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[1] A statistical hypothesis about Earth’s magnetic field is tested against paleomagnetism
by combining it with the present field to estimate mean paleointensity. The estimate uses
the satellite era geomagnetic multipole power spectrum Rn, which gives the mean square
magnetic induction represented by spherical harmonics of degree n averaged over the sphere
of radius a = 6371.2 km. The hypothesis asserts that low-degree multipole powers of the
core source field, Rn

c, are distributed as chi-square with 2n + 1 degrees of freedom and
theoretical expectation values {Rn

c} = K(n + 1/2)[n(n + 1)]�1(c/a)2n + 4, where c is the
3480 km radius of Earth’s core. The implied field is usually mainly dipolar and can be
primarily axial. Amplitude K is estimated by fitting theoretical to observational spectra of
degrees 1–12. The resulting calibrated expectation spectrum is summed through degree
12 to estimate expected square intensity {F2}. This sum also estimates mean square
paleointensity, averaged over geologic time as well as the sphere, in so far as the present field
spectrum is a fair sample of that generated in the past by core geodynamic processes.
Previously, we excluded dominant degrees 1 and 2 from the fit, but not the sum, to ‘‘predict’’
mean paleointensity from the 1980 Magsat nondipole field. The new estimate fits all Rn

of degrees 1–12 self-consistently and yields {F2} = (37.3 ± 4.3 mT)2. Expected
paleointensity {F} is about 34.4 ± 4.9 mT; expected virtual axial dipole moment is about
(6.51 ± 0.94)� 1022 Am2. These estimates are within the range of published paleomagnetic
determinations of mean paleointensity; therefore the statistical hypothesis passes this test.
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1. Introduction

[2] The present geomagnetic field is but a sample of a
field which has existed for much of geologic time, yet the
question of whether or not the present field is typical of the
past has been largely answered by paleomagnetism [see,
e.g., Merrill and McElhinny, 1983; Jacobs, 1994]. The
present field on Earth’s surface is predominantly that of a
roughly axial geocentric dipole. Paleodirection data show
that the past field has also been predominantly that of a
roughly axial dipole, except during infrequent, geologically
brief, dipole excursions and reversals. Furthermore, paleo-
intensity data indicate that the mean magnetic intensity on
Earth’s surface, when averaged over many millions of years,
is within a factor of two of its present mean value. It follows
that some statistical hypotheses about Earth’s magnetic field
can be tested using both direct geomagnetic measurements
and inferential paleomagnetic data.
[3] To test one such hypothesis, Voorhies and Conrad

[1996] used the nondipole main field at Magsat epoch 1980
to ‘‘predict’’ mean paleointensity and mean virtual axial
dipole moment. The resulting values, about 32.8 mT and
6.21 � 1022 Am2 respectively, were within the ranges found
in published paleointensity studies – albeit perhaps less

than most. So the hypothesis passed a test and a key to past
behavior of Earth’s dipole field was found in the modern
nondipole field.
[4] Now, however, the physical hypotheses of narrow-

scale flow and a dynamically weak magnetic field by the top
of the core, as developed and tested in paper 1 [Voorhies,
2004], require a modification of our original statistical
hypothesis. Moreover, a fully self-consistent calibration of
the statistical model against the satellite era main field is
possible and the result can be used to estimate common
measures of mean paleointensity without any of the addi-
tional assumptions previously thought necessary. There are
also more paleomagnetic determinations of mean paleoin-
tensity with which to test the statistical hypothesis.
[5] To better test both physical and statistical hypotheses,

and to demonstrate the utility of paleomagnetic determina-
tions of mean paleointensity, let us develop the model in
sections 2 and 3; estimate mean paleointensity, mean virtual
moments and uncertainties in sections 4 and 5; and compare
such geomagnetic estimates with published paleomagnetic
determinations in section 6.
[6] A review of statistical magnetic field models is

outside the scope of this article [Constable and Parker,
1988; Hulot and LeMouël, 1994; Constable et al., 1998;
Love and Constable, 2003]. It is stressed that the model
considered here is incomplete: it does not specify probabil-
ity densities (PDs) for all the Gauss coefficients; it merely
assigns trial PDs to specific nonlinear combinations of
coefficients describing a core source field. This incomplete
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statistical model is also stationary in that temporal change of
PDs is not developed analytically. Fortunately, one can see
what some such changes would imply for some field
properties, and which physical changes in Earth’s core
might bring these about. The model is also compatible with
a field that is usually mainly that of a geocentric axial dipole
which can reverse. Indeed, it is the expectation of a largely
dipolar field that enables estimation of expected paleointen-
sity. Yet the dipole is not treated as a special exception
among core source multipole moments. There is no need to.

2. Background Theory

[7] As in paper 1, denote by B(r, t) the solenoidal mag-
netic induction at time t and position r caused by sources
within the planet. Above Earth’s surface, this is the potential
field: B = �rV. In geocentric spherical polar coordinates
(r, q, 8), internal scalar potential V has a Schmidt-normal-
ized spherical harmonic expansion with Gauss coefficients
of degree n and order m, denoted [gn

m(t), hn
m(t)] on a

reference sphere of radius a = 6371.2 km. Coefficients
through finite degree NF can be determined by analysis of
the measured field [see, e.g., Langel, 1987].
[8] The mean square field represented by harmonics of

degree n, averaged over a sphere of radius r containing the
sources, is given by the well-known Lowes-Mauersberger
function

Rn r; tð Þ ¼ nþ 1ð Þ a=rð Þ2nþ4
Xn
m¼0

gm
n tð Þ

� �2þ hmn tð Þ
� �2

: ð1Þ

The mean square field on such a sphere is the sum from
degree one to infinity of the Rn. Collectively, the Rn form a
magnetic spectrum; individually, each Rn represents a
multipole power. Evidently, this spectrum is dominated by
a core source field at degrees less than 13 and a crustal-
source field at degrees greater than 15 [see, e.g., Langel and
Estes, 1982; Voorhies et al., 2002; Voorhies, 2004]. The
focus here is on low-degree, mainly core source, multipole
powers, so instantaneous mean square surface magnetic
intensity is approximated by

F2 a; tð Þ ¼
X12
n¼1

Rn a; tð Þ: ð2Þ

This omits small corrections for ellipsoidality and topo-
graphy as well as higher-degree fields.
[9] Let Rn

c denote the spectrum of the core source field
alone. An expectation spectrum for the low-degree core
source field, denoted {Rn

c}, is obtained in paper 1 from the
hypotheses of narrow-scale flow and a dynamically weak
field by the top of the core. Indeed, the same spectrum is
obtained in two different ways: one an empirical approach
and the other a scale-variant extension of the analysis by
Benton [1992]. The result is written

Rc
n a; n � NEð Þ

� �
¼ K nþ 1=2

� �
n nþ 1ð Þ½ 
�1

c=að Þ2nþ4; ð3aÞ

where K is a constant amplitude and c denotes core radius.
Spectrum (3a) is only expected to hold in a magnetic energy
range of degrees no more than NE; evidently, NE � 12.

Because very low degree multipole powers are the main
contributors to mean square intensity on Earth’s surface,
quantitative differences between expectation spectrum (3a),
our approximate spectrum

Rc
n a; n � NEð Þ

� �
ffi K1 n nþ 1ð Þ½ 
�1=2

c=að Þ2nþ4; ð3bÞ

McLeod’s [1985, 1996] rule

Rc
n a; n � NEð Þ

� �
ffi KM nþ 1=2

� ��1
c=að Þ2nþ4; ð3cÞ

and Stevenson’s [1983] relation

Rc
n a; n � NEð Þ

� �

 KSn

�1 c=að Þ2nþ4; ð3dÞ

at very low degree are of interest here.
[10] Theoretical spectral variance {(Rn

c � {Rn
c})2} was not

specified in paper 1; therefore tests of spectrum (3a) were
limited to comparisons between magnetic estimates of c and
the independent seismologic estimate cs = 3480 km. The
former agree with the latter to within the scaled uncertainties,
and were coestimated with amplitude K by fitting the
logarithm of theoretical spectrum (3a) to log observational
spectra.
[11] Such magnetospectral estimates of c and its uncer-

tainty arguably depend on the distribution of residuals being
approximately lognormal. The residuals include contribu-
tions from (1) small errors in observational spectra deter-
mined via harmonic analyses of massive surface and
satellite data sets, (2) noncore sources, (3) errors in expec-
tation spectrum (3a), and (4) the natural variability, or
scatter, about the expected spectrum arising from core
geodynamic processes. The latter is thought to dominate
the residuals, but the process variance one expects depends
on trial probability distributions for the Rn

c rather than the
true distributions of multipole powers over geologic time,
which remain unknown.
[12] So let us advance trial PDs by statistical hypothesis,

set c equal to cs, and use observational spectra to better
estimate spectral amplitude K alone, hence {Rn

c}. The sum
of estimated {Rn

c} is an estimate of expected mean square
intensity {F2}. Trial PDs describe trial distributions of
multipole powers in time, so the sum also amounts to a
geomagnetic estimate of mean square paleointensity hF2i,
averaged over the reference sphere and geologic time
intervals of perhaps 107±1 years. If the estimate of {F2}
differs significantly from the value of hF2i determined by
the surface-time average of paleointensity data, then the
statistical hypothesis can be rejected.

