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[1] The anhysteretic remanent magnetization (ARM) is widely used in rock
magnetism and paleomagnetism because of its sensitivity to the domain state of magnetic
particles and the close analogy to natural remanent magnetizations. On the other hand, the
ARM shares with other weak-field magnetizations the property of being extremely
sensitive to magnetostatic interactions. Therefore it is desirable to model the effects of
interactions on natural assemblages of magnetic particles. Direct micromagnetic
calculations of the ARM acquisition process are not practicable; therefore an analytical
approach is used calculate the ARM susceptibility of a system of interacting
single-domain (SD) particles. The model is based on a statistical description of the
interaction field. The equations obtained have been used to evaluate the dependence of the
ARM on the packing fraction of the magnetic particles. The effect of interactions on
the anisotropy of ARM (AARM) was evaluated as well. The AARM of densely packed
particles is complex and depends critically on the microcoercivity. A physical
interpretation of the AARM of highly interacting particles is therefore difficult.
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1. Introduction

[2] The anhysteretic remanent magnetization (ARM) has
been since long time a subject of investigation in association
with magnetic recording materials [e.g., Eldridge, 1961;
Kneller, 1968; Jaep, 1969; Walton, 1990]. At the same time,
the ARM has been used as a grain size indicator in rock
magnetism [e.g., Johnson et al., 1975; King et al., 1982],
and as a normalization factor in paleointensity studies [e.g.,
Shaw, 1974; Rolph and Shaw, 1985]. The anisotropy of
ARM (AARM) has found application in sediments for
correction of inclination shallowing of detrital remanent
magnetization [e.g., Jackson et al., 1991; Kodama and
Sun, 1992; Kodama, 1997]. More recently, ARM magneti-
zation curves have been used to quantify magnetofossils in
freshwater and marine sediments [Egli, 2004].
[3] The ARM is a complicated magnetic acquisition

process that is extremely sensitive to the size of the
magnetic particles, and to magnetostatic interactions [Egli
and Lowrie, 2002; Sugiura, 1979]. These properties are
shared with other weak-field magnetizations, such as the
thermoremanent and the chemical remanent magnetization
[Néel, 1949, 1955; Shcherbakov et al., 1996]. It is not
surprising that modeling of weak-field magnetizations is an
extremely difficult task, especially if magnetostatic inter-
actions are included. However, precise quantitative models

are desirable to correctly reveal differences between various
types of magnetizations and their grain size dependence.
[4] Models for the ARM of noninteracting single-domain

(SD) particles have evolved from early Preisach models
[Wohlfarth, 1964] to an approach based on thermal activa-
tion effects [Walton, 1990], which lead to a complete
analytical solution [Egli and Lowrie, 2002]. On the other
hand, Xu and Dunlop [1995] developed a model for the
ARM acquisition in multidomain grains. Other properties
such as the additivity and reciprocity of partial ARM [Yu et
al., 2002a, 2002b], and the dependence of the ARM on the
decay rate of the alternating field [Yu and Dunlop, 2003],
have been investigated.
[5] Recent advances in micromagnetic calculations

allow modeling the effect of magnetostatic interactions on
the hysteresis properties of interacting particles [Muxworthy
et al., 2003], and first-order reversal curves (FORC) gained
increasing interest as a tool to characterize interactions in
rocks and sediments [Roberts et al., 2000]. On the other
hand, the theoretical investigation of the effects of magne-
tostatic interactions on the ARM remains limited to
studies of highly ordered magnetic recording materials
[e.g., Wohlfarth, 1964; Papusoi and Stancu, 1993; Della
Torre and Vajda, 1997]. A micromagnetic modeling of
interaction effects on the ARM is computationally too
demanding, since it requires one to calculate the magneti-
zation of thousands of particles along a high-resolution time
scan of a typical alternating field cycle. Monte Carlo
methods provide a practical approach to modeling of
weak-field magnetizations of interacting particles, as shown
by Shcherbakov et al. [1995].
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[6] In this paper, a fully analytical model of the ARM of a
random set of interacting SD particles is presented. A so-
called moving Preisach approach [Hejda and Zelinka, 1990]
is used to calculate the magnetic field acting on each
particle during the ARM acquisition, supported by a general
statistical model for the local interaction field (IF) [Egli,
2006]. An interesting outcome of the model is the fact that
the ARM susceptibility of interacting particles is a strong
function of only three parameters: the noninteracting sus-
ceptibility, the saturation magnetization of the particles, and
their volume density. The analytical model provides a direct
means to calculate the effects of interactions on the anisot-
ropy of ARM (AARM) in terms of geometrical parameters
that describe an orientation-dependent distribution of par-
ticles in space, called ‘‘distribution anisotropy’’ is similar
studies on the anisotropy of magnetic susceptibility [e.g.,
Stephenson, 1994].

