely approximated
by quadratic functions. In terms of the effective volume distribution
v(ε), Néel’s approximation requests a higher degree of smoothness
and precludes closely spaced minima and maxima. In natural en-
sembles this is a weak restriction and Néel’s approximation usually
perfectly coincides with experimental data.

4 A S E M I - A N A LY T I C A L
D E C O N V O L U T I O N M E T H O D

From both, (18) and (19) it is possible to determine v(ε):

v(ε) = 1

α π
F−1[i sinh πy F (χp)(y)](ε), (24)

v(ε) = 1

α π
F−1[cosh πy F (χq )(y)](ε). (25)

In Néel’s approximation these formulae become extremely simple,
since it considers the case of small y, where sinh π y ≈ π y and
cosh π y ≈ 1. We then have from (24) and (25)

v(ε) = 1

α
χ ′

p(ε), (26)

v(ε) = 1

α π
χq (ε). (27)

In other terms, Néel’s approximation replaces the kernel Kq(x)
by Kronecker’s δ-function πδ(x), while Kp(x) is approximated by
Heaviside’s step function S(x) (Fig. 1). This follows directly from
(15) by taking into account that

∫ ∞
−∞

dε

2 cosh λ − ε
2

= π .

Eqs (24) and (25) give the exact formal solution of the inverse
task of determining v(ε) from FDS measurements. Their practical
application is limited by two obstacles. First, a complete reconstruc-
tion of v(ε) would require FDS measurement at a single temperature
over about 10 frequency decades. Common measurement devices
allow for at most four decades and therefore results from several
temperatures must be combined into a single interpretation. Sec-
ond, a direct evaluation of (24) and (25) requires numerical decon-
volution. For sparse and noisy data—as they commonly occur in
FDS measurements—deconvolution by discrete Fourier transform
is known to produce unwanted high-frequency noise which com-
pletely spoils the signal content.

The first problem of merging FDS data from several temperatures
will be the main topic of the following sections. To solve the sec-
ond problem, a semi-analytical parametric deconvolution approach
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Figure 1. Sketch of the kernels Kp(λ − ε) (grey) and Kq(λ − ε) (black) for
a realistic value of ε = 20. In Néel’s approximation Kp is replaced by a step
function, while Kq is approximated by a delta function.

is proposed where the measured values χ p(λm) and χ q (λm) are
approximated by regularized polynomials

Pσ (λ) =
n∑

k=0

ak λk e−(λ/σ )2
, Qσ (λ) =

n∑
k=0

bk λk e−(λ/σ )2
. (28)

The regularized monomials λke−λ/σ 2
are analytically deconvolved

by observing that the right-hand side of both, (24) and (25), are
linear combinations of expressions of the form

F−1[ea y F (λk e−(λ/σ )2
)(y)](x) = e−( x−i a

σ )2

(x − ia)k, (29)

which are directly obtained from the Fourier integrals by substitu-
tion. For λ in a finite interval this yields in the limit σ → ∞:

F−1
[−i sinh πy F (λk)(y)

]
(ε) = Im(x + iπ )k, (30)

F−1
[
cosh πy F (λk)(y)

]
(ε) = Re(x + iπ )k . (31)

From this result, the following simple and robust deconvolution
algorithm is obtained:

(1) Fit the measured values χ p(λm) by an nth order polynomial
P[λ]. The deconvolution of the real part is then obtained as

v p(ε) = 1

α π
Im P(ε + iπ ). (32)

(2) Fit the measured values χ q (λm) by an nth order polynomial
Q[λ]. The deconvolution of the imaginary part is then obtained as

vq (ε) = − 1

απ
Re Q(ε + iπ ). (33)

5 I N V E RT I N G F O R V O L U M E
D I S T R I B U T I O N

5.1 The general integral equation

The above results show that that only the average volume distribu-
tion v(ε) can be directly derived from FDS measurements. This is
in general not sufficient to determine the concentration c(ε, v), al-
though v(ε) and c(ε, v) are linked through (13) which at first glance
resembles an integral equation of first kind. However, the peculiarity
of this equation is that it must be solved for c(ε, v) and any example
of two functions ci(ε, v) = fi(v) Y (ε), i = 1, 2 where∫ ∞

0
v f1(v) dv =

∫ ∞

0
v f2(v) dv (34)

shows, that this cannot be done in a completely general way without
additional information.