3. Trial Distribution Functions

[13] The trial probability densities advanced for Rn
c(a; n �

NE), specifically for the low-degree normalized core source
multipole powers (2n + 1)Rn

c/{Rn
c}, are those for chi-square

with 2n + 1 degrees of freedom,

P2nþ1 2nþ 1½ 
Rc
n= Rc

n

� �� �
¼

2nþ 1ð ÞRc
n= Rc

n

� �� �n�1=2

2nþ1=2G nþ 1=2ð Þ
exp � 2nþ 1ð ÞRc

n=2 Rc
n

� �� �
; ð4aÞ
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where G denotes the gamma function and {Rn
c} is given by

spectrum (3a). With definitions c2 � (2n + 1)Rn
c/{Rn

c} and
k � 2n + 1, this can be rewritten as

P2nþ1 c2
� �

¼ 2nþ1=2G nþ 1=2
� �h i�1

c2
� �n�1=2

exp �c2=2
� �

ð4bÞ

Pk c2
� �

dc2 ¼ 2k=2G k=2ð Þ
h i�1

c2
� � k�2ð Þ=2

exp �c2=2
� �

dc2: ð4cÞ

This is the familiar distribution for chi-square with k degrees
of freedom [e.g., Beyer, 1978].
[14] Probability densities (4a) were advanced by Voorhies

and Conrad [1996], albeit with approximate expectation
spectrum (3b). Indeed, with an unmodulated expectation
spectrum equal to n times spectrum (3d), and for n > 1, they
almost follow from the model of Constable and Parker
[1988]. As shown in Appendix A, however, PDs (4a)
neither require nor prohibit a zero mean Gaussian distribu-
tion for each Gauss coefficient. We do not need to assume
distributions for individual coefficients here. Because
PDs (4a) neither require nor prohibit equal partitioning of
multipole power among the n + 1 orders m within each
degree n, they neither require nor prohibit magnetic isotropy
and so may describe both dipole and nondipole powers.
[15] Trial PDs (4a) are completely determined by {Rn

c},
hence by the single parameter K in spectrum (3a). As a
result, the expectation value {Rn

c} (or {c2} = k), variance
2{Rn

c}2/(2n + 1) (or {[c2 � {c2}]2} = 2k), skew, kurtosis,
higher moments, and most likely value (2n� 1){Rn

c}/(2n + 1)
(or cmax

2 = k � 2) of each and every Rn
c in the magnetic en-

ergy range are all specified by amplitude K. Such efficient
closure allows estimates of spectral variance, as well as the
mean, to be obtained via a one parameter fit of spectrum (3a)
to a fair sample of observational Rn.
[16] McLeod’s [1996] value for what is here denoted

KM(c/a)
4 in spectrum (3c) puts KM at about 5.6 �

1010 nT2. Subsequently, Voorhies and Conrad [1996] ver-
ified the utility of spectra (3b), (3c) and (3d) by fitting log
observational Rn from degrees 3 though 12 of the Magsat
epoch field models GSFC 12/83 [Langel and Estes, 1985]
and M102189 [Cain et al., 1990]. The coestimated ampli-
tudes and core radii are shown in Table 1; the values for c
are within 0.9% of cs. So we set c to cs to better estimate K1,
KM, and KS. The results are listed in Table 2 below
new values for K based on spectrum (3a). Taking K1 to be
5.5266 � 1010 nT2, we summed approximate spectrum
(3b) from degrees 1–12 to ‘‘predict’’ an expected square
intensity {F2} of (35.6 mT)2. This sum includes the con-
tributions from degrees 1 and 2 predicted from the fit of

spectrum (3b) to degrees 3–12 of the 1980 Magsat field
alone.
[17] For each value of K, K1 or KM in Table 2, the range

of values within ±1 standard deviation is encompassed by a
factor of about (1.295)±1. The ±1 standard error range factor
is (1.085)±1, so Table 2 is summarized as K ffi 5.5 �
1010 nT2 ffi K1 ffi KM with a likely error of ±9%. In so far as
the standard deviation provides a sample of the root of the
core process variance, values for K, hence {F2}, obtained by
a similar analysis at a different geologic time could easily
differ by ±1 standard deviation, or about ±30%; therefore
{F2} can be put at roughly (35.6 ± 4.9 mT)2.
[18] If dipole power R1 and quadrupole power R2 are

included in the fit as well as the sum, then the estimates of K
change by an insignificant 5%, to about 5.2 � 1010 nT2 with
a ±1 standard deviation range factor of (1.537)±1. The
increased uncertainty comes from the strong but declining
dipole and the weak but rebounding quadrupole. Voorhies et
al. [2002] coestimate K, c, and two parameters describing a
crustal source field from model CM3 of Sabaka et al.
[2002]. The results, a smaller value for K ((4.49 ± 0.87)
� 1010 nT2) and a larger value for c (3512.5 ± 63.6 km),
reflect the trade-off between these parameters as well as use
of R1 and R2.
[19] The foregoing amplitude estimates all rely on fits of

log theoretical to log observational spectra, in effect using
approximately lognormal instead of chi-square distributions
for residuals. Near its mean, a chi-square distribution is
more closely approximated by a lognormal than by a Gauss-
ian distribution (see Appendix B). Nonetheless, a better
calibration of spectrum (3a), hence PDs (4a), is attempted
by estimating amplitude K in a self-consistent way.

4. A Self-Consistent Amplitude Estimate

[20] The maximum likelihood estimate of K from a set of
observational Rn, regarded as Rn

c for degrees nmin to nmax,
maximizes the joint density function from PDs (4b) at the
observations,

P jointð Þ ¼
Ynmax

n¼nmin

P2nþ1 c2
� �

¼ max : ð5aÞ

This quantity is maximal when its logarithm is, or when

Xnmax

n¼nmin

n� 1=2
� �

ln 2nþ 1ð ÞRn= Rc
n

� �� �
� nþ 1=2
� �

Rn= Rc
n

� �
¼ max:

ð5bÞ

The derivative of this sum S with respect to K is zero.
With {Rn

c} from spectrum (3a), dS/dK equal to

Table 1. Amplitude (1010 nT2) and Core Radius c From Log Fits

of Spectra (3b), (3c), and (3d) to Degrees 3–12 of Observational

Spectra at 1980

Spectrum

GSFC 12/83 M102189

Amplitude c, km Amplitude c, km

(3b) K1 5.1402 3493.3 5.3041 3486.0
(3c) KM 5.1992 3491.8 5.3649 3484.5
(3d) KS 4.3291 3511.4 4.4671 3504.1

Table 2. Amplitude (1010 nT2) From Log Fits of Spectra (3a),

(3b), (3c), and (3d) to Degrees 3–12 of Observational Spectra at

Magsat Epoch 1980

Spectrum Amplitude GSFC 12/83 M102189

(3a) K 5.5091 5.4640
(3b) K1 5.5266 5.4814
(3c) KM 5.5443 5.4989
(3d) KS 5.1256 5.0939
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(dS/d{Rn
c})(d{Rn

c}/dK), and d{Rn
c}/dK equal to {Rn

c}/K,
the differentiation yields

Xnmax

n¼nmin

KML
� ��1

nþ 1=2
� �

Rn= Rc
n

� �
� n� 1=2
� �� �

¼ 0: ð5cÞ

This is solved for the maximum likelihood estimate of K,

KML ¼
Xnmax

n¼nmin

n nþ 1ð Þ a=cð Þ2nþ4
Rn að Þ �

Xnmax

n¼nmin

n� 1=2
� �" #�1

:ð5dÞ

[21] Substitution of the most probable values for Rn
c,

which are (n � 1/2){Rn
c}/(n + 1=2), into (5d) verifies that it

returns the maximum likelihood estimate. Substitution of
the mean values {Rn

c} into (5d) shows that it also gives a
biased estimate. This is because, unlike a Gaussian, a chi-
square distribution peaks at a value less than its mean.
Specifically, {KML} exceeds K because each multipole
power is, on average, expected to exceed its most probable
value. To remove this bias from estimator (5d), scale each
observational Rn(a) by (n � 1/2)/(n + 1/2). This yields

KB ¼
Xnmax

n¼nmin

n nþ 1ð Þ n� 1=2ð Þ= nþ 1=2ð Þ½ 
 a=cð Þ2nþ4
Rn að Þ

�
Xnmax

n¼nmin

n� 1=2ð Þ
" #�1

; ð6Þ

which returns the correct value K when the data amount to
mean values: {KB} = K. The scaling eliminates an expected
bias of 16.7% and so is judged worthwhile.
[22] If only one multipole power were available, current

best estimator (6) would reduce to

K nð Þ ¼ n nþ 1ð Þ= nþ 1=2
� �� �

a=cð Þ2nþ4
Rn að Þ: ð7aÞ

A simple alternative to estimator (6) is the arithmetic mean
of such K(n),

KA ¼ nmax � nmin þ 1ð Þ�1

�
Xnmax

n¼nmin

n nþ 1ð Þ½ = nþ 1=2ð Þ
 a=cð Þ2nþ4
Rn að Þ: ð7bÞ

This also correctly returns K when the data amount to
mean values. The standard deviation and standard error of
KA are given by the normal formulas. For KB, which
amounts to a weighted mean of the K(n) with weights equal

to (n � 1/2), our unbiased variance estimate s2 is the
adjusted normalized sum of square weighted residuals:
Sn[(n � 1/2)(K(n) � KB)]2/Sn(n � 1=2)

2 multiplied by
(nmax � nmin + 1)/(nmax � nmin). The standard error in KB

is put at [s2/(nmax � nmin + 1)]1/2.
[23] The factor [n(n + 1)/(n + 1=2)] (a/c)

2n+4 in estimators
(6) and (7b) implies that they rely far more heavily upon
multipole powers of higher degree than of lower degree.
This may help explain why omission of R1 and R2 from past
log spectral fits can give more satisfactory results. More-
over, for probability densities (4a), the process standard
deviation of Rn

c(t) divided by its mean, denoted sn/{Rn
c}, is

(n + 1/2)�1/2. The relative variability of core multipole
powers is thus expected to increase as harmonic degree
decreases. For example, (n + 1/2)�1/2 increases from 28% to
82%, almost trebling, as n decreases from 12 to 1. So the
chance of finding R1

c far from its mean is much greater than
for R12

c , even though the latter may vacillate with shorter
timescales.
[24] Estimators (6) and (7b) omit weights reflecting errors

en in observational Rn, errors considered small compared
with fluctuations in Rn

c over geologic time. For this to be a
good approximation, we require en/Rn � sn/Rn. Unlike
sn/{Rn

c}, however, en/Rn tends to increase with n. The Rn

used are within factors of 2 to 1/3 (for R2) of {Rn
c}, so

we merely require en/Rn � sn/{Rn
c} = (n + 1/2)�1/2, or

en/Rn � 28% for n < 13. To satisfy this condition, we
use harmonic analyses of satellite data, which accurately
determine Rn through degree 12 (and more, to reduce
aliasing). In light of a similar condition on errors from
crustal contributions to Rn, and the heavier reliance on
higher-degree Rn, we again omit spectral degrees above 12.
[25] Table 3 lists estimates of KA from equation (7b) and

KB from equation (6) calculated at Magsat epoch 1980 from
field models GSFC 12/83, M102189, and CM3. With best
estimator (6), inclusion of dipole and quadrupole powers
changes KB by but 1%, instead of 5% for lognormal
estimates. KA is even less sensitive. The tabulated values
are, however, all at a single epoch. As discussed in paper 1,
we should use time averages of observational Rn(a,t).
[26] Here we select the mean main field spectrum Rn(a)

from model CM4 of Sabaka et al. [2004], averaged over
the 1965.5–2001.5 interval spanning OGO, POGO, Magsat
and Oersted satellite data used in the CM4 analysis. Table 4
lists KA from estimator (7b), KB from estimator (6), and
the standard errors calculated from the mean Rn data for
degrees 3–12, 1–11, and 1–12. The effect of excluding R12

exceeds that of excluding both R1 and R2. Model CM4
reveals a 41% increase in R12(a,t) from Magsat epoch 1980
to Oersted epoch 2000! Together with large values of R12

before 1972, this contributes to an estimate for K which is
slightly larger than obtained for epoch 1980 alone. For this
best estimate, K = 5.7767 � 1010 nT2, the standard

