
7 Algebraic Reconstruction 
Algorithms 

An entirely different approach for tomographic imaging consists of 
assuming that the cross section consists of an array of unknowns, and then 
setting up algebraic equations for the unknowns in terms of the measured 
projection data. Although conceptually this approach is much simpler than 
the transform-based methods discussed in previous sections, for medical 
applications it lacks the accuracy and the speed of implementation. However, 
there are situations where it is not possible to measure a large number of 
projections, or the projections are not uniformly distributed over 180 or 
360”) both these conditions being necessary requirements for the transform- 
based techniques to produce results with the accuracy desired in medical 
imaging. An example of such a situation is earth resources imaging using 
cross-borehole measurements discussed in Chapter 4. Problems of this type 
are sometimes more amenable to solution by algebraic techniques. Algebraic 
techniques are also useful when the energy propagation paths between the 
source and receiver positions are subject to ray bending on account of 
refraction, or when the energy propagation undergoes attenuation along ray 
paths as in emission CT. [Unfortunately, many imaging problems where 
refraction is encountered also suffer from diffraction effects (see Chap. 4).] 
As will be obvious from the discussion to follow, in algebraic methods it is 
essential to know ray paths that connect the corresponding transmitter and 
receiver positions. When refraction and diffraction effects are substantial 
(medium inhomogeneities exceed 10% of the average background value and 
the correlation length of these inhomogeneities is comparable to a wave- 
length), it becomes impossible to predict these ray paths. If algebraic 
techniques are applied under these conditions, we often obtain meaningless 
results. 

If the refraction and diffraction effects are small (medium inhomogeneities 
are less than 2 to 3% of the average background value and the correlation 
width of these inhomogeneities is much greater than a wavelength), in some 
cases it is possible to combine algebraic techniques with digital ray tracing 
techniques [And82], [And84a], [And84b] and devise iterative procedures in 
which we first construct an image ignoring refraction, then trace rays 
connecting the corresponding transmitter and receiver locations through this 
distribution, and finally use these rays to construct a more accurate set of 
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algebraic equations. Experimental verification of this iterative procedure for 
weakly refracting objects has been obtained [And84b]. 

Space limitations prevent us from discussing here the combined ray tracing 
and algebraic reconstruction algorithms. Our aim in this section is to merely 
introduce the reader to the algebraic approach for image reconstruction. First 
we will show how we may construct a set of linear equations whose 
unknowns are elements of the object cross section. The Kaczmarz method for 
solving these equations will then be presented. This will be followed by the 
various approximations that are used in this method to speed up its computer 
implementation. 

7.1 Image and Projection Representation 

Fig. 7.1: In algebraic methods a 
square grid is superimposed over 
the unknown image. Image values 
are assumed to be constant within 
each cell of the grid. (From 
[Ros82].) 

In Fig. 7.1 we have superimposed a square grid on the image f(x, y); we 
will assume that in each cell the function& y) is constant. Let fj denote this 
constant value in the jth cell, and let N be the total number of cells. For 
algebraic techniques a ray is defined somewhat differently. A ray is now a 
“fat” line running through the (x, y)-plane. To illustrate this we have shaded 
the ith ray in Fig. 7.1, where each ray is of width r. In most cases the ray 
width is approximately equal to the image cell width. A line integral will now 
be called a ray-sum. 

Like the image, the projections will also be given a one-index representa- 

wji for this cell = erea or ABC 
a2 
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tion. Let pi be the ray-sum measured with the ith ray as shown in Fig. 7.1. 
The relationship between the 4’s and pi’s may be expressed as 

2 Wijfj=Pi, i=l, 2, “‘,M (1) 
j=l 

where M is the total number of rays (in all the projections) and Wij is the 
weighting factor that represents the contribution of the jth cell to the ith ray 
integral. The factor Wij is equal to the fractional area of the jth image cell 
intercepted by the ith ray as shown for one of the cells in Fig. 7.1. Note that 
most of the wij’s are zero since only a small number of cells contribute to any 
given ray-sum. 

If M and N were small, we could use conventional matrix theory methods 
to invert the system of equations in (1). However, in practice N may be as 
large as 65,000 (for 256 x 256 images), and, in most cases for images of this 
size, M will also have the same magnitude. For these values of M and N the 
size of the matrix [ Wij J in (1) is 65,000 X 65,000 which precludes any 
possibility of direct matrix inversion. Of course, when noise is present in the 
measurement data and when A4 < N, even for small Nit is not possible to use 
direct matrix inversion, and some least squares method may have to be used. 
When both M and N are large, such methods are also computationally 
impractical. 