5.2 Two classes of solutions

Here, two complementary cases are considered, where either some
information is not required, or sufficient additional information is
available to determine c(ε, v) with the help of (13).

(1) The concentration function c(ε, v) can be factorized into

c(ε, v) = f (v) Y (ε), (35)

where Y (ε) is a normalized distribution function. The multiplication
of (35) by v and integration yields Y (ε) = v(ε)/v0, where

v0 =
∫ ∞

0
v f (v) dv =

∫ ∞

0
v(ε) dε (36)

is an average volume. The right equality makes use of the fact that by
definition Y (ε) is normalized. In this case, from the FDS experiments
one can obtain the energy barrier distribution Y (ε) and the average
volume v0, provided that the measured range of ε covers the whole
distribution. However, no further features of the volume distribution
f (v) can be retrieved.

(2) The concentration function c(ε, v) can be factorized into

c(ε, v) = f (v) Y (ε − s(v)), (37)

where s is a strictly monotonic function and either f or Y are known.
In this case, (13) transforms into the convolution integral

v(ε) =
∫ ∞

−∞

[s−1(s)]2

s ′(s−1(s))
f (s−1(s)) Y (ε − s) ds, (38)

which can be solved for the unknown function f or Y by Fourier
transform techniques.

The most simple inversion uses the assumption that ε = s(v) =
β(T ) v, which is a special instance of the second case above. It has
been used in Stephenson (1971) and Worm & Jackson (1999), where

β(T ) = µ0 Ms(T ) Hk(T )

kB T
, (39)

and microcoercivity Hk(T ) is due to pure shape anisotropy, Hk(T ) =

NMs(T ) and thus independent of v. It follows that c(ε, v) =
f (v) δ(ε − β(T ) v) and (38) can be easily solved for the volume
distribution f yielding

f (v) = v(β(T ) v)

v
β(T ), (40)

where v(β(T ) v) is rigorously obtained either from (32) or from
(33). Less rigorously, one can apply Néel’s approximation (26) or
(27) to determine v(β(T ) v) leading to

f (v) = χq ([β(T ) v)]

πvα(T )
β(T ) = 3
N

χq [β(T ) v]

πv
(41)

or

f (v) = 3
N
χ ′

p(β(T ) v)

v
. (42)

6 A P P L I C AT I O N O F T H E
D E C O N V O L U T I O N M E T H O D
T O E X P E R I M E N TA L R E S U LT S

6.1 The volume distribution of Tiva Canyon tuff

We used the data sets of Worm & Jackson (1999) from Tiva Canyon
tuff samples CS914, CS915, CS916 (Schlinger et al. 1988) to

C© 2005 RAS, GJI, 162, 736–746
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Figure 2. Volume distributions f (v) obtained by inverting the FDS data of Tiva Canyon tuff samples CS914, CS915, CS916 (Worm & Jackson 1999; Schlinger
et al. 1988). Each line in this plot results from inverting the FDS data at one fixed temperature. Black lines correspond to inversion of χ p , grey lines to inversion
of χ q . At each temperature both inversions are almost indistinguishable. Grey shaded areas represent the volume distributions obtained by Worm and Jackson
from SIRM as well as TRM demagnetization curves.

compare the results from our method with volume distributions of SP
particles obtained by thermal demagnetization of either SIRM(5K)
or TRM(5K)(Worm & Jackson 1999). It has been pointed out in
Worm & Jackson (1999) that the FDS data of these samples are in
good agreement with predictions based on the volume distribution
inferred from thermal demagnetization curves. Our approach differs
from their treatment in that we directly invert the FDS data to infer
the volume distribution. Fig. 2 collects the results of all deconvo-
lutions of FDS data at different temperatures. Each of the overlap-
ping line segments results from deconvolution of the FDS at one
fixed temperature. FDS measurements at lower temperatures only
contain information about small intervals of small volumes. High-
temperature FDS measurements cover larger intervals and larger
grain sizes. Due to the dense temperature steps of the measure-
ments of Worm & Jackson (1999), volume distributions inferred
from neighbouring temperatures overlap considerably. This allows
to check the self-consistency of the inferred volume distribution.
Fig. 2 shows, that although the general shape of the distribution is co-
herently outlined, there exist regions where neighbouring segments
diverge in a way which is by far too systematic as to be explained by
measurement error. Dark and light line segments in Fig. 2 are ob-
tained by deconvolution of either real or imaginary parts of FDS and
both coincide perfectly throughout all samples and temperatures.
This indicates that the basic assumption that susceptibility variation
is due to thermally activated magnetization switching processes, is
correct for the Tiva Canyon samples. The order of magnitude of
remaining deviations between both deconvolutions can be used to
estimate the measurement error and thus confirms that divergence
of neighbouring segments is real.