Table 3. Amplitude (1010 nT2) of Spectrum (3a) From Observa-

tional Spectra at Magsat Epoch 1980 via Estimators (7b) (KA)

and (6) (KB)

Field Model Degrees KA KB

GSFC 12/83 3–12 5.6677 5.7392
GSFC 12/83 1–12 5.6605 5.6838
M102189 3–12 5.6218 5.6656
M102189 1–12 5.6220 5.6122
CM3 3–12 5.6188 5.6580
CM3 1–12 5.6195 5.6048

Table 4. Amplitude (1010 nT2) of Spectrum (3a) From 1965.5–

2001.5 Time Average of Observational Spectrum CM4 from

Estimators (7b) (KA) and (6) (KB) With Standard Errors

Degrees KA KB

3–12 5.7284 ± 0.4196 5.6720 ± 0.4083
1–11 5.6415 ± 0.6235 5.6434 ± 0.4512
1–12 5.7112 ± 0.5735 5.7767 ± 0.4060
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deviation s is put at ±1.4063 � 1010 nT2 and the standard
error is put at ±0.4060 � 1010 nT2.
[27] Figure 1 shows this one-parameter fit of expectation

spectrum (3a) (solid curve) to the satellite era averaged main
field spectrum from CM4 (dots) obtained with estimator (6);
however, both theoretical and observational spectra have
been multiplied (a/cs)

2n+4 to remove the usual exponential
attenuation of a core source field with harmonic degree.
Also shown are the 90% and 10% values of the cumulative
distribution functions from chi-square with 2n + 1 degrees
of freedom (top and bottom dashed curves, respectively).
According to PDs (4a) and this fit, core multipole powers Rn

c

are expected to be within the dashed curves 80% of the
time. Of course, at any given point in geologic time, 20% of
the multipole powers are expected to be outside this 80%
envelope – two or perhaps three of the 12 points fitted. At
present, dipole power is higher, and quadrupole power is
lower, than expected, but both are within the range expected
80% of the geologic time. It is the degree 8 power that is
lower, and the degree 9 power that is higher, than expected
80% of the time. These dominate the weighted residuals.
[28] With this best estimate for amplitude K, the sum of

expectation spectrum (3a) from degrees 1–12 yields a
geomagnetic estimate of expected square intensity

F2
� �

¼
X12
n¼1

Rc
n

� �
¼ 37:325� 4:296 mTð Þ2: ð8Þ

This is also the mean square paleointensity estimated by
calibration of spectrum (3a) with satellite data in a manner
consistent with stationary multipole power distributions
(4c). The standard deviation in estimate (8) is ±24.34% of
{F2}, or ±11.51% in {F2}1/2. The estimate for {F2}1/2 is

15.17% less than the RMS intensity at 2000 (43.998 mT
from CM4). The standard error indicates precision and is
±7.03% of {F2}, or ±1.22 mT in {F2}1/2. The standard
deviation is used to indicate uncertainty because the data
fitted are not samples from independent times, but all
depend on one realization of the core source field, a scant
36 year sample of geologic time.

5. Expected Paleointensity, VADM, and Related
Quantities in a Mainly Dipolar Field

[29] With K = 5.7767 � 1010 nT2 in spectrum (3a), the
expected square dipole field on the reference sphere {R1

c} is
(33.919 mT)2. This is 61.46% of R1 at 2000 [Sabaka et al.,
2004], but the standard deviation of dipole power distribu-
tion (4c), s1, is fully 81.65% of the mean! Recent dipole
power is stronger than expected from higher-degree multi-
poles, spectrum (3a), and PDs (4a), but only by 0.77s1. The
square nondipole field expected from degrees 2 to 12 on the
reference sphere, denoted {RND

c }, is (15.578 mT)2. The ratio
of expected square nondipole to dipole fields, {RND

c }/{R1
c},

is 21.1%. The ratio of expected square dipole to total fields,
{R1

c}/{F2}, is 82.6%. These results imply that the calibrated
statistical model requires a usually mainly dipolar field on
Earth’s surface. This fact enables estimation of expected
paleointensity and related quantities as described below.
[30] Paleointensity data are extracted from rock magnetic

properties, notably thermoremanent magnetization, and thus
from a part of the crustal sources. Such data are here taken
as indicating the approximate surface intensity of the core
source field when and where the rock last cooled,
F(a,q,8,tc). This is a fair approximation, except for data
from rock magnetized (1) close to Earth’s most intense
crustal magnetic anomalies, (2) when an unusually weak

Figure 1. One parameter fit of expectation spectrum (3a) (solid curve) to satellite era averaged
observational spectrum (dots) obtained with estimator (6). Spectra are multiplied by (a/cs)

2n+4 to remove
attenuation of core source field with harmonic degree n. Top and bottom dashed curves show 90% and
10% values, respectively, of the cumulative distribution functions from chi-square with 2n + 1 degrees of
freedom. Twenty percent of dots are expected to fall outside the envelope.
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core source field is disturbed by very strong magnetic
storms, or (3) by lightening or other subsequent alterations.
[31] An average of paleointensities from a sequence of

lava flows or other igneous cooling units determines a site
mean paleointensity. An average of site mean paleointen-
sities from many different sites determines a sample mean
paleointensity. Here, however, mean paleointensity is also
an ideal surface-time average of F which, omitting aspher-
icity and external fields, is

Fh i ¼ 4p tf � tið Þ½ 
�1

Ztf
ti

Z2p
0

Zp
0

jB a; q;8; tð Þj sin qdqd8dt; ð9Þ

where geologic time interval tf � ti covers an appreciable
fraction of Earth’s history. An average over a denser and/or
more uniform spatiotemporal sampling distribution of
paleointensity data may thus yield a more accurate
determination of hFi.
[32] Clearly hFi is not hF2i1/2; moreover, paleointensities

are often reported as either virtual axial dipole moment,

VADM � 4pa3=m0

� �
1þ 3 cos2 q
� ��1=2

F a; q;8; tð Þ ð10Þ

or virtual dipole moment,

VDM � 4pa3=2m0

� �
1þ 3 cos2 I
� �1=2

F a; q;8; tð Þ; ð11Þ

where I denotes inclination [see, e.g., Merrill and
McElhinny, 1983]. Initial efforts to test a geomagnetic
value for {F2}1/2 were blocked by a lack of expressions
relating hVDMi, hVADMi, and even hFi, to hF2i1/2.
Voorhies and Conrad [1996] bypassed these obstacles by
developing approximate expressions for {F} and {VADM}.
These turn out to be good and useful approximations under
more general conditions than we suspected.
[33] Formulas for expectation values of several measures

of intensity are derived and evaluated below. Some exact
expressions require more information than is contained in a
statistical model of a core source magnetic spectrum. For
example, exact calculation of expected virtual dipole mo-
ment {VDM} requires information about inclination; how-
ever, because the expected field is usually mainly dipolar,
the nondipole contribution to {VDM} is fairly small and the
relevant integral can be approximated in a way that elim-
inates any need for directional information. Because many,
arguably all, viable statistical models of Earth’s magnetic
field will have a usually mainly dipolar field, the approx-
imate formulas for {F}, {VADM} and {VDM} are quite
widely applicable. To skip these formulas, skip to the
numerical results in section 6.

5.1. Expected Absolute Dipole Moment

[34] Let m denote Earth’s centered dipole moment.
Square dipole moment m.m equals (4pa3/m0)

2R1(a,t)/2,
so density (4a) for the degree one dipole requires 3m.m/
{m.m} to be distributed as chi-square with three degrees of
freedom. The probability of finding jcj in the interval [jcj,
jcj + djcj] is P(c2)[dc2/djcj]djcj; therefore the distribution
for absolute dipole moment jmj implied by density (4a) is
the Maxwellian distribution [see, e.g., Reif, 1965; Voorhies

and Conrad, 1996]. The value for {R1
c} above yields a root

expected square dipole moment,

m �mf g1=2¼ 4pa3 Rc
1=2

� �1=2
=m0; ð12aÞ

of 6.203 � 1022 Am2 (ampere-turn meters2). This is 78.4%
of the 1980 value (7.907 � 1022 Am2).
[35] For the Maxwellian, the expected absolute value is

7.9% less than the rms,

jmjf g ¼ 4pa3 Rc
1=2

� �1=2n o
=m0 ¼ 4pa3 4 Rc

1

� �
=3p

� �1=2
=m0

¼ 8=3pð Þ1=2 m �mf g1=2; ð12bÞ

or 5.715 � 1022 Am2. The root of the expected process
variance, s1 = (2/3)1/2{R1

c}, implies that ±1s1 variations in
R1
c would cause samples of jmj to range from 43% to 135%

of {jmj}, or from 2.45 to 7.70 � 1022 Am2. This range is a
far wider than the ±11.5% uncertainty in K1/2, hence in the
estimates for {jmj} and {m.m}1/2. Because the expected
field is primarily dipolar, the calibrated statistical model
requires a similarly wide range in paleointensities. The
model does not require, but is compatible with, a dipole that
is usually mainly axial, notably the hybrid Gaussian/bi-
Maxwellian distribution for an axial dipole derived in
Appendix A.

