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[1] In 1965, D. J. Dunlop showed that the joint distribution of particle volumes and
microcoercivities f(V, Hk0) can be determined for magnetically monomineralic, thermally
stable single-domain (SSD) ensembles by taking advantage of the joint temperature and
field dependence of relaxation time. We have developed a procedure that follows Dunlop’s
strategy to obtain f(V, Hk0) for ensembles containing both superparamagnetic and SSD
grains, based on backfield remanence curves measured over a range of temperatures. Each
point on the derivative curves represents the integrated contribution from grains that lie
along a corresponding blocking contour on the Néel plot. A suitable set of such line
integral samples can be used to reconstruct the f(V, Hk0) distribution using the methods of
tomographic imaging. Samples of the basal Tiva Canyon Tuff have narrow size
distributions of elongate Ti-poor titanomagnetite. Tomographic inversion of the
low-temperature backfield spectra yield sharply peaked f(V, Hk0) distributions, from which
we calculate modal grain dimensions in good agreement with those observed by
transmission electron microscopy. Analysis of synthetic samples containing bimodal
populations clearly distinguishes the two modes. Because our simplified forward
calculations incompletely account for the effects of orientation distribution, the width of
the coercivity distribution at each temperature is underestimated, and consequently, the
inverse calculations yield grain distributions that are overly broad. Frequency- and
temperature-dependent susceptibilities calculated for the inverted f(V, Hk0) distributions
accord fairly well with measured susceptibilities for the weakly interacting Tiva Canyon
samples, less well for a moderately interacting paleosol specimen, and poorly for a
strongly interacting ferrofluid.
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1. Introduction

[2] Dunlop [1965, p. 459] wrote that ‘‘the ultimate aim
of theoretical rock magnetism is to be able to predict the
magnetic behavior of any rock sample.’’ Magnetic behav-
ior (i.e., the response of remanent and induced magnet-
izations to experimental variables including applied field,
temperature and time) depends on magnetic mineralogy,
on the distribution of grain sizes (domain states) and
shapes, and on the magnetostatic interactions among
particles. At present, a comprehensive quantitative theory
exists only for populations of noninteracting single-domain
(SD) grains that reverse by coherent rotation of spins
[Stoner and Wohlfarth, 1948; Néel, 1949; Brown, 1959;
Dunlop and West, 1969]; a comparably complete predic-
tive theory for multidomain (MD) grain populations
remains to be developed. Given a theory such as that of
Néel [1949] and complete knowledge of the magnetic

grain characteristics, we can predict magnetic behavior
quantitatively and accurately for a population of ideal
SD particles. Conversely, detailed characterization of mag-
netic behavior can be combined with Néel theory to
quantify the unknown distribution of magnetic grain sizes
and shapes in a sample containing SD particles, including
thermally stable SD (SSD) and superparamagnetic (SP)
grains.
[3] Accurate prediction of magnetic behavior under

various natural and laboratory conditions is the keystone
for a wide range of paleomagnetic applications including
paleointensity [Perrin, 1998; Dunlop and Özdemir, 2000;
Fabian, 2001; Carlut and Kent, 2002; Yu and Dunlop,
2003; Coe et al., 2004; Carvallo et al., 2005; Dunlop et al.,
2005; Yu and Tauxe, 2005] and paleothermometry [Dunlop et
al., 1997a, 1997b]. Such applications depend critically on
magnetic mineralogy and grain attributes, and therefore
detailed rock magnetic characterization is an integral part
of these studies. Moreover, a detailed inventory of magnetic
grain sizes and shapes often contains significant information
about sediment transport, depositional conditions, and geo-
chemical environments; therefore magnetic characterization
has become a significant tool in paleoenvironmental
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research [Thompson and Oldfield, 1986; Heller and Evans,
1995; Verosub and Roberts, 1995; Dekkers, 1997; Maher
and Thompson, 1999; Dunlop, 2002].
[4] Although simple scalar properties such as bulk

susceptibility may have paleoenvironmental significance
[Heller et al., 1993; Maher et al., 1994; Maher and
Thompson, 1995], in most cases it is far more informative
to look at spectral properties such as the coercivity distri-
bution [Dunlop, 1972, 1986; Robertson and France, 1994;
Heslop et al., 2002; Egli, 2003, 2004a, 2004b]. Preisach
analysis and its descendant FORC analysis go a step further
by mapping out a distribution of ‘‘hysteron’’ properties Hc

and Hu which are interpreted as coercivity and interaction
field, respectively [Roberts et al., 2000; Pike et al., 2001;
Newell, 2005]. FORC distributions are purported to have
some predictive value concerning behavior during Thellier-
Thellier paleointensity experiments [Carvallo et al., 2005],
but such predictions are at present qualitative in nature.
[5] In Néel theory the grain volume is a key variable, and

