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[1] The critical size for stable single-domain (SD) behavior has been calculated as a
function of grain elongation for magnetite grains using a numerical micromagnetic
algorithm. Importantly, for the first time, we consider the contribution of intergrain
magnetostatic interactions on the SD/multidomain (MD) critical size (d0). For individual
grains our numerical estimates for d0 for elongated grains are lower than that determined
by previous analytical and numerical calculations. Nevertheless, the inclusion of
magnetostatic interactions into the model was found to increase d0 to values significantly
higher than any previously published estimates of d0 for individual grains. Therefore
the model calculations show that there is a relatively wide range of grain sizes within
which depending on the degree of magnetostatic interactions and elongation, a grain can
be either SD or MD. The model results are compared to observations of magnetosomes
found in magnetotactic bacteria. The newly calculated upper d0 limit for the interacting
grains now accommodates the largest magnetosomes reported in the literature. These
large magnetosomes were previously thought to be MD, suggesting that evolutionary
processes are highly efficient at optimizing magnetosome grain size and spatial
distribution.
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1. Introduction

[2] The transition from single-domain (SD) to multi-
domain (MD) magnetic behavior is highly important to
magnetists as it marks the switch from relatively stable to
unstable magnetization and is an important indicator of
grain size. For earth scientists the SD/MD critical size (d0)
for magnetite is of particular interest due to magnetite’s
abundance and large spontaneous magnetization (MS). In a
much cited paper, Butler and Banerjee [1975] calculated d0
as a function of the grain elongation axial ratio AR (short
axis/long axis or length/width) for parallelepiped magnetite
using an analytical approach based on Amar’s [1958]
modifications of Kittel’s [1949] theories.
[3] Since these papers were published there have been

rapid advances in computing resources, allowing for
Brown’s [1963] micromagnetic equations to be solved
numerically. Micromagnetic studies have shown that the
analytical approach adopted by Butler and Banerjee [1975],
which assumes uniform SD structures and simple two-

domain structures is over simplified for soft magnetic
materials like magnetite [e.g., Williams and Dunlop, 1989;
Fabian et al., 1996]. Instead, large SD grains are magnet-
ically nonuniform and display ‘‘flowering’’ toward the edge
of the grains (Figure 1a), while the smallest MD grains do
not display two distinct domains with a separating domain
wall, but curling vortex structures (Figure 1b).
[4] Using micromagnetic simulations, several previous

studies have calculated d0 versus AR for single crystals
with various anisotropies [Fabian et al., 1996; Newell and
Merrill, 1999; Witt et al., 2005]. In addition, Rave et al.
[1998] determined d0 versus variable uniaxial anisotropy;
variable uniaxial anisotropy can be thought of as being
similar to variable elongation. The most recent study byWitt
et al. [2005] made d0 versus AR micromagnetic calculations
for individual parallelepiped and magnetosome-shaped
magnetite particles. Their interest in magnetosomes is
driven by the generally assumed idea that it is beneficial
for magnetosomes to evolve to maximum SD sizes. They
found that the magnetosome shape increased d0 compared
to the parallelepipeds, to accommodate all the grain size and
grain shape observations of Petersen et al. [1989]. In
contrast, the parallelepiped calculations did not. Neverthe-
less, the model of Witt et al. [2005] does not explain the
existence from a magnetic view point of the largest mag-
netosomes reported in the literature, for example, the large
coccoid Itaipu-1 magnetosomes that are up to 250 nm in
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length, with a maximum width of 210 nm (AR = 0.84)
[Spring et al., 1998; McCartney et al., 2001; Lins et al.,
2005].
[5] However, these direct comparisons between d0 calcu-

lations for individual magnetosomes and most experimental
observations are flawed, because magnetosomes nearly
always occur in magnetostatically interacting chains. Mag-
netostatic interactions are known to strongly affect magnetic
behavior [Shcherbakov and Shcherbakova, 1975;Muxworthy
et al., 2003].
[6] In this paper we use a micromagnetic algorithm to

calculate d0 for individual and magnetostatically interacting
chains of elongated magnetite crystals. In addition to
magnetostatic interactions we consider the importance of
the relative orientation of magnetite’s cubic magnetocrystal-
line anisotropy with respect to grain elongation.