It is interesting to compare our inversion results with the volume
distributions from Fig. 9 of Worm & Jackson (1999) and displayed

Figure 3. Decreasing τ 0 from a realistic value of 10−9 s to a physically impossible value of 10−13 s improves the self-consistency of the FDS data inversion
for Tiva Canyon tuff CS914.

as shaded areas in Fig. 2. Although the results obtained from FDS
and thermal demagnetization curves coincide quite well in general
outline, the distributions from FDS have a tendency to show more
fine grains. Perhaps this reflects the fact that viscous magnetization
is largely eliminated from SIRM as well as TRM demagnetization
curves, while it is an essential part of the FDS signal.

The most noticeable advantage of the FDS method is its ability
to check the self-consistency of the volume distribution which is
not achievable from thermal demagnetization curves. To make use
of this additional information, it is necessary to understand and
assess the possible causes of misfit. By optimizing the fit between
neighbouring segments it is then possible to quantitatively estimate
the influence of the distortion effects. The most obvious possible
sources for systematic deviations are:

(1) Wrong choice of τ 0,
(2) Wrong choice of the function s(v),
(3) Magnetostatic interaction.

In the remaining part of this section we discuss the first two
alternatives. The much more complex question of interaction will
be treated experimentally and theoretically in the next two sections.

6.1.1 Variation of τ 0

The deconvolutions of the FDS data in Fig. 2 are obtained using
the constant value τ 0 = 10−9 s which in the sense of (8) and the
subsequent discussion is the physically most reasonable estimate.
Yet, Fig. 3 demonstrates for sample CS914 that decreasing τ 0 sub-
stantially improves the fit between neighbouring segments of the
inversion. Optimal consistency is obtained for τ 0 = 10−13 s. This
value, however, is utterly impossible to explain using the theoretical

C© 2005 RAS, GJI, 162, 736–746
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models of either Néel (Néel 1949) or Brown (Brown 1963) as out-
lined in Section 2. Already the choice of γ ′ in (8) yielded the minimal
possible value for τ 0 and in order to explain four orders of magni-
tude deviation between theory and experiment one would have to
relinquish this theory altogether.

A closer look at Fig. 3 reveals that the improved fit for smaller
values of τ 0 goes along with an increase of inferred average grain
volume. This opens up another explanation of the misfit which does
not require to vary τ 0, but questions the assumed relation between
energy barrier and volume.

6.1.2 Relation between volume and energy barrier

The assumed linear relation ε = β(T ) v between energy barrier and
volume relies on the assumption of predominant shape or crystal
anisotropies. Eq. (4) elucidates that a modified relation ε = βv −
ε0, where ε0 is a constant, is mathematically equivalent to a re-
duction of τ 0 by exp (−ε0/2). A very similar modification with a
slightly different temperature dependence but also equivalent to a
reduction of τ 0, is given by a volume shift ε =β(v − v0), where v0 is
a constant volume. The main problem with the above energy barrier
modifications is the necessary size of ε0 ≈ 20kBT needed to re-
duce τ 0 by a factor of 10−4 as required for the best fit in Fig. 3.
It is hard to imagine a physical mechanism which accounts for
either such an additional perturbation energy or a corresponding
reduction of the particle energy barriers. On the contrary, in very
small particles additional surface anisotropy rather tends to increase
the energy barrier. The discussion in Section 5 shows that much
more complex relations between volume and energy barrier might
be taken into account. Especially the convolution kernel Y in (38)
could be a Gaussian instead of a delta-function or the functional
dependency s(v) could be nonlinear, eventually reflecting a varia-
tion of Hk with volume due to incoherent magnetization reversal.
Yet, it has been shown by numerical micromagnetic calculations
that in magnetite SP particles incoherent magnetization reversal is
of minor importance (Winklhofer et al. 1997) and it is not conceiv-
able that a realistic distribution Y effectively decreases the energy
barrier by 20kBT . In summary, we do not find a physical reason
allowing to interpret the observed misfit by reduced τ 0 or reduced
energy barrier. The apparent success of such variations in improving
the fit between inversion data from different temperatures remains
enigmatic.