5.2. Expected Intensity

[36] To test a statistical model against paleomagnetic
determinations of hFi, we need to estimate {F}, not
{F2}1/2. To do so, separate B into centered dipole and
nondipole fields, denoted BD and BND. In dipole coordi-
nates (qD, 8D), with qD measured from the north pole of the
tilted dipole,

BD a; qD;8D; tð Þ½ 
2¼ Rc
1 a; tð Þ=2

� �
1þ 3 cos2 qD
� �

: ð13Þ

With B = BD + BND, the expected intensity on the reference
sphere is

Ff g ¼ 4pð Þ�1

Z2p
0

Zp
0

B2
D þ 2BD � BND þ B2

ND

� �1=2
sin qdqd8

8<
:

9=
;:

ð14aÞ

The expectation operator commutes with the surface
average, so equation (14a) is rewritten as

Ff g ¼ 4pð Þ�1

Z2p
0

Zp
0

B 2
D þ B 2

ND

� �1=2n

� 1þ 2BD � BND

B 2
D þB 2

ND

� �1=2
g sin qdqd8: ð14bÞ

[37] The expectation of a usually mainly dipolar field
established above implies that the nondipole field cannot
dominate integral (14b), even though PDs (4a) indicate rare
intervals when BD

2 (a,q,8,t) � BND
2 (a,q,8,t) over much of

Earth’s surface. So {F} cannot differ greatly from the value
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due to the dipole {jmj} alone, which is denoted {FD} and is
estimated to be 30.50 mT. Without fear of serious error in
the integral itself, and with e = (2BD.BND)/(BD

2 + BND
2 ), the

small e approximation, (1 + e)1/2 ffi 1 + e/2, is used in the
integrand (14b) to obtain

Ff g ffi 4pð Þ�1

Z2p
0

Zp
0

B2
D þ B2

ND

� �1=2n

� 1þ BD � BND

B
2

D þ B 2
ND

" #o
sin qdqd8: ð14cÞ

[38] Now BD.BND averages to zero on a sphere; more-
over, densities (4a) provide no indication of correlated
fluctuations between either R1 and RND or BD and BND.
Because BD.BND is weighted by [BD

2 + BND
2 ]�1/2 in the

integrand, its small contribution to integral (14c) need
not be exactly zero. This small contribution is omitted to
obtain

Ff g ffi 4pð Þ�1

Z2p
0

Zp
0

B2
D þ B2

ND

� �1=2n o
sin qdqd8: ð15aÞ

In this integrand, the typically small term BND
2 (a,q,8,t) is

approximated by its surface average RND
c (a,t). The result

is rotated into dipole coordinates (qD,8D); equation (13) is
used to express BD

2 in terms of R1
c and qD; and the

integration over 8D is performed to obtain

Ff g ffi 1=2ð Þ
Zp
0

Rc
1=2

� �
1þ 3 cos2 qD
� ���

þR c
ND

�1=2o
sin qDdqD:

ð15bÞ

[39] Approximation (15b) follows from PDs (4a) via the
expectation of a usually mainly dipolar field alone. Three
additional assumptions used by Voorhies and Conrad
[1996] to obtain it from equation (14a) are not needed.
[40] With x � cosqD and C2 � (1 + 2RND

c /R1
c)/3, approx-

imation (15b) is just

Ff g ffi 3Rc
1=8

� �1=2 Zþ1

�1

x2 þ C2
� �1=2

dx

8<
:

9=
;: ð15cÞ

With the substitution x = Csinhz and definition p �
sinh�1(1/C), the integral yields

Ff g ffi 3Rc
1=2

� �1=2
C2 sinh 2pð Þ=4þ p=2½ 


n o
: ð15dÞ

In the limit of zero nondipole field, C2 approaches 1/3 and
approximation (15d) becomes exact.
[41] As a final approximation, replace RND

c /R1
c with

{RND
c }/{(R1

c)1/2}2, so that C2 is replaced with C0
2 = [1 +

2{RND
c }/{(R1

c)1/2}2]/3 and p with p0 = sinh�1(1/C0). The
denominator {(R1

c)1/2}2 = (8/3p){R1
c} is chosen instead of

{R1
c} to help offset omission of a suspected small positive

contribution to integral (14a). Then approximation (15d)
simplifies to

Ff g ffi Rc
1

� �1=2n o
3=2ð Þ1=2C2

0 sinh 2p0ð Þ=4þ p0=2½ 
: ð15eÞ

Approximation (15e) holds for a usually mainly dipolar
field.
[42] With the foregoing estimate for {R1

c}1/2 = 33.919 mT,
hence {(R1

c)1/2} = 31.250 mT by equation (12b), and for
{RND

c }1/2 = 15.578 mT, one findsC0
2 = 0.4990, p0 = 1.1470 and

Ff g ffi 34:38� 4:88 mT: ð16Þ

This value is 92.1% of the estimate for {F2}1/2, 110.0% of
that for {(R1

c)1/2}, and 112.7% of that for {FD}. These
estimates are directly proportional to K1/2, and so have
±11.5% standard deviations. The 12.7% nondipole con-
tribution to {F}, however, also relies on an approximation
which retains terms of order [{RND

c }/{R1
c}]1/2, but may omit

terms of order {RND
c }/{R1

c} or 21.1%. An error of ±12.7% �
21.1%, or ±2.7%, is thus added to the standard deviation to
obtain the total uncertainty of ±14.2%, or ±4.88 mT, shown
in estimate (16) for {F}.
[43] This uncertainty is much less than the square root of

the core process variance from PDs (4a). Indeed, ±s1
variations in R1

c about its expected value indicate variations
in dipole intensity alone from 13.1 to 41.1 mT. According to
the calibrated statistical model, global mean geomagnetic
intensity as a function of geologic time is expected to
fluctuate about a mean of 34.4 ± 4.9 mT with a ±1 process
standard deviation range somewhat wider than ±1s1, roughly
19 to 45 mT. Of course, in a primarily dipolar field that is also
usually axial, a long-term average of intensity at a single
geographic latitude can easily differ from this value.

5.3. Expected Virtual Axial Dipole Moment

[44] The expected virtual axial dipole moment from
equation (11) is

VADMf g ¼ 4pa3=m0

� �
F a; q;8; tcð Þ= 1þ 3 cos2 q

� �1=2n o
ð17aÞ

VADMf g ¼ a3=m0

� � Z2p
0

Zp
0

B2
D þ 2BD � BND þ B2

ND

1þ 3 cos2 q

� �1=2( )

� sin qdqd8:
ð17bÞ

Expectation of a primarily dipolar field implies that the non-
dipole field cannot dominate this integral. A correction to
{VADM} 
 {jmj} is sought using simple approximations.
[45] As in section 5.2, the small contribution to integral

(17b) from 2BD.BND is omitted and BND
2 is approximated

by RND
c . The result is rotated to dipole coordinates, equation

(13) is used for BD
2 , and the integration over 8D is performed

to obtain

VADMf g ffi 4pa3=�0

� �
1=2ð Þ

Zp
0

Rc
1=2þ Rc

ND

��

= 1þ 3 cos2 qD
� �


1=2g sin qDdqD ð18aÞ
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VADMf g ffi 4pa3=m0

� �
f Rc

1=8
� �1=2

�
Zþ1

�1

x2 þ C2
� ��

= x2 þ 1=3
� ��1=2

dx
o
: ð18bÞ

[46] The definite integral in approximation (18b), here
denoted I2(C), is given by Gradshteyn and Ryzhzik [1980]
in terms of elliptic integrals of the first and second kinds:

I2 Cð Þ ¼ 2C F* a; qð Þ � E* a; qð Þ
h i

þ 2 3 C2 þ 1
� �

=4
� �1=2

; ð19aÞ

where a = tan�1(31/2) = p/3 = 60� and q = (C2 � 1/3)1/2/C.
Replacement of C2 with C0

2 as before, and q with q0, yields

VADMf g ffi 4pa3=m0

� �
Rc
1=8

� �1=2n o
I2 C0ð Þ: ð19bÞ

Some elliptic integral tables [Beyer, 1978] reverse the
arguments.
[47] For C0

2 = 0.4990, q0 = 0.57619 = sin�1(35.18�) and
I2 = 2.2781; approximation (19b) yields

VADMf g ffi 6:510� 1022 Am2: ð20Þ

This geomagnetic estimate of expected mean virtual axial
dipole moment is 13.9% larger than that for {jmj}. To allow
for a 21.1% error in this correction for nondipole fields,
±2.9% is added to the ±11.5% standard deviation, to obtain
an uncertainty of ±14.4%, or ±0.94 � 1022 Am2.
[48] Analogous treatment of expected square virtual axial

dipole moment leads to

VADM2
� �

ffi 4pa3=m0

� �2
Rc
1=2

� �
1þ 31=2 C2

0 � 1=3
� �

p=3ð Þ
h i

:

ð21aÞ

With the numerical values for C0
2 and {R1

c} above, one
obtains

VADM2
� �1=2ffi 7:07� 1022 Am2: ð21bÞ

This is 14.0% greater than {m.m}1/2. To allow for a
±21.1% inaccuracy in this correction, add ±3.0% to
the ±11.5% standard deviation to obtain an uncertainty of
±14.5%, or ±1.02 � 1022 Am2, in {VADM2}1/2. Curiously,
the integration over the sphere eliminates any need to
assume that a primarily dipolar field is also axial to obtain
these results.

5.4. Expected Virtual Dipole Moment

[49] For expected virtual dipole moment, equation (11)
implies

VDMf g ¼ 4pa3=2m0

� �
1þ 3 cos2 I
� �1=2

F a; q;8; tð Þ
n o

: ð22aÞ

Again the expectation value implies not only integration
over the sphere, but multiplying the integrand by PDs (4a)
and integrating over each Rn

c. Neither the PDs nor our
geomagnetic estimates of {Rn

c} tell us what F(a,q,8) is, so
these integrals could not be even approximately evaluated

were it not for the fact that the statistical model requires a
usually mainly dipolar field.
[50] In terms of vertical component Z, horizontal intensity

H, tanI = Z/H, cos2I = H2/(Z2 + H2), and total square field
B2 = H2 + Z2, equation (22a) is equivalent to

VDMf g ¼ 4pa3=2m0

� �
B2 þ 3H2
� �1=2n o

; ð22bÞ

or

VDMf g ¼ 4pa3=m0

� �
B2 � 3Z2=4
� �1=2n o

: ð22cÞ

Again we separate the field into dipole and nondipole
contributions, including ZD and ZND. With equation (13) for
BD
2 , and because ZD

2 = 2R1(a,t)cos
2qD, the term BD

2 � 3ZD
2 /4

is independent of cosqD. Equation (22c) becomes

VDMf g ¼ 4pa3=m0

� �
R1=2þ 2BD�BND½f � 3ZDZND=2

þ B2
ND � 3Z2

ND=4

1=2g: ð22dÞ

[51] As before, expectation of a primarily dipolar field
implies that the typically small nondipole contributions to
the integrand can be approximated without fear of serious
error in integral (22d). With G2 � R1/2 + BND

2 � 3ZND
2 /4,

and e0 = (2BD.BND � 3ZDZND/2)/G
2, we use the small e0

approximation in the integrand to obtain {VDM} ffi
(4pa3/m0){G [1 + e0/2]}. The term 2BD.BND � 3ZDZND/2
itself is as likely positive as negative and averages to zero
on the sphere. Though weighted by about 1/2G, its small
contribution to the integral is omitted, giving

VDMf g ffi 4pa3=m0

� �
R1=2þ B2

ND � 3Z2
ND=4

� �1=2n o
: ð23aÞ

The mean square radial component from harmonics of
degree n is (n + 1)Rn/(2n + 1). So we further approximate
BND
2 with RND and ZND

