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Three-dimensional micromagnetic modeling of randomly
oriented magnetite grains (0.03-0.3 pm)

Koji Fukuma' and David J. Dunlop®
Received 14 June 2006; revised 24 October 2006; accepted 7 November 2006; published 9 December 2006.

[1] We report three-dimensional micromagnetic structures obtained for magnetite cubes
with (100) edges in the size range 0.03—0.3 um around the single-domain threshold
size. We employed the Metropolis algorithm to find equilibrium micromagnetic structures
starting from uniformly magnetized initial states. Directions of initial magnetizations
were randomly set so as to mimic a randomly oriented assemblage. Small grains

(<0.07 pm) exhibit single-domain equilibrium structures parallel to a magnetic easy axis
(111) irrespective of initial magnetization directions. Vortex structures emerge for small
pseudosingle-domain grains above 0.07 pm. Axes of the vortices are parallel to (100)
in the threshold size range but become randomly oriented with increasing grain size.
Neither lamellar domain structures nor multiple vortex structures were found for grains
smaller than 0.3 um. Reduced saturation remanent magnetization decreased down to
~0.1 with increasing grain size over a relatively narrow grain size range (0.07—0.15 pm).
The grain size variation of reduced magnetization depends on microscopic magnetization

structures inside a single grain and the degree of randomness of grain magnetization

directions in an assemblage.
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1. Introduction

[2] Magnetite grains in the transitional range between
single-domain (SD) and pseudosingle-domain (PSD) are of
paramount importance in paleomagnetism. Samples con-
taining SD grains have high remanence intensity and
stability and should reliably record the paleomagnetic field.
However, the stable SD size range is very narrow or
nonexistent for equant magnetite [Newell and Merrill,
1999]. Above the SD threshold size experimental data show
a gradual rather than a sharp drop in remanence intensity
and stability with increasing grain size [Dunlop, 1973],
contrary to the prediction of classic domain theory. The
term of PSD was coined for grains that exceed SD threshold
size but exhibit high remanence and stability similar to SD
[Stacey, 1962]. PSD grains, particularly those only slightly
above SD threshold size, are likely to be dominant rema-
nence carriers in natural samples in view of the narrow
stable SD size range. The grain size dependence of mag-
netic properties is also useful for inferring the grain size of
magnetic minerals in sediments used to detect environmen-
tal changes [Thompson and Oldfield, 1986; Verosub and
Roberts, 1995].

'Department of Environmental System Science, Doshisha University,
Kyotanabe, Japan.

Geophysics, Physics Department, University of Toronto, Toronto,
Ontario, Canada.

Copyright 2006 by the American Geophysical Union.
0148-0227/06/2006JB004562$09.00

B12S11

[3] From the beginning of micromagnetic modeling the
SD-PSD transitional range has been one of the prime
targets. Many micromagnetic studies have examined how
micromagnetic structures vary in response to changing grain
size [e.g., Williams and Dunlop, 1989]. These studies have
shown that the SD-PSD transition does not occur abruptly at
a critical size dictated by the total free magnetic energy,
contrary to the assumption of earlier nonmicromagnetic
calculations [e.g., Butler and Banerjee, 1975]. However,
the calculated magnetic intensities and stabilities drop
rapidly in a relatively narrow size range above the SD
threshold size (~0.07 um) as determined from experimental
results and nonmicromagnetic calculations [Newell et al.,
1993a; Fabian et al., 1996; Williams and Dunlop, 1989].
Intriguing magnetic structures, such as vortex or flower
structures [Schabes and Bertram, 1988], which are distinc-
tively different from the classical structure of domains and
domain walls, were found for the SD-PSD transitional
range. At present, the SD-PSD transition is believed to be
related to a structural transformation from a uniformly or
almost uniformly magnetized state (single-domain, flower)
to a vortex state with increasing grain size [Williams and
Wright, 1998].

[4] In addition to microscopic magnetic structures, micro-
magnetic modeling can provide macroscopic magnetic
properties that enable a direct comparison with experimental
data. Several factors need to be considered before making
such a comparison. The micromagnetic modeling for a
single grain gives magnetic properties when an external
magnetic field is applied at a particular angle to the
crystallographic axis, whereas real assemblies of magnetic
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grains contain a large number of randomly oriented grains.
Therefore many grains with different orientations must be
modeled to average out the dependence of magnetic prop-
erties on the angle between the field direction and the grain
axes. Some of the micromagnetic calculations incorporated
randomly oriented grains to simulate first-order reversal
curve (FORC) diagrams [e.g., Carvallo et al., 2006].