Figure 4. Real (left) and imaginary (right) part of the frequency-dependent susceptibility of ferrofluid FF-V77 in function of temperature. At each temperature,
the susceptibility was measured at the frequencies f = 0.18, 0.34, 0.63, 0.91, 2.2, 4.0, 7.4, 13.6, 26.0, 46.4, 85.8, 158.6, 293, 542, 997 Hz. Shading varies from
black ( f = 0.18 Hz) to light grey ( f = 997 Hz).

6.2 The role of interaction: volume distribution
in ferrofluids

The third possibility to account for systematic deviations of volume
distributions obtained at different temperatures in the Tiva Canyon
samples is magnetostatic interaction. A theoretical estimation of this
effect is much more difficult than in the previous two cases since a
wide variety of partly contradictory approaches exist in the litera-
ture. We therefore first performed an experimental study of the FDS
for two different ferrofluid samples to check whether these inter-
acting SP ensembles show qualitatively similar systematic misfits
between inverted volume distributions obtained at different temper-
atures.

The commercial ferrofluid samples FF-V77 and FF-S32 have
nominal average particle sizes around 3 and 10 nm, respectively,
and relative volume concentration of about 1 per cent. While FF-
S32 has a octane-based carrier liquid, FF-V77 is water-based. The
samples were prepared by mixing them with either epoxy- or water-
based glue to obtain solid samples after drying at room temperature.
Measurements of FDS were performed using the AC measurement
option of the Quantum Design MPMS-XL-7T at the University of
Bremen. This instrument allows for a high precision temperature
control and variable AC field amplitude. All our measurements used
the same amplitude of H AF = 0.4 mT. The FDS measurement results
are shown in Figs 4 and 5 in function of temperature.

Since the inversion formula for volume distribution f (v) requires
a reliable estimate of Hk(T ) we also measured hysteresis loops at dif-
ferent temperatures using the MPMS-XL. The loops for sample FF-
S32 are shown in Fig. 6 and yield the coercive forces Hc(T ) at T =
10, 50 and 100 K. All loops were measured with maximum field
of 3 T and the microcoercivity is obtained according to Hk(T ) =
2.09 Hc(T ) as in case of the Tiva Canyon samples (Worm & Jackson
1999).

The inversion results of the ferrofluid FDS measurements are pre-
sented in the left parts of Figs 7 and 8. Apparently the coherency
between different temperatures is worse than in case of the Tiva
Canyon samples since the deconvolution curves exhibit marked neg-
ative slopes even where the overall trend of the distribution function
f (v) is increasing. Yet, in both types of samples the direction of
the systematic misfit is the same. In the ferrofluids the negative
slopes indicate that at constant temperature the FDS deconvolution
systematically underestimates the volume of larger grains. While in
Tiva Canyon sample CS914 the inconsistent slopes are still positive,
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Figure 5. Real (left) and imaginary (right) part of the frequency-dependent susceptibility of ferrofluid FF-S32 in function of temperature. Frequencies and
shading are the same as in Fig. 4.

Figure 6. Hysteresis loops of ferrofluid FF-S32 at 100 K (solid), 50 K
(dashed) and 10 K (dash-dot). The maximum field of the loops in all cases
was 3 T.

Figure 7. Deconvolution of FDS measurements for ferrofluid FF-S32. The
left image shows the result without taking into account interaction. In the
right graph, interaction is estimated by the method described in the text.

the systematic misfit also apparently underestimates the volume of
larger grains. Since in ferrofluids magnetostatic interaction is defi-
nitely important, it is the most likely source of the observed misfit.
Accordingly, weaker magnetostatic interaction is also a plausible
explanation for the smaller misfit in the Tiva Canyon samples. We
will argue below that magnetostatic interaction can explain this un-

Figure 8. Deconvolution of FDS measurements for ferrofluid FF-V77. The
left image shows the result without taking into account interaction. In the
right graph, interaction is estimated by the method described in the text.

derestimation and that it is even possible to determine the average
interaction field by a quantitative analysis of this effect which will
be given in the next section.