2. Statistical Description of the Interaction Field

[7] Without loss of generalization, let us consider the IF
produced by an assemblage of interacting particles along a
given direction, assumed to be the z axis of a coordinate
system. The z component Hi of the IF acting on a magnetic
particle is conveniently described by

Hi ¼ Hz þ Hd þ Hm ð1Þ

where Hz and Hm are the random and the mean components
of the local interaction field, respectively, and Hd is the
demagnetizing field. The demagnetizing field is given by
Hd = �fd M , where f is the demagnetizing factor [Osborn,
1945], and M is the magnetization of the sample. For a
spherical sample, f = 1/3. The random component of the
IF is different for each grain in the sample, and is there-
fore treated as a statistical variate characterized by a
probability density function (PDF) W(Hz) [Shcherbakov and
Shcherbakova, 1975; Berkov, 1996]. If the typical distance
between SD grains is larger than their diameter, the random
component of the IF corresponds with good approximation
to the sum of the dipole fields produced by all grains. Egli
[2006] obtained following PDF for the IF produced by an

isotropic assemblage of random dipoles along a given
direction:

W Hz; p;msð Þ ¼ eab

pb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ H2

z =a2

q K1

a
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ H2

z =a2

q� �
ð2Þ

where p is the packing fraction (i.e., the volume occupied by
the particles divided by the total volume of the sample), ms

is the saturation magnetization of the particles, K1 is the
modified Bessel function of the second kind, and a, b are
two parameters that depend on p. For small packing
fractions 0 < p � 0.01, (2) is conveniently approximated by
the Lorentz (also called Cauchy) distribution:

C Hz; pmsð Þ ¼ 1
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3

p þ 1

" #
� 0:361

ð3Þ

Both distributions in (2) and (3) are even functions that
describe a statistical variate with zero mean. The mean
component Hm = fmM of the local IF describes the net
balance between positive and negative interactions, whereby
the notation ‘‘positive’’ and ‘‘negative’’ refer to the sign of
the scalar product between interaction field and magnetiza-
tion. In a sample of isotropic dispersed grains, positive and
negative interactions are balanced, and fm = 0 follows from
Gauss’s theorem. If the average distance between the
particles is smaller (larger) along the direction of measure-
ment, fm is positive (negative). Examples of configurations
leading to fm 6¼ 0 are shown in Figure 1. These
configurations introduce an anisotropy of the magnetic
properties due to interactions, called ‘‘distribution aniso-
tropy’’ [e.g., Muxworthy and Williams, 2004]. If the easy
axes of the particles are randomly oriented, positive
interactions are predominant along the direction of shortest
distance between the particles (fm > 0), and negative
interactions are predominant along the direction of largest
distance between the particles (fm < 0).

Figure 1. Schematic representation of magnetic particles with (a) a negative mean interaction field and
(b) a positive mean interaction field. Field lines are dashed, H1 and H2 are the z components of the dipole
field produced by m1 and m2.
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[8] An anisotropic distribution of the particles is also
expected to produce a direction-dependent PDF of the
random component of the IF. This effect can be easily
understood in the limit case of isolated, aligned ‘‘strings’’ of
SD particles, where the calculation of the IF is reduced to a
one-dimensional problem. In more realistic cases of slightly
anisotropic configurations, the random component of the IF
is described by (2) or (3), whereby the scalar parameters a
and b are replaced by tensors. The calculation of a and b
for anisotropic cases is not straightforward, and will be the
subject of future research.
[9] If all contributions to the IF are taken into account, the

total field acting on a magnetic grain is completely de-
scribed by the PDF W(H + Hz � fM; p, ms), where H is an
external applied field, and f = fd � fm.