[5] Another problem is how we can obtain magnetic
properties reflecting stable magnetic states. Micromagnetic
calculations have been usually performed by starting from
an arbitrarily chosen initial state and employing a conjugate
gradient method to search for a final solution [e.g., Williams
and Dunlop, 1989; Newell and Merrill, 2000a], although
the Landau-Lifshitz-Gilbert equation is also used for micro-
magnetic calculations [e.g., Muxworthy and Williams, 2004;
Suess et al., 2002]. The conjugate gradient method locates
the nearest local energy minimum (LEM) state but this is
not necessarily a thermodynamically stable state. The sys-
tem may remain trapped in a shallow minimum from which
it would escape under real conditions with the aid of thermal
energy. Since magnetic properties are measured at room
temperature, it is unrealistic to ignore the effect of thermal
fluctuations when making comparisons with experimental
data.

[6] We have obtained three-dimensional micromagnetic
structures of magnetite cubes over the size range from 0.03
to 0.3 pum, spanning the SD to PSD transition [Butler and
Banerjee, 1975; Newell and Merrill, 2000b]. In order to
simulate randomly oriented assemblies relative to the fixed
direction of a uniform external field, initial states of indi-
vidual grains are assigned to be uniformly magnetized
(saturated) states with randomly chosen directions relative
to the crystallographic axes. Sets of fifty such grains were
calculated to average out the angular effect on magnetic
properties. In order to find equilibrium structures, the
magnetizations of each subcube were relaxed in zero field
according to the Metropolis algorithm. This is a sort of
Monte Carlo method that gives a thermodynamically equi-
librium state and was proved to be effective in locating
stable states in two-dimensional micromagnetic modeling
[Fukuma and Dunlop, 1997, 1998] and is similar to a
simulated annealing method adopted by Thomson et al.
[1994].

2. Model

[7] Our model grain is a magnetite cube with edges along
(100) axes that is one of typical crystal forms expected from
its cubic symmetry [Klein and Hurlbut, 1993] (Figure 1).
The (111) easy axes of magnetization lie along the body
diagonals and the (100) edges are hard axes of magnetiza-
tion. This coordinate system is the same as that adopted by
Williams and Dunlop [1990] and Fabian et al. [1996]. Edge
length is set in the range of 0.03 to 0.3 pm spanning SD-
PSD boundary. The model cube was subdivided into 10 X
10 x 10 subcubes to obtain its micromagnetic structure, so
the spatial resolution is limited less than 0.03 pm or better
even in the largest modeled grain, which is deduced from
the size of magnetization swirl calculated as 3*(A/uoM?)*>
[Hubert, 1988], where 4, po and M mean the exchange
constant, the free-space magnetic permeability and the
saturation magnetization, respectively. Such a cell size limit
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Figure 1. Model magnetite cube. Cube edges and body
diagonals coincide with (100) hard axes and (111) easy
axes of magnetization, respectively. The model cube is
subdivided into 10 x 10 x 10 subcubes to obtain
micromagnetic structures.

of 0.03 pm was confirmed to be appropriate giving high
values (~1) of the self-consistency parameter [Newell et al.,
1993a; Fukuma and Dunlop, 1998]. The magnetization of
each subcube can rotate freely in three-dimensional space as
part of a specified energy state.

[8] To obtain micromagnetic structures, we considered
three magnetic free energy terms: exchange energy, magne-
tocrystalline anisotropy energy, and demagnetizing energy.
Exchange energy E, arises from interacting neighboring
atomic spins. The assumption that spin directions vary
gradually within a single subcube [Brown, 1978] leads to
a following expression:

E, = —Ad*S(m; - Am;) (1)

where 4 is the exchange constant and d and m; are the edge
length and the magnetization of a subcube. The Laplace
operator A is replaced by a five-point difference approx-
imation in our numerical calculation [Labrune and Miltat,
1990], which gives significantly smaller errors in calculat-
ing exchange energy [Donahue and Porter, 2004].