2. Micromagnetic Algorithm

[7] The model subdivides a grain into a number of
subcubes. Each subcube represents the averaged magneti-
zation direction of many hundreds of atomic magnetic
dipole moments. All the subcubes have equal magnetic
magnitude, but their magnetization can vary in direction
(Figure 1).
[8] To determine the magnetic structures using this finite

difference model, two approaches were considered; a com-
bination of both a conjugate gradient (CG) algorithm
[Williams and Dunlop, 1989] and a dynamic algorithm
[Suess et al., 2002; Williams et al., 2006], and the CG
algorithm alone. The reasoning behind the combination
approach is that the dynamic algorithm gives the more
rigorous solution, however, it is relatively slow compared
to the CG method. In the combination algorithm, we use the
CG algorithm to generate rapidly a magnetic structure,
which is then put into the dynamic solver as an initial
guess. This increases the efficiency of the algorithm by
roughly an order of magnitude compared to the dynamic

solver alone. The use of the CG algorithm by itself is
discussed below.
[9] In the CG algorithm the domain structure is calculated

by minimizing the total magnetic energy Etot, which is the
sum of the exchange energy Eex proportional to the exchange
constant A, magnetostatic energy Ed proportional to the
spontaneous magnetization MS, and the anisotropy Eanis

proportional to the first magnetocrystalline anisotropy K1

[Brown, 1963]. Etot is calculated using fast Fourier trans-
forms (FFT), to give a local energy minimum (LEM) for the
assemblage. The FFT is required to calculate the demagnet-
izing energy, which allows the high resolution needed to
examine large arrays of interacting grains. Values for A, MS

and K1 were taken from Heider and Williams [1988],
Pauthenet and Bochirol [1951], and Fletcher and O’Reilly
[1974], respectively.
[10] In the combination algorithm after the LEM state has

been estimated, the structure is minimized by the dynamic
algorithm [Suess et al., 2002]. This algorithm solves the
dynamic Landau-Lifshitz-Gilbert equation.We used a finitely
damped solver detailed by Brown et al. [1989]. In effect,
instead of minimizing the energy, the solver minimizes the
torque on each magnetic moment by solving for the effective
field.
[11] The initial CG ‘‘guess’’ for magnetic structures of the

most elongated grains was found to be effectively the same
as the solution produced by the dynamic solver. This
convergence between the two algorithms is due to smooth-
ing of the energy surfaces as the grains become more
elongated. For more symmetrical grains with more uneven
energy surfaces, the CG algorithm can become hooked on
small saddle points and trapped in shallow minimum energy
states. Therefore, as the grains become more elongated, the
CG algorithm is less likely to stall and the CG and dynamic
solutions converge. Because the CG solver is approximately
an order of magnitude faster than the combined algorithm,
and more memory efficient than the dynamic algorithm, for
some of the larger arrays, i.e., for the largest chains of
elongated grains, calculations were made using only the CG
algorithm.
[12] To accurately model nonuniform structures, it is

necessary to have a minimum model resolution of two cells
per exchange length (exchange length equal to

p
(A/Kd),

where Kd = m0Ms
2/2 and m0 is the permeability of free space

[Rave et al., 1998]). The minimum resolution was imple-
mented at all times in this paper.
[13] The modeling of interactions in this paper was

simply done by masking out blank cells, setting the cells’
magnetization to zero, and thereby creating a ‘void’ between
neighboring magnetic regions of our finite difference mesh
[Muxworthy et al., 2003].

3. SD/MD Critical Sizes for Individual
Elongated Grains

[14] There are several methods of determining the SD/
MD critical size. Here the unconstrained method is
employed [Fabian et al., 1996; Wright et al., 1997; Witt et
al., 2005]. In this approach a very small grain, say �20 nm
in length, with an initial SD structure is gradually increased
in size until the domain structure collapses to a vortex
structure, i.e., MD, at dmax (Figure 2). The grain size is

Figure 1. Domains states occurring in cubic grains of
magnetite at room temperature for a grain with edge length
of 100 nm (a) single-domain (flower state) and (b) single-
vortex state. In this paper the term ‘‘SD state’’ refers not just
to homogeneous magnetization structures but also to
nonuniform domain structures as shown in Figure 1a which
are essentially SD-like with a degree of flowering toward
the edges of the grain. In Figures 1a and 1b the
crystallographic h100i is aligned with the x axis.
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then decreased until the vortex structure becomes SD at dmin

(Figure 2). The dmin and dmax are interpreted as the lower
and upper bounds of a range where both SD and vortex
structures can coexist. For the most elongated grains,
i.e., AR < 0.4, dmin and dmax were poorly defined, as the
collapse is gradual and less abrupt. In such cases dmin and
dmax were taken to be when the normalized magnetization
passed through 0.8 on the increasing/decreasing curves
(Figure 2), where the normalized magnetization is the
magnetic moment divided by magnetic moment of an ideal
SD grain.
[15] In addition to calculating dmin and dmax as a function

of AR (Figure 3), we have considered the relationship
between the relative orientation of magnetite’s cubic mag-
netocrystalline anisotropy and the elongation. We model the
two extreme cases; first, where the elongation is in the
h100i direction (dmin