3. Statistical Effects of the IF on the Remanence

[10] One of the main difficulties in modeling interacting
assemblages is that it is a highly nonlinear problem which
cannot be treated analytically in the general case. A drastic
simplification of the problem is possible in the case of
weak-field magnetizations, such as ARM, which are much
weaker than the saturation magnetization of the sample. In
this case, as I will show in section 4, the total magnetization
of a sample can be expressed in terms of the switching states
of the individual particles.
[11] Consider an interacting assemblage of uniaxial, SD

particles in an initially demagnetized state. A remanent
magnetization is acquired by switching the magnetic
moments of a subset of all particles. If magnetostatic
interaction effects are ignored, the magnetic moments are
aligned with the corresponding easy axes, giving a net
remanent magnetization M0 . Under the influence of the
IF, the magnetic moments are deflected from the easy axes
to an extent that depends on the ratio of the IF amplitude to
the microcoercivity HK of the particles. Moreover, the IF
can be strong enough to switch the moment of some
particles. Macroscopically, these effects can be accounted
by multiplying M0 by a factor x = xm(M)xr(p), where

xm(M) and xr(p) represent the effects of the mean and the
random part of the IF, respectively. If the ARM is acquired
in a small field h , the mean IF is given by Hm = �fcai h < h,
where cai is the susceptibility of ARM. As it will be shown
in section 4, an upper limit for cai is given by cai = f �1,
which coincides with an early result obtained by Wohlfarth
[1964]. Since typical fields used for ARM experiments are
of the order of magnitude of 0.1 mT, Hm < h 
 HK is
always a valid assumption, and the mean IF can be
neglected. Therefore xm � 1 will be used in the following.
[12] A rigorous calculation of xr is obtained by minimiz-

ing the normalized energy e of a uniaxial SD grain sub-
jected to a random IF:

e qð Þ ¼ sin2 q� 2 hx sin qþ hz cos qð Þ ð4Þ

where q is the angle between the magnetic moment and the
easy axis, and hx = (Hx + Hy)

1/2/HK and hz = Hz/HK are the
normalized components of the IF perpendicular, respec-
tively parallel to the easy axis. Each component is a
statistical variate with PDF given by equation (1). Since the
deviations of the magnetic moments m from the easy axes u
are random, the total magnetization of the sample is given
by summation of the components m � u along the easy axes
(Figure 2). The factor xr(p) is obtained from a weighted
integration ofm � u over all possible configurations of the IF:

xr HK; pð Þ ¼
Z þ1

�1
W HKhxð Þ

Z þ1

�1
W HKhy
� �

�
Z þ1

�1
W HKhzð Þ cos qmdhzdhydhx ð5Þ

where qm minimizes (4), and m � u = cos qm. The integral in
(5) must be evaluated numerically, since the minimization of
(4) does not have an analytical solution. The limits
xr (p! 0, HK) = 1 and xr (p, HK ! 0) = 0 of (5) characterize
the cases of noninteracting particles on one hand, and
interacting superparamagnetic particles on the other
(Figure 3). Muxworthy et al. [2003] used a micromagnetic
model to calculate the effect of magnetostatic interactions on
the hysteresis parameters of a regular array of interacting
particles. Their results for the remanence ratio Mrs/Ms

of uniaxial SD particles show the same trend predicted by
(5), whereby Mrs/Ms decreases with increasing packing
fractions.

4. Acquisition of Anhysteretic Remanent
Magnetization

[13] An ARM is acquired by applying an alternating field
~H(t) cos wt + h with bias h and a linearly decreasing
amplitude ~H(t) = ~H0(1 � ht) , where h is the decay rate
of the alternating field. The dependence of the ARM of
noninteracting particles on h is described by an acquisition
function L(h) , with:

lim
h!�1

L hð Þ ¼ � 1; lim
h!0

L hð Þ ¼ h; L �hð Þ ¼ �L hð Þ ð6Þ

Egli and Lowrie [2002] found L(x) = tanh (x) for uniaxial
SD particles.
[14] In the following, I introduce various parameters

needed to calculate the ARM of interacting particles. The

Figure 2. Schematic representation of the randomizing
effect of the local IF Hi on a magnetic moment m, which is
deflected from the easy axis u. The total magnetization is
given by the sum of all components m � u of the magnetic
moment along the easy axes.
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effective switching field distribution (SFD) of the particles
is given by M0

r(Hsw), whereby Hsw does not necessarily
coincide with the intrinsic switching field of isolated par-
ticles. The function M0

r(Hsw) represents the contribution of
all particles with switching fields Hsw to the remanent
magnetization of the sample. Similarly, M0

a(h, Hsw) is the
contribution of all particles with switching fields Hsw to
the ARM in the noninteracting case. According to this
definition,