[v] Magnetocrystalline anisotropy energy E, depends on
the direction of each subcube magnetization relative to the
crystallographic axes. For magnetite E, is reasonably well
expressed with the first-order term of the series expansion:

E, =K, dﬁ](a%a% +adal + a%a%) (2)

where K is the anisotropy constant (negative) and oy, a;
and a3 are the directional cosines of subcube magnetization
with respect to the three (100) axes. The (100) edges of the
model cube and the (111) body diagonals are hard and easy
axes of magnetization, respectively. This definition of E,
was adopted in most previous three dimensional micro-
magnetic models [Fabian et al., 1996; Wright et al., 1997]
and makes possible a direct comparison with their
calculated energy values.
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[10] Demagnetizing energy E, which originates from
magnetostatic interactions between subcubes, is the compu-
tationally most intensive energy term. £, is given by

Eq = (nod*M; 2) S (m; - Nym;) (3)

where N;; is the demagnetizing tensor, which is defined by
interactions of surface charges for pairs of subcubes i and j
[Rhodes and Rowlands, 1954]. We developed N;; for the
three-dimensional calculations based on N; for the two-
dimensional case [Newell et al., 1993b]. We thoroughly
checked the elements of the demagnetizing tensor given by
Wright et al. [1997] with the aid of an algebra software
“Mathematica” and found several discrepancies.

[11] In our modeling we assumed grains with no dislo-
cations or other defects. Magnetoelastic energy was not
considered and no magnetostrictive effects were included in
the modeling. Such effects are certainly important for
micron-sized magnetite or high-titanium titanomagnetite,
but they do not affect magnetization states of magnetite
less than 0.5 pm in size [Fabian and Heider, 1996]. Thus
the total magnetic free energy E; is given by the sum of the
above three energy terms E, = E, + E, + E,.

[12] Final structures were obtained by following the
Metropolis algorithm starting from an initially assigned
structure. This algorithm was previously applied for
two-dimensional micromagnetic modeling [Fukuma and
Dunlop, 1997, 1998]. The magnetization vector in one
subcube is rotated in a randomly chosen direction through
an angle <5°. The rotation is accepted or rejected according
to a transition probability W:

1 AE <0
- @

exp(—AE/kT) AE, >0

where AE; is the consequent difference in total energy, k is
Boltzmann’s constant and 7 is absolute temperature. This
means that if total energy decreases, the rotation is always
accepted. Otherwise the rotation is accepted or rejected
based on the probability calculated from the amount of
increased total energy. Repeating such a trial rotation for
each of the 1000 subcubes constitutes one Monte Carlo step
(MCS). To achieve equilibrium states, as determined by no
further reduction in total energy, such trial rotations needed
to be repeated for several tens of thousands of MCS.

[13] To simulate a real assembly composed of randomly
oriented grains, we obtained equilibrium states in the way
just described for fifty identical grains when the external
field was applied along randomly chosen directions within
one octant of sphere. This calculation is equivalent to a
calculation for 200 grains randomly oriented over a half
sphere around a fixed field axis, which should be enough to
average out angular effects between a crystallographic axis
and an external field direction. Random directions in the
octant were generated and statistically tested following
Fisher et al. [1987] (Figure 2). The calculated mean
direction is statistically indistinguishable from the expected
mean direction [111].

[14] In the modeling, each initial structure was a saturated
state, although initial vortex structures were also given for
comparison. Thus the initial magnetizations of all subcubes
were placed in randomly chosen directions and then a final
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Figure 2. Equal-area plot of randomly oriented initial
magnetization directions as viewed from the crystallo-
graphic orientation of each grain.

equilibrium state was sought following the Metropolis
algorithm. The saturation remanence M, for a given grain
size was calculated by vectorially summing the final mag-
netization of all 50 grains relative to a field axis fixed in
space. These calculated values of M, can be directly
compared with experimental data, unlike previous model-
ings with a limited number of results calculated in a few
particular directions [Williams and Dunlop, 1995].

[15] We used magnetic parameters of magnetite at room
temperature T = 298 K, namely M, = 4.80 x 10° A/m, A =
132 x 107" ym?®, K, = —1.25 x 10* J/m®. The compu-
tation required about 10 hours for 50 grains of a particular
grain size using a NEC SX4 parallel-vector computer with
32 processors and a shared memory.

3. Results

[16] We found several characteristic micromagnetic struc-
tures in the SD-PSD transition range starting from initial
saturated states for randomly oriented assemblages. In order
to examine the effect of initial states, calculations were also
performed starting from initial vortex structures. There was
no discrepancy in the final structures when started from
saturated or vortex states. They end up in the same final SD
or vortex structures depending on a given grain size. In
order to reveal the interior structure, the illustrations show
three views in slices parallel to the x-y planes in addition to
the surface structure (Figure 3).