The presence and estimation of magnetostatic interactions is often
a matter of a great concern in analyses of both, synthetic materials
and natural rocks. Even though the remanence carriers in ferrofluids
are carefully coated in order to prevent agglomeration due to mag-
netostatic interaction at room temperature, these coatings are less
effective at low temperatures where interaction increases in relation
to thermal energy. This is quantitatively expressed by the increase of
q(T, v) = µ0 Hint Ms [T ] v

kB T , where H int is the average interaction field.
At constant T , the importance of interaction as measured by

q(T , v) increases with volume. Assuming that susceptibility in these
samples is reduced by magnetostatic interaction, it is then possible
to explain for the observed underestimation of f (v) at larger volumes
in the FDS deconvolution curves at constant temperature.

The theory of interacting magnetic nanoparticle ensembles con-
tains many difficulties and pitfalls and there is still considerable
debate even about fundamental aspects. Summarizing the present
state of the art, Fiorani et al. (1999) distinguish two regimes of
weak to medium and of strong interactions. Weak or medium inter-
actions are considered as caused by magnetic moments fluctuating in
time, since interaction energy is small in comparison to kBT . These
so-called dynamic interactions increase the single particle energy
barrier Eb by some interaction energy E int (Dormann et al. 1988).

In the strong interaction regime, interaction energy dominates
the thermal energy kBT below some so-called freezing tempera-
ture T fr. In this case—similar to a spin glass—the whole system
forms a collective phase and the interaction fields are constant in
time. This idea, already suggested in Shcherbakov & Shcherbakova
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(1977), has been developed by a number of authors (Dormann et al.
1988; Fiorani et al. 1999; Muxworthy 2001; Ulrich et al. 2003).
The similarity between spin-glasses and interacting particle ensem-
bles has its physical reason in the random direction and value of
the dipole–dipole interactions due to the random mutual position
of the grains. This closely resembles the random RKKY couplings
between the atoms in a spin-glass. The random particle distribu-
tion causes random interaction fields H int acting along the easy
axes of the grains which is just the pre-condition for the spin-glass
transition.

Whilst a detailed scrutiny of the problem of interacting magnetic
nanoparticles is far beyond the scope of this article, we do need a
simple method to account for the effect of interactions during the
FDS deconvolution. In the next section, we develop a new theoretical
approach to calculate a mean field (MF) interaction correction for
the deconvolution problem. This allows to estimate the interaction
strength from our FDS measurements and also yields an improved
estimate for the actual particle volume distribution f (v) which is not
biased by static interaction fields. These corrected distributions are
already displayed on the right-hand side of Figs 7 and 8.

7 M E A N F I E L D C O R R E C T I O N F O R
M A G N E T O S TAT I C I N T E R A C T I O N S

Muxworthy recently considered the effect of weak or moderate dipo-
lar interaction on the FDS, accounting primarily for influence of
interactions upon blocking volume (Muxworthy 2001). Here, how-
ever, we have to deal with the case of interactions strong enough
to substantially disturb the reconstruction of the volume distribu-
tion f (v) using (40). Such strong interaction fields are either due
to a particle volume distribution allowing for large grains to be al-
ready frozen while sufficiently many small particles still have short
relaxation times, or due to freezing of a collective state, which es-
sentially has the same effect since a prominent feature of collective
states also is a critical reduction of the collective relaxation time
(Fiorani et al. 1999; Ulrich et al. 2003). We treat this problem of
strong interactions by an MF approximation. Dynamic interactions
between unblocked particles, which usually are regarded as princi-
pal interaction effect (Dormann et al. 1988; Muxworthy 2001), can
be included in our approach, but turn out to be negligible in first
order. On the other hand, average static interaction turns out to be
significant. In our MF approximation it emerges by a second-order
phase transition below a freezing temperature T fr. Since the average
interaction field in this case increases with decreasing temperature
proportional to

√
1 − T/Tfr, the normalized distribution function

W (H int, T ) of interaction fields H int accordingly transforms as

W (Hint, T ) ∝ W (Hint/
√

1 − T/Tfr, 0). (43)

In accordance with the MF concept, the total magnetic field at a
single particles’ position is considered as the sum of external and
interaction fields H = H e + H int. In our case of susceptibility
measurements in strongly interacting ensembles we assume that
H e � H int � H k and after normalization to H k we get h = h int +
h e, where h e = H e/H k � h int = H int/H k � 1.

Following Néel (Néel 1949), we describe the magnetic relaxation
process of a single particle as a dynamic equilibration between two
inversely magnetized states as sketched in Fig. 9.