For large values of M and N there exist very attractive iterative methods 
for solving (1). These are based on the “method of projections” as first 
proposed by Kaczmarz [Kac37], and later elucidated further by Tanabe 
[Tan71]. To explain the computational steps involved in these methods, we 
first write (1) in an expanded form: 

wllfl + w12f2+ w13f3+ ’ ” + wINfN=Pl 

w21f1+ w22f2 + + * ’ ’ + w2NfN=tt)2 

wMlfl+wM2f2+ +“‘+wMNfN=PM. (2) 

A grid representation with N cells gives an image N degrees of freedom. 
Therefore, an image, represented by (f,, f2, + * * , fN), may be considered to 
be a single point in an N-dimensional space. In this space each of the above 
equations represents a hyperplane. When a unique solution to these equations 
exists, the intersection of all these hyperplanes is a single point giving that 
solution. This concept is further illustrated in Fig. 7.2 where, for the purpose 
of display, we have considered the case of only two variables f, and f2 

satisfying the following equations: 

wf1+ W12f2=P1 

W2lfi + w22f2 ‘P2. (3) 
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initial 
guess 

Fig. 7.2: The Kaczmarz method 
of solving algebraic equations is 
illustrated for the case of two 
unknowns. One starts with some 
arbitrary initial guess and then 
projects onto the line 
corresponding to the first 
equation. The resulting point is 
now projected onto the line 
representing the second equation. 
If there are only two equations, 
this process is continued back and 
forth, as illustrated by the dots in 
the figure, until convergence is 
achieved. (From [Ros82].) 

The computational procedure for locating the solution in Fig. 7.2 consists of 
first starting with an initial guess, projecting this initial guess on the first line, 
reprojecting the resulting point on the second line, and then projecting back 
onto the first line, and so forth. If a unique solution exists, the iterations will 
always converge to that point. 

For the computer implementation of this method, we first make an initial 
guess at the solution. This guess, denoted by f \O), f i”), * * * , f$, is represented 
vectorially by 7”) in the N-dimensional space. In most cases, we simply 
assign a value of zero to all the fi’S. This initial guess is projected on the 
hyperplane represented by the first equation in (2) givingpl), as illustrated in 
Fig. 7.2 for the two-dimensional case. p’) is projected on the hyperplane 
represented by the second equation in (2) to yieldp2) and so on. When?‘- *) 
is projected on the hyperplane represented by the ith equation to yield?‘), the 
process can be mathematically described by 

(4) 

where 4 = (Wii, Wi2, **a, WiN), and $i* i?i is the dot product of $i with 
itself. To see how (4) comes about we first write the first equation of (2) as 
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Fig. 7.3: The hyperplane w’, .p follows: 
= PI (represented by a Iine in this 
two-dimensional figure) is w’, * T=p,. (5) 
perpendicular to the vector w’,. 
(From fRos82J.) The hyperplane represented by this equation is perp+icular to the vector 

w’, . This is illustrated in Fig. 7.3, where the vector OD_ represents i& . This 
equation simply says that the projection of a vector OC (for any point C on 
the hyperplane) on the vector w’t is of constant length. The unit vector or/’ 
along w’, is given by 

(‘5) 

and the perpendicular distance of the hyperplane from the origin, which is 
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-. equal to the length of OA m Fig. 7.3, is given by z & 

(7) 

Now to get To) we have to subtract from p”) the vector a 

jw +o) -HZ (8) 

where the length of the vector s is given by 

pzI=Io~-lal 

=3(O) * z- 1 Z(. (9) 
Substituting (6) and (7) in this equation, we get 

(10) 

Since the direction of zis the same as that of the unit vector z, we can 
write 

z= IsI ou’= 3 (0) . - _ wlTpl w’,. 
WI * WI 

(11) 