2 with RND/2 in equation (23a) to
obtain

VDMf g ffi 4pa3=m0

� �
R1=2þ 5RND=8½ 
1=2

n o
: ð23bÞ

[52] One way to proceed from approximation (23b)
extracts the main dipole,

VDMf g ffi 4pa3=m0

� �
R1=2ð Þ1=2 1þ 5RND=4R1ð Þ1=2

n o
; ð24aÞ

and approximates the correction term 5RND/4R1 with
5{RND}/4{R1

1/2}2. One obtains

VDMf g ffi 4pa3=m0

� �
R1=2ð Þ1=2

n o
1þ 5 RNDf g=4 R

1=2
1

n o2
� �1=2

;

ð24bÞ

or, with the numerical values obtained above, {VDM} ffi
{jmj}[1.1448] ffi 6.542 � 1022 Am2 with an uncertainty of
about ±14.6%: ±11.5% in {jmj} and ±3.1% in the
correction.
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[53] A second way is to extract intensity from (23b),

VDMf g ffi 4pa3=m0

� �
F2=2
� �1=2

1þ RND=4F
2

� �1=2n o
; ð25aÞ

and approximate RND/4F
2 with {RND}/4{F}

2. One obtains

VDMf g ffi 4pa3=m0

� �
1=2ð Þ1=2 Ff g 1þ RNDf g=4 Ff g2

� �1=2
;

ð25bÞ

or, with the numerical values for {RND} and {F} above,
{VDM} ffi 6.447 � 1022 Am2. The correction to the effect
of {F} alone is 2.5%, so the uncertainty in (25c) is ±14.7%.
[54] Estimates (24b) and (25b) agree to within 1.5%, so

we set {VDM} ffi 6.50 � 1022 Am2 with an uncertainty of
about 15.4%. For the calibrated statistical model, {VDM} ffi
{VADM}.

6. Comparisons With Mean Paleointensity
Determinations

[55] The foregoing estimates for time averaged, global
mean measures of magnetic field strength rely on the field
determined via satellites to calibrate stationary trial proba-
bility distributions (4a) for fluctuations about expectation
magnetic spectrum (3a). Estimates for RMS intensity
{F2}1/2 = 37.3 mT, RMS dipole field {R1

c}1/2 = 33.9 mT,
RMS nondipole field {RND

c }1/2 = 15.6 mT, RMS dipole
moment {m.m}1/2 = 6.20 � 1022 Am2, and absolute
dipole moment {jmj} = 5.72 � 1022 Am2 use exact
formulations, yet have ±11.5% uncertainties originating
in the estimate of spectral amplitude. Estimates for mean
intensity {F} ffi 34.4 ± 4.9 mT, mean virtual axial dipole
moment {VADM} ffi (6.51 ± 0.94) � 1022 Am2, and mean
virtual dipole moment {VDM} = (6.50 ± 1.00) � 1022 Am2,
use approximate formulations with uncertainties closer to
±15%. The estimates are about 5% greater than before, but
the uncertainties are new and considerably less than typical
fluctuations indicated by the dipole power variance from PD
(4a). Are these estimates accurate over the geologic time
intervals for which they are intended?
[56] To try to answer this question, I sought published

paleomagnetic determinations of mean paleointensity. Such

means differ because different authorities use different data
selection criteria, different spatial distributions of data,
different temporal distributions of data, and different aver-
aging techniques. Table 5 summarizes mean values found
and their standard deviations. These mean values are not
statistically independent because different authorities some-
times select the same data. Such commonly selected data
receive heavier weight in the simple arithmetic average of
mean paleointensities shown in Table 5.

6.1. A Comparison With Archeointensity

[57] According to the archeointensity data selection and
analysis of McElhinny and Senanake [1982], 4 VDMs and
10 VADMs from the interval 15–50 kyr BP average to
(4.44 ± 0.64) � 1022 Am2. Ten, 1 kyr mean values of
archeomagnetic VDMs (VADMs when necessary) for the
interval 0–10 kyr BP, average to (8.75 ± 1.58) � 1022 Am2.
The former is (2.07 ± 1.14) � 1022 Am2, or 32% and 1.8s*,
less than the geomagnetic estimate for {VADM}; the latter
is (2.25 ± 1.87) � 1022 Am2, or 35% and 1.2s*, greater than
the estimate for {VDM}. The uncertainty in a difference,
here denoted s*, is the root sum square of the two
independent uncertainties.
[58] The two average archeointensities of McElhinny and

Senanake [1982] differ at the 2.5s* level. If we accept that
mean virtual moment differed significantly during these two
different intervals, then we should weight the averages by
interval durations, 10 kyr or 35 kyr. The resulting duration
weighted mean of 5.40 � 1022 Am2 is 17% less than the
estimate for {VADM}. The twelve, 1 kyr means from 0 to
12 kyr BP tabulated by McElhinny and Senanake [1982]
have a RMS value of 8.676 � 1022 Am2. Their 14 select
values from 17 to 50 kyr BP have a RMS value of 4.578 �
1022 Am2. The root duration weighted mean square of the
two RMS values, 5.953 � 1022 Am2, is 16% less than the
estimate for {VADM2}1/2. Though seemingly insignificant
in light of ±14.5% uncertainties, the geomagnetic estimates
are about 17% more than these weighted mean archeointen-
sity determinations for the past 50,000 years.

6.2. Initial Comparisons With Mean Reduced
Paleointensities

[59] McFadden and McElhinny [1982] analyze 166 non-
transitional VDMs for the past 5 Myr. They note reasons to

Table 5. Means and Standard Deviations of Reduced Paleointensity Data

Authors Note Quantity Number Time (BP) Value ± SD, 1022 Am2

McElhinny and Senanake [1982] archeointensities V(A)DM 14 15–50 kyr 4.44 ± 0.64
McElhinny and Senanake [1982] 10, 1 kyr means V(A)DM 10 groups 0–10 kyr 8.75 ± 1.58
McFadden and McElhinny [1982] their fit to a distribution PDM 166 0–5 Myr 8.65 ± 3.6
Prévot et al. [1990, Table 1] mean of their 12 time groups VDM 280 in 12 groups 0–250 Myr 6.27 ± 2.95
Valet and Meynadier [1993] initial calibration of sediment VADM sediment 0–4 Myr 3.9 ± 1.9
Tanaka et al. [1995] nontransitional, T2 VDM 340 various 8.3 ± 4.9
Juarez et al. [1998] basaltic glass (T2+pTRM) VADM 21 5–160 Myr 4.2 ± 2.3
Juarez and Tauxe [2000] T2+pTRM and basaltic glass VADM 70 0.3–5 Myr 5.49 ± 2.36
Selkin and Tauxe [2000] T2+pTRM and basaltic glass VADM 555 0.3–300 Myr 4.6 ± 3.2
Selkin and Tauxe [2000] T2+pTRM and basaltic glass VADM 2 groups 0–0.3 Myr 8.47 ± 3.10
Love and Constable [2003] mean F at Hawaii and Reunion VADM 520 0–5 Myr 8.12
Biggin and Thomas [2003] their Group 1 V(A)DM 865 10–400 Myr 5.9 ± 3.5
Goguitchaichvili et al. [2004] nontransitional, T2+pTRM VDM 902 0–5 Myr 7.69 ± 3.15
Arithmetic mean of means and
RMS deviation (unweighted mean)

V(A)DM 6.52 ± 1.80

Geomagnetic estimate {VDM} 1965–2001 6.50 ± 1.00
Geomagnetic estimate {VADM} 1965–2001 6.51 ± 0.94
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reject Gaussian, but perhaps not lognormally, distributed
VDMs. Still, they find support for a model in which non-
dipole intensity is proportional to a ‘‘true dipole moment’’
that has a truncated Gaussian distribution with a standard
deviation of 3.6 � 1022 Am2 and a peak at the (8.65 ± 0.65)
� 1022 Am2 ‘‘paleomagnetic dipole moment’’ (PDM).
Curiously, their lognormal distribution peaks near 6.5 �
1022 Am2 ffi {VDM}. In contrast, PD (4a) gives a Maxwel-
lian distribution for absolute dipole moment that requires no
truncation at small moments, falls off like a Gaussian at
large moments, and peaks at 5.06 � 1022 Am2 (±11.5%).
[60] The PDM exceeds the estimated {VDM} by (2.15 ±

1.19) � 1022 Am2, or 33%. This difference amounts to a
+0.95s1 excess in R1

c, or 60% of the standard deviation
given by McFadden and McElhinny [1982], but is signif-
icant at the 1.8s* level given the ±0.65 � 1022 Am2

uncertainty in PDM and the ±1.00 � 1022 Am2 uncertainty
in {VDM}.
[61] Valet and Meynadier [1993] found a mean VADM of

(3.9 ± 1.9) � 1022 Am2 from sediments formed during
the past 4 Myr. This is (2.6 ± 2.1) � 1022 Am2, or 60% of
and 1.2s* less than the estimated {VADM}. They also
cite values of (5 ± 2) � 1022 Am2 for the past 140 kyr and
(4.3 ± 1.5) � 1022 Am2 for the interval 15–50 kyr BP. The
difference between the 5 Myr igneous PDM and the 4 Myr
mean sedimentary VADM is (4.75 ± 2.01) � 1022 Am2. At
2.4s*, this difference is more significant than the difference
between either paleomagnetic determination of mean pale-
ointensity and the geomagnetic estimate. Furthermore, it is
not due to huge VDMs 4–5 Myr BP.
[62] Some systematic effects of calibration of relative

paleointensity from sediments, sedimentation time averag-
ing, exclusion of transitional VDMs from igneous rocks,
and trace multidomain grains are noted in Appendix C. It
was thought that some cancellation of such systematic
effects results by averaging the 5 Myr PDM from volcanics
[McFadden and McElhinny, 1982] with the 4 Myr mean
VADM from sediments [Valet and Meynadier, 1993]. The
result, 6.3 � 1022 Am2, agrees with the estimates for
{VADM} and {VDM} in section 5.