[17] Effectively single-domain structures along the [111]
easy magnetization axis emerge irrespective of the initial
magnetization directions for grains smaller than 0.06 pm
(Figures 3a and 4a). This result implies that magnetocrystal-
line anisotropy controls the magnetization direction. How-
ever, the magnetization vectors of subcubes are not
completely parallel to each other and randomly and slightly
deviate from [111], lowering the ratio of saturation rema-
nence to saturation magnetization (M,/M) less than unity
and giving rise to high exchange energy (Figure 5). This
nonparallelism is due to thermal fluctuations, which are
incorporated in our model but were not considered in
previous models [Newell and Merrill, 2000b]. Flower
structures, in which magnetizations are almost uniform in
direction but systematically and slightly deviate from neigh-
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Figure 3. Equilibrium magnetization structures for SD and PSD grains: (a) 0.05 pm, (b) 0.09 pm, and
(c) and (d) 0.25 pm. Surface and interior magnetization patterns are shown to illustrate the three-
dimensional structure. Each vector represents the magnetization of one subcube.

boring ones, were not found in our calculations, although
they have been reported previously starting from initial
saturated states [Schabes and Bertram, 1988; Williams
and Wright, 1998; Fabian et al., 1996]. Williams and
Wright [1998] found a flower structure whose net magne-
tization is parallel to a (001) edge, and suggested that
demagnetizing energy controls the magnetization direction.
In our calculations, however, even if started from an initial
magnetization parallel to the (001) axes, the equilibrium
magnetization became parallel to a (111) direction
(Figure 4a).

[18] Vortex structures emerge for grains larger than
0.07 pm and up to 0.3 pm, which is the maximum size
considered in this study (Figure 3b). The axis of the vortex
is parallel to a (100) edge of the cube and the magnetization
vectors near the edges are aligned along the edge directions
(Figure 4b). Such a vortex structure was found in previous
three-dimensional modeling from an initial quasi-vortex
structure [Williams and Wright, 1998; Fabian et al., 1996]
and in a two-dimensional modeling starting from a saturated
state [Fukuma and Dunlop, 1998]. Since curling micro-
scopic magnetizations cancel one another in the plane of
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Figure 4. Equal-area projections of magnetization direc-
tions of equilibrium states and histograms of normalized net
magnetization values for (a) 0.05 pm, (b) 0.09 pm, and
(¢) 0.25 pm grains.

curling, the net magnetization of the vortex structure is
parallel to one of the (100) axes. The net magnetization
arises both from the vortex axis and from the edge magnet-
izations (Figure 3b). Starting from various initial directions,
the final directions fall in the nearest (100) axis (Figure 4b).
There is a superficial resemblance to the magnetization of a
SD grain with cubic anisotropy and K; > 0, such as iron.
However, here the final magnetic structure is vortex with a
much lower remanence than SD.

[19] With further increase in grain size, the magnetization
structure becomes more complicated, although essentially it
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remains a vortex structure. In smaller grains, the magnet-
izations of the vortex axis and the edges are parallel and in
the same sense (Figure 3b), giving rise to a comparatively
high net magnetization (~0.4 for 0.09 um grains). In larger
grains, as shown for a 0.25 pm grain in Figure 3c the edge
magnetizations have opposite senses and are mutually
canceling. The net magnetization is much lower (0.048)
compared to smaller grains exhibiting a vortex structure
(Figure 3b), although the overall structure is not greatly
changed. This means that even within vortex structures, the
net magnetization is variable depending on microscopic
features such as the directions of the edge magnetizations.

[20] Another type of structure was found for the identical
grain size 0.25 pm (Figure 3d), although it is still similar to
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Figure 5. Grain size dependence of (a) M, /M, and
(b) energy density of equilibrium states for two extreme
cases: initially magnetized along a [100] hard axis and along
a [111] easy axis. For comparison, the results for a
magnetite cube [Fabian et al., 1996] calculated by a
conjugate gradient method are shown. Solid square and
triangle indicate initial magnetization along [111] and [100]
(this study); open square and circle indicate initial [111] SD
and vortex states [Fabian et al., 1996]. A horizontal line in
Figure 5b represents the energy density value of completely
aligned magnetizations of single-domain state.
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Figure 6. Comparison of calculated M, /M, for randomly oriented assemblages (solid circles) and
experimental data on sized synthetic magnetites (open symbols) [Levi and Merrill, 1978; Dunlop, 1986;
Amin et al., 1987; Argyle and Dunlop, 1990]. The expected value of M,./M; (0.866) for a single-domain
magnetite governed by magnetocrystalline anisotropy is shown by a horizontal line.