Mr Hswð Þ ¼
Z 1

Hsw

M 0
r Hð Þ; dH

Ma h;Hswð Þ ¼
Z 1

Hsw

M 0
a h;Hð Þ dH

ð7Þ

are the saturation remanent magnetization and the
anhysteretic magnetization of all grains with a switching
field > Hsw . The ARM susceptibility of noninteracting
particles with switching field Hsw is defined as c0

a(Hsw) =
M0

a(h, Hsw)/h for h ! 0. The ARM susceptibility ca of
all non interacting particles is given by the integration of
c0

a over all switching fields. By analogy, the quantities

Mai, M
0
ai0, c

0
ai, and cai are defined for the interacting case

(Table 1).
[15] The ARM acquired by noninteracting particles with

switching field Hsw is given by:

M 0
a Hsw; hð Þ ¼ M 0

r Hswð ÞL c0
a Hswð Þ h=M 0

r Hswð Þ
� 

ð8Þ

[16] To understand how (8) is modified in case of
interactions, let us discuss the progress of the ARM process
with time on an initially demagnetized sample. When the
peak alternating field decays from its initial value ~H0 to ~H ,
all grains with ~H < Hsw � ~H0 have already acquired an
ARM. Let Mai( ~H ,h) be the ARM acquired by these grains.
All other grains are still unblocked, and their moment is
switched periodically by the alternating field. At this stage
of the ARM acquisition, all grains with Hsw = ~H are about
to acquire a magnetization. These grains are subjected to an
alternating IF produced by all unblocked particles, and a
static IF produced by the blocked particles. The static IF can
be calculated by assuming the sample to be composed only
of the blocked particles. If the sample is homogeneous, the
effective packing fraction of the blocked particles is given
by p( ~H) = pQ( ~H), where Q( ~H) =Mr( ~H)/Mrs, and PDF of the
static IF is W(Hi + fMai; pQ, ms).
[17] The anhysteretic magnetization of all particles that

block at ~H is acquired in a static field that is the sum of the
bias field h and the static IF. Since the static IF is a statistical

Table 1. List of Symbols and Notations

Symbol Explanation

H total field acting on a particle
h bias field during an ARM acquisition
~H alternating field during an ARM acquisition
Hd demagnetizing field
Hi local interaction field along a given direction
HK microcoercivity
Hz random component of Hi

Hm mean value of Hi

Hsw switching field
L(h) ARM acquisition function (noninteracting)
M magnetization
Ma(Hsw) ARM magnetization curve (noninteracting)
Mai(Hsw) ARM magnetization curve (interacting)
M0

a(h, Hsw) contribution of all particles with HSW to the
ARM (noninteracting)

M0
ai(h, Hsw) contribution of all particles with HSW to the

ARM (interacting)
Mr(Hsw) remanent magnetization curve
M0

r(Hsw) switching field distribution
p packing fraction of the particles
Q fraction of blocked particles during an

ARM acquisition
r0a = c0

a /M
0
r ARM ratio of all particles with given

switching field (noninteracting)
W(H, p, ms) PDF for the local, random IF
ca susceptibility of ARM (noninteracting)
cai susceptibility of ARM (interacting)
c0

a contribution of all particles with HSW to
ca (noninteracting)

c0
ai contribution of all particles with HSW to

ca (interacting)
ms saturation magnetization of the particles

Figure 3. (a) Dependence of xr (see text) on the
microcoercivity HK of the magnetic particles for selected
packing fractions p. (b) Dependence of xr on the packing
fraction for selected values of the microcoercivity.

B12S18 EGLI: ARM OF INTERACTING PARTICLES

4 of 10

B12S18



variate, the magnetization acquired at ~H is obtained by
integrating all possible configurations of the IF:

M 0
ai0

~H ; h
� �

¼ M 0
r
~H

� � Z 1

�1
W H þ fMai; pQ;ms½ �

� L c0
a
~H

� �
hþ Hð Þ=M 0

r

� 
dH ð9Þ

[18] The integral in (9) corresponds formally to the
convolution of W(x) and L(x) (Figure 4). The noninteracting
case is represented by p ! 0 , whereby W becomes a Dirac
d function, and the integral is replaced by L[c0

a( ~H )h/M0
r].