6.3. More Comparisons With Mean Reduced
Paleointensities

[63] The tabulation of Cenozoic and Mesozoic Thellier-
Thellier paleointensities by Prévot et al. [1990, Table 1]
reduces 280 determinations to 12 temporal group mean
VDMs. The unweighted mean and standard deviation of
the 12 group mean VDMs is (6.27 ± 2.95) � 1022 Am2.
This agrees with the estimate for {VDM} – the 3.5%
difference is not significant. The weighted average, with
weights equal to the square root of the number of VDMs in
the group times the apparent duration spanned by the group,
is 6.31 � 1022 Am2. Three groups, Coniacian-Santonian,
Hettangian-Sinemurian, and Early Triassic, have few sam-
ples, uncertain ages rather than definite durations, and might
be over weighted. Omitting these three gives a 9 group
weighted average VDM of 5.88 � 1022 Am2. Neither
weighted mean VDM differs significantly from the geo-
magnetic estimate for {VDM}.
[64] The Prévot et al. [1990] tabulation contains no data

from the Cretaceous superchron (M. Prévot, personal com-
munication, 1996). This is considered important because a

purely stationary statistical model likely fails to describe
both reversible and nonreversing superchron states of the
core geodynamo. Indeed, Voorhies and Conrad [1996]
describe nonstationary magnetic effects of a geologically
transient, compositionally stratified, stable layer in the
uppermost outer core. The effects include both suppression
of reversals and the possibility that the 1/n modulation in
expectation spectrum (3a) may give way to a diffusion
dominated, n�3 modulation. Curiously, spectrum (3a) can
be salvaged if the nonstationarity is limited to the anisotropy
index defined in Appendix A. This might occur if, as seems
more widely held, suppression of reversals is due mainly to
anisotropy in the laterally heterogeneous heat flow across
the core-mantle boundary, as simulated by Glatzmaier et al.
[1999].
[65] Tanaka et al. [1995] analyzed a global paleointensity

database of 1123 published volcanic flow means. Their
published mean of 427 VDMs inferred via either Thellier
or Shaw methods is (7.4 ± 4.9) � 1022 Am2. This is 0.9 �
1022 Am2 greater than the geomagnetic estimate for
{VDM}, but the difference is not significant. Tanaka et
al. [1995] found 87, or 20.4%, of these VDMs to be
transitional. Their published mean of nontransitional VDMs
is (8.3 ± 4.9) � 1022 Am2, so the transitional VDMs average
to 3.9 � 1022 Am2, or 47% of the mean of nontransitional
VDMs. Even using the standard error of their mean non-
transitional VDM (standard deviation/(340)1/2), their mean
nontransitional VDM exceeds the estimate for {VDM} by
(1.8 ± 1.1) � 1022 Am2; this difference is of dubious
significance at the 1.7s* level.
[66] When integrated over the sphere, the model fitted by

Tanaka et al. [1995] to nontransitional VDMs, F ffi 31.3(1 +
3cos2p)1/2 mT, yields hFi ffi 43.2 mT. This is 26% greater
than the estimate for {F}, which is itself uncertain by
±14.2%. Their model also indicates hF2i1/2 ffi 44.3 mT, or
19% greater than the estimate for {F2}1/2 – still less than a
2s* discrepancy.
[67] Voorhies and Conrad [1996] analyzed theMcFadden

and McElhinny [1982] table of geographically grouped,
nontransitional, flow mean VDMs and related parameters.
With 48% of the samples being from Czechoslovakia or
Japan, and over 48% of the samples being post-Pleiocene,
the distribution is geographically and temporally nonuni-
form. Efforts to compensate for biases in the distribution
and construct a suitable spatiotemporal average of flow
mean paleointensities led to an RMS weighted intensity of
44.5 mT. This is a weighted average of group mean inten-
sities, with each weight being the square root of the number
of samples in the group multiplied by both the group mean
sinq and the time interval apparently represented by the
group. The result agrees with the value from integrating the
model of Tanaka et al. [1995] and so remains 19% greater
than expected.

6.4. Comparisons With More Recent Mean Reduced
Paleointensities

[68] Juarez et al. [1998] present 21 paleointensity deter-
minations from submarine basaltic glass formed at many
different locations during the past 160 Myr. The mean
VADM is (4.2 ± 2.3) � 1022 Am2 (L. Tauxe, personal
communication, 1998). This is (2.3 ± 2.5) � 1022 Am2 less
than the estimate for {VADM}. The exceptionally fine
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grained, single domain magnetite carrier in such glasses
need not share problems found in multidomain, and even
pseudosingle domain, grains. In particular, Xu and Dunlop
[2004] find that straight line fits through low and medium
temperature points in Arai plots for small, pseudosingle
domain (0.6 and 1 mm) magnetite grains overestimate the
intensity of the paleofield by about 25%. Curiously, 4/3 of
the estimated {VDM} is indistinguishable from the PDM.
[69] For the interval 0.3–5 Myr BP, Juarez and Tauxe

[2000] consider both 38 existing Thellier-Thellier paleoin-
tensity determinations with pTRM checks, denoted
T2+pTRM, and 32 new values from submarine basaltic
glass. Their published mean VADM for this interval,
(5.49 ± 2.36) � 1022 Am2, agrees with the estimated
{VADM} of (6.51 ± 0.94) � 1022 Am2.
[70] Selkin and Tauxe [2000] discuss data selection crite-

ria. They select 268 of 1592 previously published absolute
paleointensities and 287 paleointensities from submarine
basaltic glass. Their average VADM for the combined data
set is 5.4 � 1022 Am2 with a standard deviation of ±3.6 �
1022 Am2. The average within the 0–0.3Ma interval is (8.47 ±
3.10) � 1022 Am2, while the average of the 0.3–300 Ma data
set is (4.6 ± 3.2) � 1022 Am2. Both are listed in Table 5.
[71] Biggin and Thomas [2003] selected 865 of 1167

published paleointensity determinations, from which they
further extract a second group of 425 and a third group of 47
based on increasingly stringent data selection criteria. The
means and standard deviations of the three groups are 5.9 ±
3.5, 3.3 ± 3.1 and 5.8 ± 3.2 with units of 1022 Am2. Only the
first is listed in Table 5.
[72] Love and Constable [2003, Table 5] give the arith-

metic mean and standard deviation for 457 values for
paleointensity at Hawaii, 35.80 ± 12.30 mT, and for 63
values for paleointensity at Reunion, 40.29 ± 9.89 mT. Most
of the data cited come from latitudes 19.5� or �21.1�,
respectively, so equation (10) is used to compute 5 Myr
mean VADMs and standard deviations from these magnetic
volcanic edifices. The results are (8.02 ± 2.75) � 1022 Am2

for Hawaii and (8.84 ± 2.17) � 1022 Am2 for Reunion. If
one accepts standard errors of ±0.13 and ±0.27 � 1022 Am2

for Hawaii and Reunion, respectively, then these mean
VADMs would seem to differ significantly, by over 2s*.
The weighted arithmetic mean of the two values, with
weights equal to the number of samples, is about 8.12 �
1022 Am2. This value is included in Table 5. It exceeds the
estimate for {VADM}, (6.51 ± 0.94) � 1022 Am2, by at
most 1.7s*.
[73] Goguitchaichvili et al. [2004, Figure 1c] show the

distribution of 902 select VDMs from the past 5 Myr with a
mean of 7.69 � 1022 Am2 and a standard deviation of
±3.15 � 1022 Am2. This mean is 18% greater than the
estimate for {VDM}. Even adopting a standard error for
their mean of about ±0.10� 1022 Am2, it is only exceeds the
estimate by about 1.2s*. The truncated normal distribution
plotted on their histogram Figure 1c appears to underesti-
mate the count of VDMs with values less than the mean.
This might be explained by contributions from an absolute
dipole moment with a more nearly Maxwellian distribution.

6.5. Summary of Comparisons

[74] Table 5 summarizes 13 mean paleointensities
extracted from the literature. There might be more such

mean values, but this sample is enough for present pur-
poses. The values in Table 5 prove that the range of
paleomagnetically determined mean paleointensities in-
cludes the geomagnetic estimates for {VDM} and {VADM}
from section 5 of about (6.5 ± 1.0) � 1022 Am2. The
statistical hypothesis therefore passes the test against mean
paleointensity.
[75] Though not statistically independent, the tabulated

values have an arithmetic mean and RMS deviation of
(6.52 ± 1.80) � 1022 Am2. This agrees very well with the
geomagnetic estimate, perhaps because (1) neither duration
nor the square root of the number of sample VADMs were
used to weight this average, (2) other mean values were not
found and so not included, or (3) the geomagnetic estimate
is not bad.
[76] The standard deviation of each mean in Table 5

provides some indication of the width of the distribution
of paleomagnetically determined VDMs and VADMs. The
unsigned standard deviations average 2.76 � 1022 Am2 with
an RMS deviation of ±1.05 � 1022 Am2. Recall that the
statistical model puts the square root of the variance in core
dipole power at s1 = (2/3)1/2{R1

c}. So ±s1 variations in R1
c

about its mean correspond to absolute dipole moments of
[1 ± (2/3)1/2]1/2 times its expected value, or between 2.45
and 7.70 � 1022 Am2. Half the difference between these
two values, 2.62 � 1022 Am2, is a half width describing
±s1 variations in absolute dipole moment. We expect a
usually mainly dipolar field, so this half width provides a
rough estimate of the half width of VADM distributions
compatible with the statistical model. This rough estimate
agrees well with the average of the tabulated unsigned
standard deviations. The agreement suggests that sample
probability densities, and arguably the true PDs, are neither
far more broadly nor far more sharply peaked than indi-
cated by chi-square density (4a) for dipole power.
[77] Several studies suggest that mean paleointensity for

the last 300 kyr to 5 Myr is somewhat higher than our
geomagnetic estimate, perhaps by about 18% to 33% (but
see Juarez and Tauxe [2000]). It is not clear how strongly
these studies rely upon paleointensities determined at low to
moderate temperatures from samples with pseudosingle
domain magnetite grains as the dominant TRM carrier. This
is of some concern because Xu and Dunlop [2004] find that
straight line fits through low and medium temperature
points in Arai plots for small, pseudosingle domain (0.6
and 1 mm) magnetite grains overestimate paleointensity by
about 25%.