a vortex structure. At the top surface, the magnetization
makes a single curling, very similar to the vortex structure
of the same size grain (Figure 3c). However, the magneti-
zation gradually become uncurls downward and no curling
is observed at the bottom plane. A vortex occupies only
the upper part of the cube, and such a three-dimensional
feature cannot be represented even approximately with two-
dimensional modeling. This kind of structure may corre-
spond to a twisted vortex structure found for larger grains
that also show simple vortex structures [Rave et al., 1998].
The net magnetization is larger than that of a vortex structure
and is largely deflected from the [001] vortex axis of the
upper part of the cube. Grains of the same size split into two
types of magnetization structures depending on the initial
directions of magnetization, and the final net magnetization
values have a bimodal distribution (Figure 4c¢).

[21] In order to make a direct comparison with previous
modeling results, we showed the grain size dependence of
net magnetization when starting from initial [111] and [001]
saturated states (Figure 5). Fabian et al. [1996] started their
calculations with initial [111] saturated states and initial
single-vortex states. They obtained quite different evolution
trends with grain size for these two families. Our results for
the [111] family are directly comparable to those of Fabian
et al.’s [111] family but give much lower net magnetization
values above 0.08 pm (Figure 5), where we find essentially
no uniform structure. Our [111] trend is rather similar to
their single-vortex trend and our [001] trend. This is
because vortex structures emerge when calculations are
started from initial saturated states for grains larger than
0.08 um (Figure 3b).

[22] Fabian et al. [1996] reported that their [111] family
of states evolves from a flower to a double-vortex structure
between 0.13 and 0.15 pum. Also energy states for double

vortex structures were mapped out using a constrained
calculation [Muxworthy et al., 2003]. In our modeling,
however, neither of these structures emerges for the same
family based on the Metropolis algorithm. Our energy
density for the [111] family of states also drops below theirs
around 0.08 um (Figure 5b), although below 0.08 um we
obtained higher energy density due to enhanced exchange
energy resulting from nonparallel neighboring magnetiza-
tions induced by thermal fluctuations (Figure 3a). Thus
vortex structures are lower energy states, i.e., more stable
states, above 0.08 pm than flower or double-vortex states.
Our interpretation is that Fabian et al.’s calculations stalled
in higher energy LEM states between 0.08 and 0.15 pm.
With thermal energy, the system can escape to lower energy
single-vortex states.

[23] The evolution trend with grain size for initial [001]
states is not greatly different from that of initial [111] states
(Figure 5a). In the SD size range, these results give high net
magnetization, close to unity, of completely aligned subcube
magnetizations, irrespective of initial directions. A notable
difference is that the [100] trend shows a much lower net
magnetization than the [111] trend around 0.07 um
(Figure 5), which is in the transitional range from SD to
vortex structure. The initial [111] saturated state results in a
[111] single-domain structure with a still high value (~0.97)
of net magnetization, whereas a vortex structure with an
[100] axis results from the initial [100] saturated state and
has a considerably lower value (~0.67) of net magnetization.

[24] In order to compare with experimental data, we
calculated ratios of saturation remanence to saturation
magnetization (M,,/M;) for randomly oriented assemblages
by vectorially summing the net magnetizations of the 50
grains of each size (Figure 6). For SD grains, the calculated
value is close to the expected value 0.866 calculated
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analytically for grains with cubic anisotropy and [111] easy
axes. Above 0.06 pum, M, /M; decreases rapidly down to
about 0.1 for 0.125 pm grains, resembling the net magne-
tization variation for [001] and [111] initial directions
(Figure 5a). Such a rapid change of M,,/M; basically results
from the transformation from SD to vortex structure of each
grain. The relative proportions of SD and vortex structures
for a particular grain size (e.g., 0.07 um as discussed above)
and the axis and edge magnetizations of a particular vortex
structure basically determine the grain size dependence of
M, /M of the randomly oriented assemblage. Grains larger
than 0.15 pum still show a systematic decrease of M, /M,
with increasing grain size, although the net magnetization of
a particular family does not show any systematic depen-
dence (Figure 5a). Such a decrease of M, /M, can be
attributed to the fact that net magnetization directions
become more scattered with increasing grain size (Figure 4).