The same result is obtained for the interacting case when
Hsw ! 1, because the IF produced by the few blocked
particles is small. The index ‘‘0’’ in (9) is used to remind that
the left-hand side does not correspond to the final contri-
bution M0

ai of all particles with a switching field Hsw = ~H .
The difference between M0

ai and M0
ai0 relies on the fact that

(9) provides a statistical description of the switching state of
the particles, assuming that the magnetic moments are
parallel or antiparallel to the easy axis. As discussed in
section 3, the IF deflects the magnetic moments from the
easy axes. This effect is accounted byM0

ai =M0
ai0 xr, where xr

was calculated in section 3. The magnetization Mai is
obtained by integrating M0

ai0xr over all switching fields,
whereby the integral is complicated by the fact that M0

ai0

is a function of Hsw and xr is a function of HK. In the case of
Stoner-Wohlfarth particles, a good approximation is given
by HK � 2Hsw [Stoner and Wohlfarth, 1948], and Mai( ~H ) =
Mai0( ~H)x( ~H) with

x ~H
� �

¼ 1

Mai0
~H

� � Z ~H0

~H

xr 2uð ÞM 0
ai0 uð Þ du ð10Þ

Another assumption of (9) is that the SFD is unaffected by
interactions. This assumption is reasonable for weakly

interacting samples, but is not necessarily true when the
distance of the particles becomes comparable to their
diameter [Muxworthy et al., 2003]. I will show later that the
result of (9) is nearly independent of the effective SFD of
the sample.
[19] Let us assume h! 0 in the following. Since jfMaij < h,

(9) can be simplified using a first-order Taylor expansion of
W and Lwith respect to fMai and h, respectively. The result of
this linearization step is

M 0
ai0

~H ; h ! 0
� �

¼ hf �Mai0ð Þ
Z 1

�1
f xc0

aW uð Þ L0 c0
au=M

0
r

� �
du

ð11Þ

where L0 is the derivative of L. Equation (11) is a linear
differential equation on Mai with general solution:

Mai0
~H ; ~H0; h

� �
¼ hf þ C exp �G ~H ;H0

� �� 
G ~H ; ~H0

� �
¼

Z ~H0

~H

Z 1

�1
f xc0

aW u; pQ;msð ÞL0 c0
au=M

0
r

� �
dudH

ð12Þ

where C is an integration constant that satisfies the initial
conditionMai0( ~H0, h) = 0. Since G( ~H0, H0) = 0, C = �h/f. A
complete ARM is acquired when ~H = 0 and the initial
alternating field ~H0 is sufficient to switch all particles.
Using cai = Mai/h, ~H = 0, and ~H0 ! 1, the following
general solution is obtained from (12):

cai ¼
x 0ð Þ
f

1� exp �G 0;1ð Þ½ �f g ð13Þ

[20] In the following, I will derive a simple expression for
G, starting from the observation that Q( ~H) and ~H are
equivalent variables. Thus all variables in (12) can be
expressed as a function of Q (Figure 5). Using the scaling
property W(Hi; p, ms) = W(Hi/ms; p, 1)/ms of the IF

Figure 4. ARM acquisition function L and the distribution W of the random IF produced by the
blocked particles when the amplitude of the alternating field is equal to ~H1 and ~H2, respectively, whereby
~H2 < ~H1. The ARM acquired by all particles with switching fields equal to ~H1 or ~H2 is given by the
convolution of L and W (see text).
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distribution [Egli, 2006], and defining the ARM ratio r0a =
c0
a /M

0
r, equation (12) simplifies to

G ~H ;H0

� �
¼ fMrs

Z Q ~Hð Þ

Q ~H0ð Þ
r0ax

Z 1

�1
W u; pq; 1½ � L0 r0amsu

� �
du dq

ð14Þ

where r0a and x = x[Q�1(q)] are functions of q. Equation (14)
does not have a general analytical solution. The first

simplification is obtained if p � 0.01. In this case, W is
approximated by the Lorentz function given in (3), and,
using L(x) = tanh x , the integral on u in (14) can be solved.
Using this solution,

G ~H ;H0

� �
¼ fMrs

Z Q ~Hð Þ

Q ~H0ð Þ
r0axz2

1

2
þ apmsr

0
a=p

� �
dq ð15Þ

where z2 is the Hurwitz zeta function. Both x and r0a in (15)
are functions of the switching field Hsw = Q�1(q). A further
simplification is obtained by considering the intrinsic
properties of SD particles and their SFD. Egli [2004] used
detailed measurements of ARM and isothermal remanent
magnetization (IRM) of various sediments to calculate the
SFD of natural magnetic components. The SFD calculated
from measurements of ARM and IRM for each magnetic
component have been found to be very similar, whereby the
differences between the bulk AF demagnetization curves of
ARM and IRM arose mainly from the different ARM ratios
of the various components. Therefore r0a depends only
weakly on Hsw within each magnetic component. A
physical explanation of this result relies on the fact that ra
is mainly a function of the particle volume [Egli and
Lowrie, 2002] and depends only weakly on HK. Further-
more, thermal fluctuation analysis of natural assemblages of
SD grains shows that HK is usually better constrained than
the volume of the particles [Jackson et al., 2006]. Therefore
I assume r0a (Hsw) � ra to be a good approximation for
natural assemblages of SD particles.
[21] The last difficulty in integrating (15) comes from