100 and dmax
100 ) and second in the h111i

direction (dmin
111 and dmax

111 ). The easy axes for magnetite’s
magnetocrystalline anisotropy at room temperature are the
h111i directions. In the h111i scenario the magnetocrystal-
line anisotropy enhances the shape effect, i.e., it encourages
the magnetization to align along the elongation axis, in
contrast in the h100i it competes with the shape effect.
[16] In Figure 3, the y axis is the length as used by Butler

and Banerjee [1975], rather than the mean diameter as used
by Witt et al. [2005]. The use of the length makes for easier
comparison with Butler and Banerjee, but Figure 3 is a little
more complicated to understand, because on moving hori-
zontally across Figure 3 the volume of the grains changes;
that is, there is a change both in shape contributing to d0 and
in volume contributing to d0.

[17] Generally, dmin
100, dmax

100 , dmin
111 and dmax

111 all increase as
AR decreases (Figure 3). The dmax

111 is larger than dmin
100, dmax

100

and dmin
111 for all values of AR. Orienting the magnetocrystal-

line anisotropy along h111i enhances the effect of elonga-
tion, while orienting in the h100i orientation increases
curling of the magnetization at the edges of the grains,
i.e., breaking the symmetry, which encourages nucleation of
vortex states decreasing d0. As AR is reduced the difference
between dmin

100 and dmax
100 decreases, similarly with dmin

111 and
dmax
111 as dmin and dmax become less well defined and the
curve as shown in Figure 2 becomes reversible.
[18] For comparison the theoretical model of Butler and

Banerjee [1975] is depicted (Figure 3). It is seen that the

Figure 2. Magnetic energy density of a magnetite cube as
a function of length for an initial SD configuration at room
temperature (Figure 1a). The grain size was gradually
increased until the SD structure collapsed into a vortex
structure (Figure 1b) at dmax = 96 nm. The size was then
gradually decreased until a SD state formed at dmin = 64 nm.
To maximize computer efficiency, the resolution was
increased/decreased with each increase/decrease in size,
and the domain structure was rescaled between each pair of
calculations.

Figure 3. Critical SD to MD lengths (maximum grain
dimension) for individual grains of magnetite as a function
of axial ratio AR. Elongation along (a) the h100i direction
and (b) the h111i direction. Both dmax and dmin are shown.
These were determined using the method as defined in
Figure 2. For the very elongated grains, i.e., AR < 0.5, dmax

and dmin were poorly defined. For these smaller values of
AR, dmax and dmin were defined as the length where the
reduced magnetization passed through 0.8 on increasing/
decreasing grain size. AR = 1 is a cube, and AR = 0 is an
infinitely long parallelepiped.
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micromagnetic estimates are significantly below the analyt-
ical model.
[19] Witt et al. [2005] calculated dmin

100 and dmax
100 for

parallelepiped and dmin
111 and dmax

111 for magnetosome shapes
using the same unconstrained approach. For the parallele-
pipeds their values were very similar to those of Fabian et
al. [1996]. Compared to this study, their estimates for dmin

100

are approximately the same, but much higher for dmax
100 .

Although not directly comparable due to the difference in
shape between parallelepipeds and magnetosomes, Witt et
al. [2005] estimated lower and higher values for dmin

111 and
dmax
111 , respectively. We believe that these differences between
the two studies are due to two significant variations in the
algorithms. First, Witt et al. [2005] and other similar studies
[e.g., Fabian et al., 1996] used only the CG algorithm. In this
study the more robust combined algorithm was used for all
the calculations shown in Figure 3 for AR > 0.1. As discussed
above the CG algorithm is prone to becoming trapped in false
energy states (particularly for high values of AR), which
using the unconstrained method for determining critical sizes
would lead to an overestimate of dmax and an underestimate
of dmin. Second, Witt et al. [2005] used a constant resolution
during their simulations, which is likely to underestimate the
exchange energy for the larger grains, leading to an under-
estimation of both dmin and dmax. In this study the minimum
exchange length was used at all times, rescaling the solutions
between different calculations.