7. Summary and Conclusions

[78] A statistical hypothesis about Earth’s magnetic field
has been tested against paleomagnetism by combining it
with the present field to estimate time averaged paleomag-
netic intensity. The estimate uses the geomagnetic multipole
power spectrum Rn determined from satellite era measure-
ments. The hypothesis asserts that low-degree multipole
powers of the core source field, Rn

c, are distributed as chi-
square with 2n + 1 degrees of freedom and theoretical
expectation values {Rn

c} = K(n + 1/2)[n(n + 1)]�1(c/a)2n+4,
where a is the 6371.2 km reference sphere radius and c is
the 3480 km radius of Earth’s core. The implied, or expec-
tation, field on Earth’s surface is usually mainly dipolar and
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can be primarily axial. Amplitude K is estimated by fitting
theoretical to observational spectra of degrees 1–12.
[79] The resulting calibrated expectation spectrum is

summed through degree 12 to estimate expected square
field intensity {F2}. This sum also estimates mean square
paleointensity, averaged over geologic time as well as the
sphere, in so far as the present field spectrum is a fair
sample of that generated in the past by core geodynamic
processes. Previously, we excluded dominant degrees 1 and
2 from the fit, but not the sum, to predict mean paleointen-
sity from the 1980 Magsat nondipole field. The new
estimate fits all Rn of degrees 1–12 self-consistently and
yields {F2} = (37.3 ± 4.3 mT)2.
[80] Because the hypothesis requires a usually mainly

dipolar field, it can be used to approximate expectation
values for other measures of intensity. For example,
expected paleointensity {F} is about 34.4 ± 4.9 mT;
expected virtual axial dipole moment {VADM} is about
(6.51 ± 0.94) � 1022 Am2; and expected virtual dipole
moment {VDM} is about (6.5 ± 1.0) � 1022 Am2 The latter
estimates are within the range of published paleomagnetic
determinations of mean paleointensity; therefore the statis-
tical hypothesis passes this test.
[81] Other statistical hypotheses about Earth’s magnetic

field, notably its spectrum, can clearly be tested by adapta-
tions of the method developed and applied here. Several of
these should also pass the mean paleointensity test, for the
range of published mean paleointensities is fairly broad and
so accommodates multipole power probability densities
which differ somewhat from calibrated chi-square densities
(4a). Yet the geomagnetic estimates for {VADM} and
{VDM} obtained here agree well with the average of
paleomagnetically determined mean values extracted from
the literature. Moreover, each mean virtual moment has a
standard deviation and the width of the distribution indicated
by the average of unsigned standard deviations agrees with a
rough estimate from the calibrated statistical model. The
present model is further compatible with a field that is usually
mainly that of a geocentric axial dipole. In terms of the mean
square field, the dipole is also expected to be both the
dominant, and the most variable, core source multipole. This
can help describe the intensity and rate of dipole power
excursions and, with some additional suppositions, axial
dipole reversals. The statistical model offered here is thus
thought to be closer to the truth than vastly different models,
and so merits further development and testing.

Appendix A: Chi-Square From Nonnormal
Distributions

[82] If 2n + 1 independent variables xi (i = 1, 2, 3, . . . 2n
+ 1) are drawn at random from identical, zero mean
Gaussian distributions of unit variance, then the probability
distribution for the sum of the squares, Si xi

2, is well known
to be chi-square with 2n + 1 degrees of freedom. It is less
well known that the reverse is not always true. For example,
consider three independent real variables (X, Y, Z) on the
open interval (�1, +1) with probability densities (PDs)

PM Xð Þ ¼ 2pð Þ�1=2
X 2 exp �X 2=2

� �
ðA1aÞ

PD Yð Þ ¼ d Yð Þ ðA1bÞ

PD Zð Þ ¼ d Zð Þ; ðA1cÞ

where PM denotes the bi-Maxwellian and d denotes the
Dirac delta function. There is no chance of Y or Z being
anything but zero. Because X can be either positive or
negative, P(X 2) = 2PM(X)jdX/d(X 2)j. With dX 2 = 2XdX
and X 2 + Y2 + Z2 = c2,

P3 c2
� �

dc2 ¼ P X 2
� �

dX 2 ¼ 2PM Xð ÞjdX=d X 2
� �

jdX 2 ðA1dÞ

¼ 2pð Þ�1=2
X 2
� �1=2

exp �X 2=2
� �

dX 2 ðA1eÞ

¼ 23=2G 3=2ð Þ
h i�1

c2
� �1=2

exp �c2=2
� �

dc2 ðA1fÞ

where G is the gamma function. Distribution (A1f) is chi-
square with three degrees of freedom.
[83] In example (A1), if we replace X with g1

0/D, Y with
g1
1/D, and Z with h1

1/D, then we describe a dipole field with
no tilt and a zero mean, bimodally distributed axial com-
ponent of variance {(g1

0)2} = 3D2. In contrast, the isotropic
case of three zero mean Gaussian distributions with equal
variances for g1

0, g1
1 and h1

1 describes a dipole with no
preferred direction and a typical tilt of about tan�1(21/2) =
54.7�. This does not describe a terrestrial field dominated by
a reversible axial dipole as well as example (A1), but might
be of use for Uranus and Neptune. Example (A1) might be
of use for Saturn [Connerney et al., 1982]. Intermediate
distributions seem more Earth-like and may be of use for
Jupiter [Connerney and Acuna, 1982].
[84] There are an infinite number of sets of three proba-

bility distributions for three independent variables for which
the sum of squares is distributed as chi-square with three
degrees of freedom [Voorhies and Conrad, 1996]. Indeed,
for independent variables (x1, x2, x3) on (�1, +1) with
PDs

Pa x1ð Þ ¼ A1jx1j�p1 exp �x2
1
=2½ 


ðA2aÞ

Pb x2ð Þ ¼ A2jx2j�p2 exp �x2
2
=2½ 


ðA2bÞ

Pc x3ð Þ ¼ A3jx3j�p3 exp �x2
3
=2½ 


ðA2cÞ

and normalization constants (A1, A2, A3), if the power law
indices (p1, p2, p3) are all less than one and sum to zero, then
x1
2 + x2

2 + x3
2 is distributed as chi-square with three degrees of

freedom. There are an infinite number of such triples. The
form Ajxj�pexp(�x2/2) is half the chi-square distribution
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with typically fractional degrees of freedom (1� p) reflected
about zero mean; for p = (1 � 2b), the corresponding
amplitude A is [2bG(b)]�1. The condition p1 + p2 + p3 = 0
implies at least one index is positive; therefore, at least one
of these PDs must be singular at the origin. Such singular
PDs are of dubious utility for planetary magnetism.
[85] Instead consider zero-mean Gaussian distributions

for g1
1 and h1

1, in qualitative accord with both observations
of nonzero dipole tilt and the hypothesis of zero mean tilt
averaged over long geologic time intervals. Example (A1)
suggests that a linear combination of Gaussian and bi-
Maxwellian distributions would then yield both a regular
PD for g1

0 and a distribution for normalized dipole power
(3R1/{R1}) equal to chi-square with three degrees of
freedom.
[86] To prove this, let (x, y, z) denote scaled core dipole

coefficients [(a/c)3g1
0, (a/c)3g1

1, (a/c)3h1
1]; let (sx

2, sy
2, sz

2)
denote the variances of these quantities; let V 2 � sx

2 + sy
2 +

sz
2; and for simplicity suppose sy

2 = sz
2. Now consider the

probability distributions

Px xð Þdx ¼ 3=2pV 2
� �1=2

3=V 2
� � s2

x � s2
y

V 2
x2 þ s2

y

" #

� exp �3x2=2V 2
� �

dx ðA3aÞ

Py yð Þdy ¼ 2ps2
y

� ��1=2
exp �y2=2s2

y

� �
dy ðA3bÞ

Pz zð Þdz ¼ 2ps2
z

� ��1=2
exp �z2=2s2

z

� �
dz: ðA3cÞ

These are zero mean distributions, so V 2 = (a/c)6{R1
c/2}.

For a dipole that is usually mainly axial, sx
2 � sy

2 and Px(x)
is small when x2 is small. Next define x2 � x2 + y2 + z2, so
x2 = (a/c)6R1

c/2 and 3x2/V 2 = 3R1
c/{R1

c}. Provided (x, y, z) are
statistically independent variables, it is enough to prove that
3x2/V 2 is distributed as chi-square with three degrees of
freedom, or

P x2
� �

dx2 ¼ 23=2G 3=2ð Þ
h i�1

3x2=V 2
� �1=2

3=V 2
� �

� exp �3x2=2V 2
� �

dx2 ¼ P3 c2
� �

dc2: ðA3dÞ

It is also enough to prove that distribution (A3a) for an axial
dipole follows from distributions (A3b), (A3c) and (A3d).
This alternative is used here to show a way to derive
distribution (A3a).
[87] With probability densities for the square variables

denoted Qx(x
2), Qy(y

2) and Qz(z
2), the derivation begins

with the fact that the distribution for x2 must obey

P x2
� �

dx2 ¼
Z1
0

Z1
0

Z1
0

Qx x2
� �

Qy y2
� �

Qz z2
� �

� d x2 � x2 � y2 � z2
� �� �

dx2dy2dz2dx2: ðA4aÞ

Densities (A3b) and (A3c) are symmetric, so the likelihood
of y2 is twice that of y alone and Qy(y

2)dy2 = 2Py(y)jdy/
d(y2)jdy2 = Py(y)jyj�1dy2. Substitution of this relation, and a

similar one for Qz(z
2), into (A4a), and making use of normal

distributions (A3b) and (A3c), gives

P x2
� �

¼ 2psysz

� ��1
Z1
0

Z1
0

Z1
0

Qx x2
� �

� exp �y2=2s2
y � z2=2s2

z

h i
jyzj�1

� d x2 � x2 � y2 � z2
� �

dx2dy2dz2: ðA4bÞ

[88] The offset delta function in (A4b) is the inverse
Laplace transform, denoted L�1, of the exponential of its
offset,

d x2 � x2 � y2 � z2
� �

¼ L�1 exp x2 � x2 � y2 � z2
� �� �

ðA5aÞ

¼ 2pið Þ�1

Zþi1

�i1

exp sx2
� �

exp½�s x2 þ y2 þ z2
� �


ds; ðA5bÞ

where s denotes the Laplace transform domain variable and
i2 = �1 (see, e.g., Reif [1965, equation A.7.14] with his
Fourier k = �is). With definitions u � x2, v � y2 and w � z2,
substitution of (A5b) into (A4b) and a reordering of the
integrations yields

P x2
� �

¼ 4p2isysz

� ��1
Zi1

�i1

Z1
0

Z1
0

Z1
0

Qx uð Þ

� exp sx2 � su
� �

exp
�
� sv� v=2s2

yÞ

� exp �sw� w=2s2
z

� �
vwð Þ�1=2

dudvdwds: ðA6aÞ

[89] In equation (A6a), the integrals over u, v and w are
themselves Laplace transforms, so

P x2
� �

¼ 4p2syszi
� ��1

Zi1
�i1

L Qx uð Þ½ 
L v�1=2 exp �v=2s2
y

� �h i

� L w�1=2 exp �w=2s2
z

� �h i
exp sx2

� �
ds: ðA6bÞ

The transform L[tq�1eat] = G(q � 1)[s � a]�q for q > 0
is helpful [see, e.g., Beyer, 1978]. Indeed, because
L[w�1/2exp(�w2/2sz