the dependence of x on ~H , and is overcome by assuming
x = xr( �HK, p), where �HK is the average microcoercivity of
the particles. The effect of this approximations on the final
result is negligible, as proved by comparison with a
numerical integration of (15). If x and r0a are constants,
and raMrs = ca,

G ~H ;H0

� �
¼ f xrca

Z Q ~Hð Þ

Q ~H0ð Þ
z2

1

2
þ aca= rpð Þ

� �
dq ð16Þ

[22] Using, Q( ~H0) = 0 and Q( ~H) = 1 for a complete ARM
acquisition,

G 0;1ð Þ ¼ 2frxr

g þ ln 4þ y0

1

2
þ aca= rpð Þ

� �
pa

ð17Þ

where y0 is the digamma function, and g � 0.5772 is the
Euler constant. Inserting (17) into (12) gives the following
final solution:

cai ¼ xr f
�1 1� exp �2f xrr

g þ ln 4þ y0
1
2
þ aca= rpð Þ

� 
pa

� �� �
ð18Þ

[23] Equation (18) is precisely valid for a homogeneous,
isotropic sample of uniaxial particles with p � 0.01 and an
ARM ratio that is independent of the switching field.
However, the effect of the Lorentz approximation of the
IF distribution introduced to obtain this result is negligible,

Figure 5. Schematic representation of theARMacquisition
process as ~H decreases from its initial value to zero.
(a) Switching field distribution M0

r (Hsw). The dashed area
represents the relative amount Q of blocked particles.
(b) Relative amount Q of blocked particles. (c) Magnetic
contribution of all particles with switching field Hsw = ~H to
the ARM for the noninteracting case (dashed line), and the
interacting case (solid line). Since the IF produced by the
blocked particles increases as ~H decreases, magnetic particles
with a small switching field are less efficiently magnetized.
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as shown by the comparison of (18) with a numerical
evaluation of equation (12) (Figure 6). Therefore the valid-
ity range of (18) can be extended to all packing fractions.
Interestingly, cai does not depend on the coercivity distri-
bution of the particles, because the entire ARM acquisition
process can be expressed as a function of Q, which is
independent from the coercivity distribution. An important
consequence of this result is the possibility of ignoring the
effect of interactions on the switching field distribution, thus
eliminating one aspect of the nonlinearity of the problem.
[24] The noninteracting limit case is given by p ! 0,

whereby ca ! 0 as well, and (18) converges to cai = ca , as
expected. The opposite limit, given by ca ! 1, represents
the case of strongly interacting particles. In this case, the
solution of (18), cai � xr f

�1, is completely controlled by the
mean IF. Wohlfarth [1964] obtained a similar expression for
the ARM of interacting particles:

cai ¼ f �1 1� exp �f cað Þ½ � ð19Þ

using a mean-field approximation of the IF. A comparison
of the two solutions (18) and (19) shows that the mean-field
approximation is correct only for p > 0.1, since the ARM of
weakly interacting systems is controlled by the random
component of the local IF. The weakly interacting case
corresponds to the Presiach-Néel model of magnetostatic
interactions [Néel, 1954], where the IF is a fixed statistical
variate.
[25] Some examples of the dependence of cai on the

packing fraction, the ARM ratio, and the switching field of
typical SD magnetite grains are shown in Figure 7. The
ARM is strongly influenced by the packing fraction of the
particles, whereby a measure of this effect is provided by

the packing fraction p1/2 for which cai = 0.5ca. For typical
SD magnetite, p1/2 = (3–8) � 10�3 is obtained assuming
ms = 480 kA/m, f = 1/3, r = 0.5, and ra = 1–3 mm/A.
Noticeable interaction effects occur already at p = (1–4) �
10�4, which corresponds to a mean particle distance equal
to �28 times their diameter. For comparison, micromag-
netic simulations of cubic particle arrays did not show
interaction effects on the hysteresis parameters for distances
>3 times the particle size [Muxworthy et al., 2003].
[26] The extreme sensitivity of ARM to interactions