4. Discussion

[25] The critical grain size at which the SD state in cubic
magnetite begins to destabilize is estimated to be 0.07 ym in
our three-dimensional micromagnetic modeling for randomly
oriented grains (Figures 5 and 6). This critical size
estimate agrees with values reported in previous two- or
three-dimensional modelings [e.g., Newell et al., 1993a;
Fabian et al., 1996; Williams and Wright, 1998; Witt et al.,
2005]. Even classical nonmicromagnetic modeling assum-
ing lamellar domain structures gives a similar critical size
[Butler and Banerjee, 1975] and this calculated value is
frequently cited as supporting evidence for fossil biogenic
magnetite of SD size [e.g., Thomas-Keprta et al., 2000].
Our modeling, which includes the effects of thermal
fluctuations and random grain orientations, still reproduces
essentially the same SD critical size. This means that the
critical SD size is insensitive to specific features of micro-
magnetic models and that previous models provided a
reliable estimate of the critical SD grain size. These numer-
ically calculated results are supported by an analytical
solution giving a critical SD size of 0.06 pm, which is
not far above the superparamagnetic threshold size [Newell
and Merrill, 1999].

[26] Above the critical SD size (~0.07 pum), saturation
remanence does not suddenly drop to zero but it does
decrease rapidly with increasing grain size (Figures 5 and 6).
This is one of the prominent experimental indicators of
PSD effects in magnetite. Micromagnetic states in this
transitional size range are represented by a single-vortex
structure in which the curling of magnetization occupies the
entire grain and the curling axis parallels the (100) cube
edge. In most cases, SD and single-vortex states do not
coexist in grains of the same size, irrespective of the initial
states. This finding disagrees with previous micromagnetic
results showing a broad size range of coexisting SD (or
flower) and single-vortex structures up to 0.2 um [Fabian
et al., 1996; Williams and Wright, 1998].

[27] Depending on initial states, metastable SD grains
with higher free energy in principle still exist, but these SD
grains are in shallow LEM states and do not represent actual
structures found in nature, as our thermal fluctuation sim-
ulations demonstrate. Although coexisting SD and vortex
structures are able to explain large magnetization values in
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the SD-PSD transitional range, this coexistence does not
seems plausible because possibly there low-energy transi-
tion paths exist between the two states. In single-vortex
structures, the volume fraction occupied by the vortex axis
decreases with increasing grain size. Magnetization arising
from the vortex axis contributes to nonzero but rapidly
decreasing magnetization in the transitional range slightly
above the SD-PSD boundary.

[28] We computed structures of 50 randomly oriented
grains for a single grain size. This modeling provides
calculated values that can be directly compared with exper-
imental data for synthetic samples containing randomly
oriented grains. A rapid change in saturation remanence
near the critical SD size (0.07 pum) can be seen both in
experimental and calculated data (Figure 6). Our results
predict a very high saturation remanence values (~0.866, as
expected for grains with a cubic magnetocrystalline anisot-
ropy), whereas the experimental values for SD grains are
much lower, ~0.3 [Dunlop, 1986]. Such low experimental
values may reflect a dominant uniaxial shape anisotropy and
contamination of superparamagnetic or PSD grains. Above
0.20 pm, the experimental values of saturation remanence
are higher than predicted (~0.1) and show very weak grain
size dependence. Contrary to the experimental data, our
calculated results predict a continuous decrease with grain
size. It should be noted that in this modeling, we did not
include magnetoelastic effects that might be significant in
controlling magnetization processes in this size range
[Fabian and Heider, 1996].

[29] A sequence of SD, single-vortex, twisted-vortex and
closure domain states was generally found for magnetic
grains with uniaxial anisotropy of various magnitude [Rave
et al., 1998]. Although magnetite has cubic anisotropy with
a relatively small negative anisotropy constant K, a similar
sequence is expected for SD-PSD magnetites. SD converts
to a single-vortex structure at about 0.07 um and the interior
structure of the vortex becomes more complicated as the
grain size increases (Figure 3). Such complicated structures
may be analogous to twisted-vortex structures for uniaxial
anisotropy grains. Fukuma and Dunlop [1998] obtained a
chaotic structure in two-dimensional micromagnetic mod-
eling of 0.4 um grains, suggesting that the actual structure
would be too complicated to be represented in two dimen-
sions. Above 0.7 pum, closure domain structures with three
body domains persist at least up to 2.5 um in the two-
dimensional modeling. PSD effects of magnetite would
plausibly originate from a micromagnetic structural trans-
formation from SD to closure domain structure through
varying vortex structures.