The master equation for the probability x of the system being in
state 1 is

dx

dt
= − x

τ1
+ 1 − x

τ2
, (44)

Figure 9. Relaxation process in a two-state system with energy barrier. The
transition from state 1 with population density x to state 2 has a relaxation
time of τ 1. Correspondingly, the transition from state 2 with population
density 1 − x to state 1 has relaxation time τ 2.

where τ 1 is the relaxation time of the process 1 → 2 and τ 2 is the
relaxation time of the process 2 → 1. Since the states are inversely
magnetized, the total magnetization is given by m = 2x − 1 and the
master equation (44) implies the magnetization dynamics

dm

dt
= −m

[
1

τ1
+ 1

τ2

]
+

[
1

τ2
− 1

τ1

]
. (45)

Néel and Brown (Néel 1949; Brown 1959, 1963) calculated the re-
laxation times τ 1,2 using different physical approaches, but obtained
nearly identical results. Néel’s expression is given by

τ1,2 = τ0 exp

[
βv

2
(1 ± h)2

]
= τ0 exp

[
βv

2
(1 + h2)

]
exp(±βvh).

(46)

Inserting this into (45) results in

τ
dm

dt
+ m = tanh [βvh] , (47)

where τ = τ0 exp[ β v

2 (1 + h2)]/ cosh[βvh].
Even though we assume h int � 1, this doesn’t imply that also

βvh int � 1. On the contrary, freezing of collective states at T fr rather
requires βvh int ≈ 1 which demands βv � 1 for T < T fr. However, to
finally obtain a relatively simple expression for χ which preserves
the basic properties of (11), we restrict ourselves to cases where
βvh2

int � 1 as well as βvh e � 1. Then, eq. (47) can be rewritten as

τ [1 − βv tanh(β vhint) he]
dm

dt
+ m

= tanh [βvhint] + βv sech2 [βvhint] he

(48)

where now τ = τ0 exp[ βv

2 ]/ cosh[βvhint].
In our MF approach we neglect correlations between interacting

particles and assume equal probability for the interaction field h int to
be directed at either direction along the particles’ easy axis. There-
fore, W (h int) is a symmetric distribution function with zero average
interaction field. We denote an average of a quantity Q over W (h int)
by

〈Q〉 =
∫ ∞

−∞
Q W (hint) dhint, (49)

and thus write the average of eq. (48) over W (h int) as

〈τ 〉 dm

dt
+ m = βv 〈sech2 [βvhint]〉 he, (50)

where

〈τ 〉 = τ0 exp

[
βv

2

]
〈sech [βvhint]〉. (51)
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Figure 10. A sufficiently strong static interaction field H int � H ext de-
creases the measured susceptibility χ int with respect to the initial susceptibil-
ity χ 0 by shifting the working point in the nonlinear part of the anhysteretic
curve.

In case of a time-variable external field h e (t) = h e eiωt , one obtains
in analogy to (10) the complex susceptibility

χ (ω, τ ) = χ0 〈sech2 [βvhint]〉
1 + i ω 〈τ 〉 . (52)

This equation shows that the primary effect of static interaction
is a diminution of susceptibility by the factor 〈sech2[βvh int ]〉. As
expected, this reduction increases exponentially with increasing vol-
ume. Fig. 10 illustrates that the mechanism of susceptibility reduc-
tion by interaction in the regime defined by our above assumptions
is that due to the large static interaction field the small AC field
is working in the nonlinear part of the anhysteretic magnetization
curve.

We now further simplify (52) by setting for T = 0 K

W (hint) = 1

2
[δ(hint + h0) + δ(hint − h0)] , (53)

which essentially replaces 〈sech2(βvh int)〉 with sech2(βvh0) for
some characteristic static interaction field h0. The temperature-
dependent h0(T ) is then given by

h0(T ) = h0

√
1 − T

Tfr
. (54)

A second static interaction effect upon susceptibility in (52) is the
deviation of relaxation time 〈τ 〉, given by (51), from τ as used
in the previous sections. This deviation is an average decrease by
〈sech(βvh int)〉 which we further simplify by replacing cosh (x) with
exp (x) for positive arguments. The resulting error in 〈τ 〉 is less than
a factor of 2 which is negligible in comparison to the uncertain-
ties in τ 0. In contrast, the correction itself varies between βvh int �
1 and βvh int > 3 by an order of magnitude. Since h int here refers
to a static interaction field, its influence upon 〈τ 〉 compares to
the Mørup–Tronc model of interaction in magnetic nanoparticles
(Mørup & Tronc 1994; Hansen & Mørup 1998). Dynamic interac-
tions also can be taken into account by an additional dynamic energy
barrier ε int (α(T ) v) in units of k T which in analogy to Dormann
et al. (1998) results in a modified Brown formula