Substituting (11) in (8), we get (4). 
As mentioned before, the computational procedure for algebraic recon- 

struction consists of starting with an initial guess for the solution, taking 
successive projections on the hyperplanes represented by the equations in (2), 
eventually yielding PM). In the next iteration, PM) is projected on the 
hyperplane represented by the first equation in (2), and then successively onto 
the rest of the hyperplanes in (2), to yieldr2M), and so on. Tanabe [Tan711 
has shown that if there exists a unique solutionx to the system of equations 
GY, then 

lim 3ckM) =x . (12) 
k-m 

A few comments about the convergence of the algorithm are in order here. 
If in Fig. 7.2 the two hyperplanes are perpendicular to each other, the reader 
may easily show that given for an initial guess any point in the (fi, fz)-plane, 
it is possible to arrive at the correct solution in only two steps like (4). On the 
other hand, if the two hyperplanes have only a very small angle between 
them, k in (12) may acquire a large value (depending upon the initial guess) 
before the correct solution is reached. Clearly the angles between the 
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hyperplanes considerably influence the rate of convergence to the solution. If 
the M hyperplanes in (2) could be made orthogonal with respect to one 
another, the correct solution would be arrived at with only one pass through 
the A4 equations (assuming a unique solution does exist). Although 
theoretically such orthogonalization is possible using, for example, the 
Gram-Schmidt procedure, in practice it is computationally not feasible. Full 
orthogonalization will also tend to enhance the effects of the ever present 
measurement noise in the final solution. Ramakrishnan et al. [Ram791 have 
suggested a pairwise orthogonalization scheme which is computationally 
easier to implement and at the same time considerably increases the speed of 
convergence. A simpler technique, first proposed in [Hou72] and studied in 
[Sla85], is to carefully choose the order in which the hyperplanes are 
considered. Since each hyperplane represents a distinct ray integral, it is quite 
likely that adjacent ray integrals (and thus hyperplanes) will be nearly 
parallel. By choosing hyperplanes representing widely separated ray inte- 
grals, it is possible to improve the rate of convergence of the Kaczmarz 
approach. 

A not uncommon situation in image reconstruction is that of an 
overdetermined system in the presence of measurement noise. That is, we 
may have M > N in (2) and pl, p2, . . . , pm corrupted by noise. No unique 
solution exists in this case. In Fig. 7.4 we have shown a two-variable system 
represented by three “noisy” hyperplanes. The broken line represents the 
course of the solution as we successively implement (4). Now the “solution” 
doesn’t converge to a unique point, but will oscillate in the neighborhood of 
the intersections of the hyperplanes. 

When M < N a unique solution of the set of linear equations in (2) doesn’t 
exist, and, in fact, an infinite number of solutions are possible. For example, 
suppose we have only the first of the two equations in (3) to use for 
calculating the two unknowns f, and f2; then the solution can be anywhere on 
the line corresponding to this equation. Given the initial guess PO) (see Fig. 
7.3), the best one could probably do under the circumstances would be to 
draw a projection from p”) on this line, and call the resulting 3c1) a solution. 
Note that the solution obtained in this manner corresponds to that point on the 
line which is closest to the initial guess. This result has been rigorously 
proved by Tanabe [Tan711 who has shown that when M < N, the iterative 
approach described above converges to a solution, call it 3;) such that IPO’ - 3;l is minimized. 

Besides its computational efficiency, another attractive feature of the 
iterative approach presented here is that it is now possible to incorporate into 
the solution some types of a priori information about the image one is 
reconstructing. For example, if it is known a priori that the image f (x, y) is 
nonnegative, then in each of the solutionsJt(k), successively obtained by using 
(4), one may set the negative components equal to zero. One may similarly 
incorporate the information that f (x, v) is zero outside a certain area, if this is 
known. 
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Fig. 7.4: Illustrated here is the 
case when the number of 
equations is greater than the 
number of unknowns. The lines 
don’t intersect at a single unique 
point, because the observations 
p,. p2, p, have been assumed to 
be corrupted by noise. No unique 
solution exists in this case, and 
the final solution will oscillate in 
the neighborhood of intersections 
of the three lines. (From 
[Ros82].) 

In applications requiring a large number of views and where large-sized 
reconstructions are made, the difficulty with using (4) can be in the 
calculation, storage, and fast retrieval of the weight coefficients w,. Consider 
the case where we wish to reconstruct an image on a 100 x 100 grid from 
100 projections with 150 rays in each projection. The total number of 
weights, w,, needed in this case is 108, which is an enormous number and 
can pose problems in fast storage and retrieval in applications where 
reconstruction speed is important. This problem is somewhat eased by 
making approximations, such as considering WV, to be only a function of the 
perpendicular distance between the center of the ith ray and the center of the 
jth cell. This perpendicular distance can then be computed at run time. 