5. Conclusions

[30] Three-dimensional micromagnetic results for ran-
domly oriented grains between 0.03 and 0.3 pm show a
transformation from SD to vortex structures with increasing
grain size. No metastable SD, flower or double-vortex states
were found as equilibrium saturation remanence states. The
SD to vortex change occurs around 0.07 pum, which
corresponds to previously reported SD critical size esti-
mates, and explains the observed noncritical but rapid
change of saturation remanence just above the SD threshold
size. The relatively high magnetization of these small PSD
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grains, originating from vortex axis and edge magnetiza-
tions, and the varying volumetric fraction of the vortex axis
region with grain size lead to a continuous grain size
dependence of saturation remanence. Above 0.15 pm,
vortex structures become more complicated and grain
magnetization directions are more scattered. These effects
contribute to the further slow but continuing decrease of
magnetization with grain size.
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critical reviews from Ron Merrill and an anonymous reviewer. This
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References

Amin, N., S. Arajs, and E. Matijevic (1987), Magnetic properties of uni-
form spherical magnetite particles from ferrous hydroxide gels, Phys.
Status Solids A, 101, 233—-238.

Argyle, K. S., and D. J. Dunlop (1990), Low-temperature and high-
temperature hysteresis of small multidomain magnetites (215—540 nm),
J. Geophys. Res., 95, 7069—7083.

Brown, W. F. (1978), Micromagnetics, 143 pp., Krieger, New York.

Butler, R. F., and S. K. Banerjee (1975), Theoretical single-domain grain
size range in magnetite and titanomagnetite, J. Geophys. Res., 80, 4049—
4058.

Carvallo, C., A. R. Muxworthy, and D. J. Dunlop (2006), First-order re-
versal curve (FORC) diagrams of magnetic mixtures: micromagnetic
models and measurements, Phys. Earth Planet. Inter., 154, 308—322.

Donahue, M. J., and D. G. Porter (2004), Exchange energy formulations for
3D micromagnetics, Physica B, 343, 177—183.

Dunlop, D. J. (1973), Superparamagnetic and single-domain threshold sizes
in magnetite, J. Geophys. Res., 78, 1780—1793.

Dunlop, D. J. (1986), Coercive force and coercivity spectra of submicron
magnetites, Earth Planet. Sci. Lett., 78, 288—295.

Fabian, K., and F. Heider (1996), How to include magnetostriction in
micromagnetic models of titanomagnetite grains, Geophys. Res. Lett.,
23, 2839-2842.

Fabian, K., A. Kirchner, W. Williams, F. Heider, T. Leibl, and A. Hubert
(1996), Three-dimensional micromagnetic calculations for magnetite
using FFT, Geophys. J. Int., 124, 89—104.

Fisher, N. I, T. Lewis, and B. J. J. Embleton (1987), Statistical Analysis of
Spherical Data, 329 pp., Cambridge Univ. Press, New York.

Fukuma, K., and D. J. Dunlop (1997), Monte Carlo simulation of two-
dimensional domain structures in magnetite, J. Geophys. Res., 102,
5135-5143.

Fukuma, K., and D. J. Dunlop (1998), Grain size dependence of two-
dimensional micromagnetic structures for pseudo-single-domain magne-
tite (0.2—2.5 pum), Geophys. J. Int., 134, 843 —848.

Hubert, A. (1988), The role of ‘magnetization swirls’ in soft magnetic
materials, J. Phys., 49, 1859—1864.

Klein, C., and C. S. Hurlbut Jr. (1993), Manual of Mineralogy, 21st ed.,
John Wiley, Hoboken, N. J.

Labrune, M., and J. Miltat (1990), Micromagnetics of strong stripe domains
in NiCo thin films, IEEE Trans. Magn., 40, 2450—2458.

Levi, S., and R. T. Merrill (1978), Properties of single-domain, pseudo-
single-domain and multidomain magnetite, J. Geophys. Res., 83, 309—
323.

Muxworthy, A. R., and W. Williams (2004), Distribution anisotropy:
the influence of magnetic interactions on the anisotropy of magnetic
remanence, in Magnetic Fabric: Methods and Applications, edited by
F. Martin-Hernandez et al., Geol. Soc. Spec. Publ., 238, 37-47.