〈τ 〉 = τ0 exp

[
(βv + εint(αv)) (1 − 2 h0)

2

]
. (55)

Even this more involved representation of 〈τ 〉 still allows to interpret
χ in terms of a convolution similar to (15). Whilst the relaxation time
is reduced by static interactions, dynamic interactions according
to Dormann et al. (1988) and Muxworthy (2001) increase it and
to some extent both effects may cancel each other. In any case,
our calculations persistently show that the correction of 〈τ 〉 is only
a minor contribution in comparison to susceptibility reduction by

sech2(βvh0). Therefore, in the following, we consider only the static
interaction field by setting ε int(αv) = 0.

It is possible to estimate typical values for the static interaction
field h0 by considering a dipole–dipole interaction field between
nearest neighbours. When r nn denotes the average distance between
nearest neighbours and vav is the average particle volume,

h0 � Ms vav

r 3
nn Hk

. (56)

Since for equi-distributed grains the concentration c is approxi-
mately c ≈ vav

r3
nn

we obtain h0 ≈ M s c /H k. Further simplification
using the approximation Hk = 
N M s, where 
N is the demagne-
tizing factor, results in the final estimate

h0 ≈ c/
N . (57)

Thus, for plausible values of 0.005 < c < 0.1 we obtain 0.02 < h0 <

0.1. Values of h0 in this range are completely sufficient to get a
substantial decrease in χ for our typical energy barriers of ε = βv ∈
[10, 50].

In analogy to (12) integrating (52) over all volumes and energy
barriers yields the ensemble’s complex susceptibility

χ (ω, T )

= α sech2 [βvh0]
∫ ∞

0

∫ ∞

0

v c(ε, v)

1 + i ω τ0 exp
[
βv ( 1

2 − h0)
] dv dε.

(58)

Taking into account the changes between (12) and (58), the inversion
by formula (40) can be rewritten as

f (v) = v[βv (1 − 2 h0)]

v
cosh2 [βvh0] β. (59)

7.1 Application of the interaction correction

In practical applications of the described method, it is necessary to
choose reasonable values for the interaction parameters h0 and T fr.

While the freezing temperature T fr could be estimated by the tem-
perature whereχ (ω, T ) for lowestω reaches its maximum (Dormann
et al. 1988), the choice of an a priori h0 is not equally simple be-
cause the inversion crucially depends on the accuracy of this value
and (57) is by far too inexact. However, the inversion of our data
itself allows to judge the quality of an estimate for T fr and h0, since
for a correct choice, the inversions at different temperatures should
result in a continuous self-overlapping volume distribution.

A simple measure for the continuity of the inversions from two
adjacent temperatures is the square distance of the centre values in
their overlapping volume range. By minimizing the sum S(h0, T fr)
over all these squares, one obtains an intrinsic estimate of T fr and
h0.

This method has been used to determine T fr and h0 for the fer-
rofluid samples FF-S32 and FF-V77.

After correction according to (59), the optimally self-consistent
particle volume distributions shown on the right hand side of Figs 7
and 8 are obtained. Applying the same correction methods to the
Tiva Canyon tuff samples also decreases the misfit and creates the
more smooth volume distributions presented in Fig. 11. The corre-
sponding values for T fr and h0 are collected in Table 1.

8 S U M M A RY A N D D I S C U S S I O N

The initial idea of this study was to provide a rigorous theoret-
ical background for the determination of volume and coercivity
distribution of an SP particle ensemble from FDS measurements at

C© 2005 RAS, GJI, 162, 736–746



Magnetic grain-size distributions of superparamagnetic particle ensembles 745

Figure 11. Deconvolution of the FDS data of Tiva Canyon tuff (Worm & Jackson 1999), taking into account the effect of interaction. Interaction field and
freezing temperature have been determined by minimizing the overlap between adjacent measurement curves.

Table 1. Optimal fit of freezing temperature T fr and relative interaction
field h0 obtained by minimizing the sum S(h0, T fr) over all measured tem-
peratures. This minimizes the misfit between adjacent temperature inversions
for the volume distribution according to (59).