To get around the implementation difficulties caused by the weight 
coefficients, a myriad of other algebraic approaches have also been 
suggested, many of which are approximations to (4). To discuss some of the 
more implementable approximations, we first recast (4) in a slightly different 
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form: 

f(i) =f(i- 1) + pi wij 
J J 

i wt 
k=L 

where 

qi=T(i- 1) . q 

(13) 

k=l 

(15) 

These equations say that when we project the (i - 1)th solution onto the ith 
hyperplane [ ith equation in (2)] the gray level of the jth element, whose 
current value is f!‘- l) 

J ’ 
is obtained by correcting its current value by AJJ’), 

where 

Note that while pi is the measured ray-sum along the ith ray, qi may be 
considered to be the computed ray-sum for the same ray based on the (i - 
1)th solution for the image gray levels. The correction Af, to the jth cell is 
obtained by first calculating the difference between the measured ray-sum and 
the computed ray-sum, normalizing this difference by CF==, w&, and then 
assigning this value to all the image cells in the ith ray, each assignment being 
weighted by the corresponding w,. 

With the preliminaries presented above, we will now discuss three 
different computer implementations of algebraic algorithms. These are 
represented by the acronyms ART, SIRT, and SART. 

7.2 ART (Algebraic Reconstruction Techniques) 

In many ART implementations the wik’s in (16) are simply replaced by l’s 
and O’s, depending upon whether the center of the kth image cell is within the 
ith ray. This makes the implementation easier because such a decision can 
easily be made at computer run time. In this case the denominator in (16) is 
given by CF==, wi = Ni which is the number of image cells whose centers 
are within the ith ray. The correction to the jth image cell from the ith 
equation in (2) may now be written as 

Af(‘) mpi- qi 
J 

Ni 
(17) 
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for all the cells whose centers are within the ith ray. We are essentially 
smearing back the difference (pi - qi)/Ni over these image cells. In (17), 
qi’s are calculated using the expression in (15), except that one now uses the 
binary approximation for wik’s. 

The approximation in (17), although easy to implement, often leads to 
artifacts in the reconstructed images, especially if Ni isn’t a good approxima- 
tion to the denominator. Superior reconstructions may be obtained if (17) is 
replaced by 

Afji)=pi-?% 
Li Ni 

where Li is the length (normalized by 6, see Fig. 7.1) of the ith ray through 
the reconstruction region. 

ART reconstructions usually suffer from salt and pepper noise, which is 
caused by the inconsistencies introduced in the set of equations by the 
approximations commonly used for Wik’s. The result is that the computed ray- 
sums in (15) are usually poor approximations to the corresponding measured 
ray-sums. The effect of such inconsistencies is exacerbated by the fact that as 
each equation corresponding to a ray in a projection is taken up, it changes 
some of the pixels just altered by the preceding equation in the same 
projection. The SIRT algorithm described briefly below also suffers from 
these inconsistencies in the forward process [appearing in the computation of 
qi’s in (16)], but by eliminating the continual and competing pixel update as 
each new equation is taken up, it results in smoother reconstructions. 

It is possible to reduce the effects of this noise in ART reconstructions by 
relaxation, in which we update a pixel by o * AJ;‘), where (Y is less than 1. In 
some cases, the relaxation parameter (Y is made a function of the iteration 
number; that is, it becomes progressively smaller with increase in the number 
of iterations. The resulting improvements in the quality of reconstruction are 
usually at the expense of convergence. 

7.3 SIRT (Simultaneous Iterative Reconstructive Technique) 

In this approach, which at the expense of slower convergence usually leads 
to better looking images than those produced by ART, we again use (17) or 
(18) to compute the change Afji) in the jth pixel caused by the ith equation in 
(2). However, the value of the jth cell isn’t changed at this time. Before 
making any changes, we go through all the equations, and then only at the end 
of each iteration are the cell values changed, the change for each cell being 
the average value of all the computed changes for that cell. This constitutes 
one iteration of the algorithm. In the second iteration, we go back to the first 
equation in (2) and the process is repeated. 
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