explains the low ARM ratios measured in synthetic samples
of SD magnetite [Sugiura, 1979], because of the tendency
of strongly magnetic particles to form clusters that are
difficult to disperse. On the other hand, ARM ratios that
are compatible with theoretical values for SD magnetite are
commonly measured in sediments [Egli, 2004], showing
that authigenic magnetites and maghemites are extremely
well dispersed in most cases. This result allows a straight-
forward interpretation of ARM measurements as a granulo-
metic indicator [e.g., King et al., 1982] as well as its use for
magnetic fabric investigations. However, examples of nat-
ural assemblages of strongly interacting particles have been
found as well [e.g., Wehland et al., 2005; A. P. Chen et al.,
First-order reversal curve diagrams of natural and cultured
biogenic magnetic particles, submitted to Journal of Geo-
physical Research, 2006].

5. Effect of Interactions on the Decay Rate
Dependence and the Anisotropy of ARM

[27] In this section I will discuss how interactions affect
the dependence of the ARM on various parameters, such as
the decay rate h of the alternating field, the demagnetizing

Figure 6. Comparison between the ARM calculated by numerical evaluation of equation (12) (dashed
line) and the approximated solution (18) (solid line). The two curves overlap for values of the ARM ratio
typical of SD magnetite (ra = 3 mm/A). The mean-field solution calculated by Wohlfarth [1964] is shown
for comparison (dotted line).
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factor f, and the dispersion parameter a0 of the IF distribu-
tion (3). The latter two parameters are influenced by the
geometric arrangement of the particles, as discussed in
section 2, and are responsible for distribution anisotropy
effects on the ARM. In all cases I assume that the depen-
dence of the ARM on one of these parameters is weak and
can be expressed by a relative difference Dcai/cai 
 1 of
the ARM susceptibility measured at different orientations
(magnetic anisotropy), or using different AF field decay
rates.
[28] The first case is given by all situations where

intrinsic differencesDca/ca of the ARM exist independently
of interaction effects. Examples are given by the AF decay
rate dependence [Egli and Lowrie, 2002; Yu and Dunlop,
2003], and anisotropy due to a preferred orientation of the
easy axes [Potter, 2004]. The chain rule of derivatives

Dcai

cai

¼ @cai

@ca

ca

cai

Dca

ca

¼ kc
Dca

ca

ð20Þ

gives the relationship between the interacting and the
noninteracting cases, whereby kc is the ‘‘coupling con-
stant’’ between the two. Using (18),

kc ¼ 2xr xr � f caið Þca

p2cai

y1

1

2
þ aca= rpð Þ

� �
ð21Þ

where y1 is the polygamma function. As discussed in
section 4, the noninteracting limit is given by ca ! 0,
whereby kc(ca ! 0) = 1, as expected. On the other hand,
kc ! 0 in strongly interacting cases: intrinsic differences
in ca are cancelled by the IF (Figure 8). If Dca/ca is related

to the anisotropy of the particles, the effect of interactions
can be quantified using the degree of anisotropy

P ¼ K1=K3 ð22Þ

and the shape parameter T of the anisotropy tensor [Jelı́nek,
1981],

T ¼ 2
ln K2=K3ð Þ
ln K1=K3ð Þ � 1 ð23Þ

where K1, K2, and K3 are the maximum, intermediate, and
minimum values of the ARM. If the spatial distribution of
the particles is isotropic, it can be easily shown that Pi =
kcP and Ti � kcT, where the index ‘‘i’’ is used to indicate
the interacting case. As shown in Figure 8, kc � 0.1 for SD
magnetite grains with a 1% volume concentration, and the
degree of anisotropy, as well as the shape parameter, are
reduced by a factor 10. The dependence of this effect on the
microcoercivity of the particles is negligible for p � 0.01.
[29] The effect of distribution anisotropy is more com-

plex. It requires a precise estimate of the IF distribution of
anisotropic particle arrangements, which is beyond the
scope of the present paper. A small degree of distribution
anisotropy is produced by Df/f 
 1 and Da/a 
 1. The
chain rule of derivatives can be used to evaluate the effect of
distribution anisotropy on a set of particles with an isotropic
distribution of easy axes. The effect of the demagnetizing
factor is expressed by