4. SD/MD Critical Sizes for Magnetostatically
Interacting Elongated Grains

[20] To model the effect of magnetostatic interactions on
d0, we consider the behavior of the middle grain in a chain
of three grains (Figure 4). We examine the behavior of
chains as opposed to a three-dimensional grid, as this is
likely to produce the largest difference compared to nonin-
teracting grains [Muxworthy and Williams, 2004] and
allows for direct comparison with magnetotatic bacteria
observations. A chain of three grains is short, however, it
was chosen so that we could calculate d0 for elongated
grains with large intergrain spacings using a full resolution
model. For example, the largest solutions considered had
�1.8 million elements. The minimum AR was 0.33.
[21] To estimate d0, a slightly different procedure to

section 3 was utilized. Rather than growing the domain
structure, at each grain size an initial SD state was assumed,
and the model structure minimized. This procedure produ-
ces only a single value for d0. As in section 4, the
orientation of the magnetocrystalline anisotropy is consid-
ered, i.e., d100 and d111. All three grains in the chain had the
same magnetocrystalline anisotropy orientation.
[22] Determining d0 as both a function of AR and grain

spacing produces a three-dimensional surface plot (Figure 4).
We consider a minimum nontouching separation of spacing/

length equal to 0.05 and calculate d0 for touching grains, i.e.,
space/length equal to 0.0. The noninteracting data (section 3)
is plotted at spacing/length distance of 3. It is readily seen that
both elongation and magnetostatic interactions significantly
increase both d100 and d111 (Figure 4). On comparison
between Figures 4a and 4b it is seen that d100 is slightly
lower than d111.

5. Implications for Magnetotatic Bacterial Studies

[23] In recent years there has been a great interest in
magnetotatic bacteria, both in the bacteria themselves [e.g.,
Petersen et al., 1989; Arató et al., 2005] and of the
possibility of using the identification of fossil magneto-
somes in meteorites thought to come from Mars as indica-
tors for extraterrestrial life [e.g., Taylor et al., 2001; Weiss et
al., 2004]. Several studies have compared observational
data for magnetosomes or the magnetite crystals found in
meteorites with the d0 model of Butler and Banerjee [1975].
The reasoning behind this comparison is that while the
production of magnetite may have potentially several uses,
one of which is navigation, it is clear that through optimi-
zation magnetosomes must still retain their ability to act as a
compasses, i.e., be SD. In particular, it is thought to be
advantageous for magnetosomes to evolve to be just a little
smaller than d0. As shown above in sections 3 and 4, the
analytical calculations of Butler and Banerjee [1975] over-
estimate d0 for isolated elongated crystals but did not
include magnetostatic interactions. As magnetosomes com-
monly occur as closely spaced magnetostatically interacting
chains, the application of the Butler and Banerjee [1975]
model is inappropriate.
[24] In Figure 5, we assess the magnetic stability of

published observational data by comparing it to the calcu-
lations from sections 3 and 4. The model data in the
previous sections is reduced to the minimum dmin, i.e., dmin

100

and the maximum dmax i.e., dmax
111 for the noninteracting

grains, and the maximum d0 for the interacting grains, i.e.,
dmax
111 , both for the nontouching (spacing/length equal to
0.05) and touching (spacing/length equal to 0.00).
[25] We consider three sets of magnetosome observation

data. First, the data of Arató et al. [2005], from which we
have selected (1) interacting magnetosomes from Séd stream
in Hungary residing in double chains and (2) Malom-tó (mill
pond) magnetosomes which are scattered. The interaction
fields between the double Séd chains are likely to be very
small compared to the interaction field within the chains,
effectively making the two chains magnetically indepen-
dent. The Séd magnetosomes cluster in the interacting
region (Figure 3). In contrast the Malom-tó magnetosomes
plot below in the ‘‘noninteracting’’ zone. The largest
Malom-tó grains follow dmax closely, with no Malom-tó
magnetosomes (sample size 241) plotting above dmax.
While the Malom-tó grains may still experience some

Figure 4. The d0 surfaces for interacting chains of elongated magnetite; grain spacing/length versus AR versus length
elongation along (a) the h100i direction and (b) the h111i direction. The d0 was determined from the behavior of the middle
grain in a chain of three identical grains with various intergrain spacings. The spacing is divided by the grain length. The
data for the individual grains has been placed at a spacing/length equal to 3. The first calculated point for chains is set at a
spacing/length equal to 2. Because of insufficient computing memory, no calculation of d0 was made for the point with
spacing/length equal to 0.0 and AR = 0.33.
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Figure 4
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intermagnetosome magnetostatic interaction fields, they will
not be subjected to the strong linear or ‘‘positive’’ inter-
actions experienced by the Séd magnetosomes. So, although
not truly ‘‘noninteracting’’ because of the random nature of
the interaction field, it is highly unlikely that in some way
the bacteria has evolved to maximize the grain size with the
use of this dispersed interaction field.
[26] It might initially appear that the Séd magnetosomes