FUKUMA AND DUNLOP: MODELING OF RANDOMLY ORIENTED MAGNETITE

B12S11

Muxworthy, A. R., D. J. Dunlop, and W. Williams (2003), High-tempera-
ture magnetic stability of small magnetite particles, J. Geophys. Res.,
108(B5), 2281, doi:10.1029/2002JB002195.

Newell, A. J., and R. T. Merrill (1999), Single-domain critical sizes for
coercivity and remanence, J. Geophys. Res., 104, 617—628.

Newell, A. J., and R. T. Merrill (2000a), Nucleation and stability of ferro-
magnetic states, J. Geophys. Res., 105, 19,377—19,391.

Newell, A. J., and R. T. Merrill (2000b), Size dependence of hysteresis
properties of small pseudo-single-domain grains, J. Geophys. Res., 105,
19,393-19,403.

Newell, A. J., D. J. Dunlop, and W. Williams (1993a), A two-dimensional
micromagnetic model of magnetizations and fields in magnetite, J. Geo-
phys. Res., 98, 9533-9549.

Newell, A. J., W. Williams, and D. J. Dunlop (1993b), A generalization of
the demagnetizing tensor for nonuniform magnetization, J. Geophys.
Res., 98, 9551-9555.

Rave, W., K. Fabian, and A. Hubert (1998), Magnetic states of small cubic
particles with uniaxial anisotropy, J. Magn. Magn. Mater., 190, 332—348.

Rhodes, P., and G. Rowlands (1954), Demagnetizing energies of uniformly
magnetized rectangular blocks, Proc. Leeds Philos. Lit. Soc. Sci. Sect., 6,
191-210.

Schabes, M. E., and H. N. Bertram (1988), Magnetization processes in
ferromagnetic cubes, J. Appl. Phys., 64, 1347—1357.

Stacey, F. D. (1962), A generalized theory of thermoremanence, covering
the transition from single-domain to multi-domain magnetic grains,
Philo. Mag., 7, 1887—1900.

Suess, D., V. Tsiantos, T. Schrefl, J. Fidler, W. Scholz, H. Forster,
R. Dittrich, and J. Miles (2002), Time resolved micromagnetics using a
preconditioned time integration method, J. Magn. Magn. Mater., 248,
298-311.

Thomas-Keprta, K. L., D. A. Bazylinski, J. L. Kirschvink, S. J. Clement,
D. S. McKay, S. J. Wentworth, H. Vali, E. K. Gibson Jr., and C. S.
Romanek (2000), Elongated prismatic magnetite crystals in ALH84001
carbonate globules: Potential Martian magnetofossils, Geochim. Cosmo-
chim. Acta, 64, 4049—4081.

Thompson, R., and F. Oldfield (1986), Environmental Magnetism, 227 pp.,
Allen and Unwin, London.

Thomson, L., R. J. Enkin, and W. Williams (1994), Simulated annealing of
three-dimensional micromagnetic structures and simulated thermorema-
nent magnetization, J. Geophys. Res., 99, 603—609.

Verosub, K. L., and A. P. Roberts (1995), Environmental magnetism: Past,
present and future, J. Geophys. Res., 100, 2175-2192.

Williams, W., and D. J. Dunlop (1989), Three-dimensional micromagnetic
modeling of ferromagnetic domain structure, Nature, 337, 634—637.

Williams, W., and D. J. Dunlop (1990), Some effects of grain shape and
varying external magnetic fields on the magnetic structure of small grains
of magnetite, Phys. Earth Planet. Inter., 65, 1—14.

Williams, W., and D. J. Dunlop (1995), Simulation of magnetic hysteresis
in pseudo-single-domain grains of magnetite, J. Geophys. Res., 100,
3859-3871.

Williams, W., and T. M. Wright (1998), High-resolution micromagnetic
models of fine grains of magnetite, J. Geophys. Res., 103, 30,537—
30,550.

Witt, A., K. Fabian, and U. Bleil (2005), Three-dimensional micromagnetic
calculations for naturally shaped magnetite: Octahedra and magneto-
somes, Earth Planet. Sci. Lett., 233, 311-324.

Wright, T. M., W. Williams, and D. J. Dunlop (1997), An improved algo-
rithm for micromagnetics, J. Geophys. Res., 102, 12,085—12,094.

D. J. Dunlop, Geophysics, Physics Department, University of Toronto,
Toronto, ON, Canada M5S 1A7.

K. Fukuma, Department of Environmental System Science, Doshisha
University, Kyotanabe, 610-0394 Japan. (kfukuma@mail.doshisha.ac.jp)

8 of 8