Dcai

cai

¼ @cai

@f

f

cai

Df

f
¼ �kf

Df

f
ð24Þ

Figure 7. Dependence of the ARM susceptibility on the packing fraction p. The two sets of curves were
calculated using ra = 1 mm/A and ra = 3 mm/A with HK/ms = 0.05 (dotted lines), HK/ms = 0.1 (dashed
lines), and HK ! 1 (solid lines).
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where kf is the ‘‘coupling constant’’ between the anisotropy
of f and cai. Using (18),

kf ¼ � @cai

@f

f

cai

¼ 1þ xr � f cai

f cai

ln 1� f cai=xrð Þ ð25Þ

[30] The case of a is more complex, since xr (p) depends
on a as well. The chain rule of derivatives gives

Dcai

cai

¼ 1

cai

@cai

@a
Da
a

aþ @cai

@xr

@xr
@p

Dp

p
p

� �
¼ ka

Da
a

ð26Þ

[31] Since a and p are proportional, Da/a = Dp/p, and

ka ¼ 1

cai

a
@cai

@a
þ p

@cai

@xr

@xr
@p

� �
Da
a

ð27Þ

is the ‘‘coupling constant’’ between the anisotropy of a
and cai. Using (18), the explicit solution of (27) is

ka ¼ xr � f cai

f cai

2f xrca

p2
y1

1

2
þ aca= rpð Þ

� �
þ ln 1� f cai=xrð Þ

� �

þ p
x0r
xr

1� xr � f cai

f cai

ln 1� f cai=xrð Þ
� �

ð28Þ

[32] In the limit case of no interactions, expressed by
ca ! 0, (25) and (28) give the intuitive result kf,ka ! 0.
The evaluation of kf (p) and ka(p) for typical SD magnetite
grains (ms = 480 kA/m, f = 1/3, r = 0.5, and ra = 3 mm/A)
shows that distribution anisotropy effects are negligible for
p < 10�4 (Figure 8). At intermediate concentrations, both
kf and ka increase monotonically up to p � 0.004, whereby

the effect is independent of the microcoercivity of the
particles. At higher packing fractions, both kf and ka
become extremely sensitive to HK. This result suggests that
the effect of distribution anisotropy on the AARM of SD
particles becomes difficult to predict when p > 0.01. On the
other hand, a definitive evaluation of distribution anisotropy
effects on the ARM is possible only when a precise model
for the directional dependence of f and a allows combina-
tion of (25) and (28) to a single expression.
[33] Muxworthy and Williams [2004] used a micromag-

netic model to calculate the effect of distribution anisotropy
on the saturation isothermal remanent magnetization
(SIRM). In their micromagnetic simulations of SD cubes,
the anisotropy of SIRM (ASIRM) was strongly affected by
distribution anisotropy at particle spacing smaller than the
dimension of the cubes, which corresponds to p > 0.125.
The limit for the onset of distribution anisotropy is obvi-
ously much smaller for the AARM, where measurable
effects are expected for p > 10�4 (Figure 8).

6. Conclusions

[34] An analytical model for the ARM of interacting SD
particles has been developed. The model gives exact results
in the limit case of weak interactions (p < 0.06). Realistic
approximations were used to extend the validity range of the
model to p ! 1. The ARM of SD particles is extremely
sensitive to magnetostatic interactions, whereby the effects
are noticeable at packing fractions as low as 10�4,
corresponding to a distance of the particles equal to � 28
times their diameter. For comparison, hysteresis parameters
are unaffected by interactions at p < 0.01.
[35] The effect of interactions on the AARM was inves-

tigated as well, whereby the measured anisotropy depend on

Figure 8. Factors kc, kf, and ka affecting the AARM of interacting particles (see text for details). Solid
lines refer to HK ! 1, and dashed lines refer to HK/ms = 0.1. The susceptibility of ARM is shown for
comparison (dotted line). Other parameters used for the calculations are ms = 480 kA/m, f = 1/3, r = 0.5,
and ra = 3 mm/A.
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their spatial arrangement. An anisotropic spatial arrange-
ment, expressed by the dependence of the average particle
distance on the orientation of the sample, produces a
unbalance between positive and negative interaction fields
that modulates the directional dependence of ARM intensity.
The AARM of SD particles is adversely affected by inter-
actions when p > 0.01, whereby the dependence of the
anisotropy parameter on p displays a complex behavior that
depends strongly on p and on the microcoercivity of the
particles.
[36] Additional work is needed to evaluate the effect of

interactions on the anisotropy of remanence, whereby a
combined use of AARM and ASIRM could provide better
and more reliable information about the spatial arrangement
of magnetic particles in natural samples.
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