are evolutionary more developed than the Malom-tó mag-
netosomes from the point of view of magnetosome size.
However, as magnetotactic bacteria are thought to have
evolved in the early Proterozoic [Chang and Kirschvink,
1989], the reasons why magnetotactic bacteria like Malom-tó
do not display magnetosomes in chains, must be due to
minimal evolutionary advantage in some environments.
[27] Two further data sets were considered. These were

the largest magnetosomes that we were able to identify in
the literature [Spring et al., 1998; McCartney et al., 2001;
Taylor and Barry, 2004; Lins et al., 2005], and they are both
marine in origin and are depicted in Figure 5. The cocco-
bacillus HCM12 sample [Taylor and Barry, 2004] contains
‘‘pseudohexagonal’’ prismatic magnetosomes of length of
200 nm and AR = 0.8. The magnetosomes have a spacing/
length �0.05. This sample plots just below the upper d0 limit
for chains with an interaction spacing/length of 0.05 (Figure 5).
The coccoid Itaipu-1 magnetosomes are up to 250 nm in
length, with a maximum width of 210 nm (AR = 0.84) and a
spacing/length �0.01 [Spring et al., 1998;McCartney et al.,
2001; Lins et al., 2005]. These magnetosomes plot on the

very upper limit of d0 between the curve for spacing/length
�0.05 and the touching model (Figure 5), suggesting the
Itaipu-1 magnetosomes have the maximum possible stable
SD grain size for their AR.
[28] The calculations demonstrated that even the largest

magnetosomes such as HCM12 and Itaipu-1 are likely to
exhibit SD rather than MD behavior in the presence of
interactions. In the absence of such magnetostatic interac-
tions, these large magnetosomes would be MD. This con-
clusion is supported by electron holography images of
Itaipu-1 magnetosomes [McCartney et al., 2001], which
found that when the chains are intact the magnetosomes
display SD magnetic structures, but vortex states when
broken. This suggests that through evolution, magnetosome
size in strains like HCM12 and Itaipu-1 is maximized with
the utilization of magnetostatic interactions.

6. Conclusions

[29] There are two main findings in this paper. First, the
micromagnetic estimate for d0 for individual elongated
grains is considerably reduced compared to the analytical
calculations made by Butler and Banerjee [1975] and the
upper numerical estimates for d0, i.e., dmax, made by Witt et
al. [2005]. Second, and more importantly, the role of
interactions has been introduced into the model, and it is
demonstrated they significantly increase d0.
[30] For magnetotatic bacteria studies, as the model out-

lined in the paper accommodates the influence of magne-

Figure 5. The d0 for length versus AR for the minimum noninteracting dmin, the maximum
noninteracting dmax, and the maximum d0 for the interacting systems shown in Figure 4 (spacing/length
equal to 0 (touching) and 0.05). The models are shown previously in Figures 3 and 4. Power law fits have
been made to the data. Power law fits (solid lines) and extrapolations (dashed lines) have been made to
the data. Observational data for various magnetosome data are plotted; Séd and Malom-tó data are from
Arató et al. [2005], HCM12 [from Taylor and Barry, 2004] and Itaipu-1 [Spring et al., 1998; McCartney
et al., 2001; Lins et al., 2005] are the largest magnetosomes that we have found in the literature. The
highlighted ‘‘interacting’’ region is an upper bound. It is possible for magnetosomes to be smaller,
interacting and stable SD, i.e., to plot below this region. The ‘‘interacting’’ region is the region where the
grains must be interacting to be stable SD. The exact upper limit is dependent on spacing and elongation.
AR = 1 is a cube, and AR = 0 is an infinitely long parallelepiped.
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tostatic interactions it provides a better estimate for d0 than
the model of Butler and Banerjee [1975]. In addition to
considering parallelepipeds, Witt et al. [2005] made calcu-
lations for magnetosome-shaped models, however, on com-
parison with the results in this study it would appear that the
role of interactions is more significant than small variations
in shape. The new calculations for d0, which include
magnetostatic interactions, can now accommodate all the
published magnetosome data, i.e., even the largest reported
magnetosomes will display SD behavior in the presence of
interactions.

[31] Acknowledgments. This work was funded through NERC grant
NE/C510159/1 to W.W. and A.R.M. and Royal Society funding to A.R.M.
We would like to thank Mihály Pósfai for providing the raw data from
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