Sample T fr [K] h0 [per cent] H int (0 K ) [mT]

FF-S32 133 2.4 1.0
FF-V77 18.3 3.0 1.0
CS914 352 2.2 2.0
CS915 186 1.6 2.1
CS916 92 0.7 0.7

different temperatures. We have shown that this problem is ill-posed
and cannot be solved generally. Yet, by a combination of convolu-
tion and deconvolution methods it is possible to uniquely determine
the effective volume v(ε) of particles with energy barrier ε. When
an additional relation between volume and ε is assumed, it is then
possible to infer the volume distribution. The generally valid rela-
tions between susceptibility and v(ε) are easily evaluated in practical
applications since the respective numerical routine requires only a
polynomial representation of the measured susceptibility to obtain
the energy barrier distribution.

In case of ideal SP ensembles, both eqs (32) and (33) yield the
same v(ε) and any significant deviation between the two indicates
that the frequency dependence may result from other physical mech-
anisms than superparamagnetism. The coincidence of both results in
SP ensembles is due to the general dispersion relation (20) between
the Fourier transforms of real and imaginary parts of the suscep-
tibility. In the limit of small wave numbers this relation becomes
Néel’s dispersion relation (23) between real and imaginary part of
complex susceptibility. Although Néel’s relation is widely used, to
our knowledge this is the first study of the pre-conditions of its valid-
ity. In physical terms, the limit of small wave numbers is equivalent
to the requirement that susceptibility varies smoothly and slowly
with the logarithm of frequency such that it can be sufficiently well
approximated by a quadratic function. Néel’s dispersion relation
approximates the real part of each single grain’s susceptibility by a
step function on the logarithmic frequency scale. Correspondingly,
the imaginary part of susceptibility is estimated by a delta-function.
This difference in response also explains for the substantially lower
values of the imaginary part with respect to the real part of sus-
ceptibility. Only in the case of very sharp grain-size distributions
where the available range of relaxation times is restricted to about
one decade, real and imaginary susceptibilities can be of the same
order.

As stated above, a main result of our analysis is that the concentra-
tion function c(ε, v) cannot be recovered unconditionally from FDS
data and that only the effective volume v(ε) in function of energy
barrier ε is uniquely determined by (13) without imposing additional
restrictions on c(ε, v). This results from the general structure of the
basic integral equation (12), since its kernel depends on ε only, and
is independent of v. Nevertheless, by using the approximative rela-
tion ε = β(T )v one obtains an estimate of the volume distribution
f (v) which in case of the Tiva Canyon tuff samples resulted in rela-
tively consistent inversion curves from different temperatures which
also coincide well with previous results obtained on these samples
(Worm & Jackson 1999).

However, a remaining systematic misfit led us to the study of syn-
thetic ferrofluid samples exhibiting a much more substantial misfit
between inversion curves, obtained for different temperatures. We
attribute this misfit to the prevailing role of magnetostatic interac-
tions in these samples.

In order to remove the inconsistency, we propose a new and robust
method to correct for static interaction in magnetic nanoparticle en-
sembles. Besides resulting in a much more self-consistent volume
distribution, the new correction method yields estimates for interac-
tion field and freezing temperature. In all studied cases the inferred
interaction fields lie between 0.5 and 3 per cent of Hk or between 0.5
and 2.1 mT at T = 0 K which appear to be reasonable estimates. The
interaction correction also noticeably reduces the small systematic
misfit, which has been observed in the initial inversion of the Tiva
Canyon tuff samples.

It is interesting to compare the results of the interaction correction
to that obtained by varying τ 0 (Fig. 3). Although in both cases an
improved fit is achieved, the τ 0-method substantially increases av-
erage volume in comparison to the interaction correction in Fig. 11.
This volume shift sheds light on a fundamental difference between
the two corrections. While variation of τ 0 essentially stretches the
volume axis, the interaction correction rather expands the suscep-
tibility axis due to the suppression of FDS by static interactions,
especially at low temperature.

Summarizing, we believe that the determination of the volume
distribution spectrum by means of detailed measurements of FDS
at a set of low and high temperatures can provide substantially more
precise information about the sizes of fine magnetic grains in rocks,
sediments and soils than traditional measurements of hysteresis pa-
rameters and thermomagnetic curves.
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