2)] = G(1/2)[(s + 1/2sz
2)]�1/2, equation

(A6b) is just

P x2
� �

¼ 4p2syszi
� ��1

Zi1
�i1

L Qx uð Þ½ 
 G 1=2ð Þ½ 
2

� sþ 1=2s2
y

� �
sþ 1=2s2

z

� �h i�1=2
exp sx2

� �
ds: ðA6cÞ

The Laplace transform of (A6c) with respect to x2 is

L P x2
� �� �

¼ 2psysz

� ��1
L Qx uð Þ½ 
 G 1=2ð Þ½ 
2

� sþ 1=2s2
y

� �
sþ 1=2s2

z

� �h i�1=2
: ðA6dÞ
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[90] With sy
2 = sz

2, the transform of (A3d) is

L P x2
� �� �

¼ 23=2
h i�1

3=V 2
� �1=2

3=V 2
� �

� sþ 3=2V 2
� ��3=2

: ðA7Þ

This is substituted into (A6d) and the result solved for

L Qx uð Þ½ 
 ¼s2
y 3=2V 2
� �1=2

3=V 2
� �

sþ 1=2s2
y

� �
� sþ 3=2V 2
� ��3=2

: ðA8Þ

[91] The inverse transform of (A8), which gives Qx(u� x2)
and thus the density Px(x) we seek, has two contributions:

L�1 sþ 3=2V 2
� ��3=2
h i

¼ G 3=2ð Þ½ 
�1
u1=2 exp �3u=2V 2

� �
ðA9aÞ

L�1 s sþ 3=2V 2
� ��3=2

h i
¼ p�1=2 u�1=2 � 2 3=2V2

� �
u1=2

h i
� exp �3u=2V 2

� �
: ðA9bÞ

We substitute these expressions into the inverse Laplace
transform of (A8), note G(3/2) = p1/2/2, and multiply by dx2

to obtain

Qx x2
� �

dx2 ¼s2
y 3=2V 2
� �1=2

2=p1=2
� �

3=V 2
� �

� 1=2s2
y

� �
x2
� �1=2þ x2

� ��1=2
=2

h
� 3=2V 2
� �

x2
� �1=2i

� exp �3x2=2V 2
� �

dx2: ðA10Þ

With distribution (A10), because Qx(x
2)dx2 = 2Px(x)jdx/

d(x2)jdx2 = Px(x)jxj�1dx2,

Px xð Þdx2 ¼ 3=2pV 2
� �1=2

3=V 2
� �

� s2
y þ 1� 3s2

y=V
2

� �
x2

h i
� exp �3x2=2V 2

� �
dx2 ðA11aÞ

Px xð Þdx ¼ 3=2pV 2
� �1=2

3=V 2
� � s2

x � s2
y

V 2
x2 þ s2

y

" #

� exp �3x2=2V 2
� �

dx ðA11bÞ

This is distribution (A3a), a linear combination of zero
mean bi-Maxwellian and zero mean Gaussian distributions
(QED).
[92] Note that sx

2 � sy
2 = V2 � 3sy

2 > 0. For typically
small tilt, sx

2 � sy
2 and the zero mean symmetric distribu-

tion (A3a) has two peaks on either side of the local
minimum at x = 0 (or g1

0 = 0 as x is (a/c)3g1
0). The two

peaks correspond to two axial dipole polarities, one normal,
the other reversed. An index of anisotropy, or tilt control
parameter, for distributions (A3a), (A3b), and (A3c) is e* =

[sx
2 � sy

2]/V2; this is 1 for purely axial dipoles, zero for
randomly oriented dipoles drawn from an isotropic distri-
bution, and �1/2 for purely equatorial dipoles. For purely
axial dipoles with sy

2 = sz
2 = 0, distribution (A3a) would

vanish at x = 0, hence g1
0 = 0. The probability of g1

0 passing
through zero would then be zero, so reversals would be
prohibited. More generally, inhibition of reversals can be
described by values of e* very close to unity. This is
inseparable from typically small tilt due to the limited
descriptive power of distributions (A3a)–(A3d).
[93] It is conjectured that distributions (A3a), (A3b), and

(A3c) with 0 < e* < 1 describe the terrestrial dipole with fair
accuracy. Very slow change of the variances (sx

2, sy
2 
 sz

2)
over very long geologic times may describe some effects of
very slow changes in boundary conditions on the outer core.
These distributions might also be used to help describe
other planetary dipoles (e.g., e* seems to be near 1 for
Saturn, somewhat less than one for Jupiter, and near zero
for Uranus and Neptune). Of course, these distributions are
but one class of core dipole coefficient distributions that
are consistent with the normalized core source dipole
power being distributed as chi-square with three degrees
of freedom.

Appendix B: Lognormal Versus Chi-Square
Distributions

[94] To show that a chi-square distribution near its mean is
more closely approximated by a lognormal than a Gaussian
distribution, first define zn � Rn/{Rn} = c2/(2n + 1). Then
use probability densities (4a) or (4b) to rewrite distributions
(4c) as

P2nþ1 c2
� �

dc2 ¼ 2nþ1=2G nþ 1=2
� �h i�1

2nþ 1ð Þzn½ 
n�1=2

� exp � 2nþ 1ð Þzn=2½ 
 2nþ 1ð Þdzn: ðB1Þ

Whereas [zn]
n�1/2 = exp[(n � 1=2)lnzn],

P2nþ1 c2
� �

dc2 ¼ G nþ 1=2
� �� ��1

nþ 1=2
� �nþ1=2

� exp nþ 1=2
� �

ln zn � znð Þ � ln zn
� �

dzn: ðB2Þ

[95] The series expansion for the gamma function
[Gradshteyn and Ryzhzik, 1980] is

G nþ 1=2
� �

¼ 2p= nþ 1=2
� �� �1=2

nþ 1=2
� � nþ1=2ð Þ

� exp � nþ 1=2
� �� �

� 1þ 12= nþ 1=2
� ��

þ1=288 nþ 1=2
� �2þ . . .

i
: ðB3Þ

The first term alone approximates G with errors less than
5.8% for n � 1. We substitute this approximation into
distributions (B2) to obtain

P2nþ1 c2
� �

dc2 ffi nþ 1=2
� �

=2p
� �1=2

1=znð Þ
� exp nþ 1=2

� �
1þ ln zn � znð Þ

� �
dzn: ðB4Þ
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[96] The mean of a chi-square distribution is at c2 = 2n +
1, or zn = 1. Near the mean, zn ffi 1 and, specifically for 0 <
zn � 2,

ln zn ¼ zn � 1ð Þ � zn � 1ð Þ2=2þ zn � 1ð Þ3=3� . . . ðB5Þ

When this identity is substituted into the argument of the
exponential in approximation (B4), terms of first order in
(zn � 1) cancel. To retain only the second-order term
would give

P2nþ1 c2 ffi 2nþ 1
� �

dc2 
 nþ 1=2
� �

=2p
� �1=2

� 1=znð Þ exp � nþ 1=2
� �

zn � 1ð Þ2=2
h i

dzn: ðB6Þ

This is 1/zn times a unit mean Gaussian in zn with variance
1/(n + 1=2).
[97] For zn ffi 1, however, the argument of the exponential

in (B4),

nþ 1=2
� �

1þ ln zn � zn½ 
 ¼ � nþ 1=2
� �

� zn � 1ð Þ2=2� zn � 1ð Þ3=3þ zn � 1ð Þ4=4� . . .
h i

; ðB7aÞ

is more closely approximated by

� nþ 1=2
� �

ln znð Þ2=2 ffi � nþ 1=2
� �

� zn � 1ð Þ2=2� zn � 1ð Þ3=2þ 11 zn � 1ð Þ4=24� . . .
h i

ðB7bÞ

than by �(n + 1=2)[(zn � 1)2/2] alone; therefore a more
accurate approximation than (B6) is

P2nþ1 c2 ffi 2nþ 1
� �

dc2 ffi nþ 1=2
� �

=2p
� �1=2

1=znð Þ

� exp � nþ 1=2
� �

ln znð Þ2=2
h i

dzn: ðB8Þ

This closer approximation is 1/zn times a zero mean normal
in lnzn, or lognormal in zn, with variance 1/(n + 1=2) in lnzn.
A chi-square distribution near its mean is therefore more
closely approximated by a lognormal than by the Gaussian
distribution (QED). To order (zn � 1)3, the error reduction
amounts to a factor of 2 in the exponent.
[98] Use of either lognormal or Gaussian distributions of

residuals to estimate an expectation spectrum by least
squares omits the factor of 1/zn in either (B8) or (B6),
respectively. Curiously, this should help recover the mean,
as distinct from the most likely, value of c2.

Appendix C: Systematic Effects in Sedimentary
VADMs and Volcanic VADMs

[99] A different calibration of relative paleointensity
from sediments against Thellier-Thellier paleointensi
ties from igneous rocks could increase the 4 Myr mean
VADM from sediments [Valet and Meynadier, 1993;
Meynadier et al., 1994]. Similarly, exclusion of some Shaw
data could reduced the 5 Myr mean PDM of McFadden
and McElhinny [1982]. However, different is not necessarily

better and it is not entirely clear what sort of data
recalibration and/or reselection would vastly improve the
accuracy of a mean paleointensity determination.
[100] It is clear that a single sedimentary sample intensity

of the mean vector field averaged over sample formation
time Dt, j

R
Bdtj/Dt, can underestimate time averaged inten-

sity,
R
jBjdt/Dt. This is because an oscillating field perpen-

dicular to the mean field contributes positively to time
averaged intensity

R
jBjdt/Dt, but tends to cancel out of

the intensity of the time average vector j
R
Bdtj/Dt. An

integral number of oscillations per sample formation, or
sedimentary acquisition, time cannot be generally assumed;
however, appreciable cancellation is expected for periods
short compared with the acquisition time. For acquisition
times of order 102 years or less, the arguably small bias
seems a small price to pay for the dense and uniform
temporal distribution of sedimentary samples relative to
volcanic samples.
[101] An average of nontransitional VDMs from volcanics

can overestimate time averaged VDM simply because tran-
sitional VDMs are typically less than nontransitional VDMs,
apparently by a factor of 2 (see section 6.3). Yet there are
reasons to think that the many studies of axial dipole
reversals have led to a relative oversampling of transitional
VDMs. The latter can be omitted from a paleomagnetic
determination of mean VDM to avoid a more serious
underestimate. Of greater concern here is systematic over-
estimation of paleointensity resulting from omission of small
but important curvature in NRM-pTRM curves caused by
trace concentrations of multidomain grains [Xu and Dunlop,
1995, 2004]. A large curvature is more easily seen and is
often used to help identify a sample as unsuitable for
inclusion in a reliable absolute paleointensity determination
from igneous rocks.
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