various studies have used this as the basis for transforming
the distribution of unblocking temperatures into a volume
distribution [e.g., Worm et al., 1988; Worm and Jackson,
1999]. This requires us to make the assumption that the
distribution of coercivities is much narrower than that of
grain size (as pointed out by Dunlop [1965]), since the
unblocking temperature (the SSD-SP transition in zero
field) depends on the product of grain volume and coerciv-
ity (see section 2 for details). Similarly Shcherbakov and
Fabian [2005] have shown that temperature- and frequency-
dependent low-field susceptibilities can be mapped into a
volume distribution only when some relationship between
grain volume and coercivity is specified a priori.
[6] Dunlop [1965] showed that in contrast to these weak

field thermomagnetic granulometry methods, it is possible to
combine field- and temperature-dependent measurements to
determine unambiguously the joint distribution of grain
volumes and microcoercivities, without prior specification
of any relation between these two properties or their individ-
ual distributions. There is still one relationship that we must
assume, however, namely, the temperature dependence of
microcoercivity. This is governed by the dominant anisotropy

mechanism, which may involve control by grain shape, stress
or crystallography. In this paper we will follow Dunlop
[1965] in focusing on shape anisotropy, which typically
dominates for soft, intense ferrimagnets such as magnetite.
If we further assume that the magnetic grain shapes are
ellipsoids of revolution, we can directly translate micro-
coercivities into aspect ratios and vice versa.
[7] The two-dimensional joint distribution of grain size

and microcoercivity can be represented by density contours
on a ‘‘Néel plot’’ with axes V and Hk0 [Néel, 1949; Dunlop,
1965]. (Variables and notation are summarized in Table 1).
Microcoercivity varies with temperature; Hk0 is defined in
this paper as the microcoercivity at 0 K, which (assuming
dominant shape anisotropy) depends only on mineralogy
and aspect ratio. V and Hk0 are therefore uniquely defined
for each individual grain. Néel [1949] used such plots for
diagrammatic representation of magnetization/demagnetiza-
tion processes for SD grain populations, in which V and Hk0

are centrally important in determining magnetic stability
under different applied fields and temperatures.

2. Theory

2.1. Shape Anisotropy and Microscopic Coercivity HK

[8] In the absence of thermal fluctuations, the hysteresis
of shape-dominated SD grain populations can be modeled
according to the theory of Stoner and Wohlfarth [1948]. We
consider each grain to be a uniaxial prolate ellipsoid with
demagnetizing factors Na and Nb in the polar and equatorial
directions, respectively. We also assume that grains remain
uniformly magnetized in applied fields of any strength and
orientation, and thus that they reverse by coherent rotation.
The critical field required to reverse the magnetization of
such a grain depends on its shape (aspect ratio a/b), its
magnetization intensity, and its orientation with respect to
the applied field. For a single grain aligned with the
externally applied field (or for a population of identical
noninteracting aligned grains), the hysteresis loop is square,
with the moment(s) switching at fields equal to ±HK, the
microscopic coercivity:

HK ¼ Nb � Nað ÞMS ¼ DNMS ; ð1Þ

Table 1. Notation and Definitions

Symbol Property Definition

HK microscopic coercivity or anisotropy field critical field (parallel to grain long axis) for moment reversal
in the absence of thermal fluctuations

HSW(8) Stoner-Wohlfarth switching field critical field (at a specified angle 8 to grain long axis)
for moment reversal in the absence of thermal
fluctuations: 0.5 � HSW/HK � 1.0

Hq thermal fluctuation field amount by which thermal fluctuations decrease the
critical field for moment reversal

HB (un)blocking field critical field (at a specified angle to grain long axis)
for moment reversal in the presence of thermal
fluctuations: HB = HSW � Hq

HCR coercivity of remanence field axis intercept (absolute value) of the remanent
hysteresis curve (experimentally determined):
HCR � HB � HSW � HK

Happ DC field applied DC field during a particular experiment. In the case
of DC demagnetization curves, Happ is the backfield
applied just prior to magnetization measurement

H0 maximum AC field maximum field applied during the measurement of
AC susceptibility

T0 reference temperature used in defining temperature dependence of saturation
magnetization, often taken as room temperature
(�300 K); in this paper taken as 0 K
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where MS is the volumetric saturation magnetization of the
ferrimagnetic material (e.g., 480 kA/m for magnetite).
[9] When a field is applied at an arbitrary angle 8 to the

long axis of the grain(s), the critical field for moment
reversal (the switching field, HSW(8)) is generally less than
HK, ranging from a minimum of HK/2 for an angle of 45�, to
the maximum value of HK for a field applied parallel or
perpendicular to the long axes [Stoner and Wohlfarth, 1948;
see also Dunlop and Özdemir, 1997, section 8.3]. Thus, as
defined here, HK = HSW(0) is determined solely by grain
shape (DN) and mineralogy (MS), whereas HSW depends on
these two factors and also on grain orientation with respect
to the applied field.
[10] Although thermal fluctuations are not explicitly

considered in these definitions, HK and HSW depend on
temperature through their proportionality with MS:

b Tð Þ ¼ MS Tð Þ=MS0 ¼ HK Tð Þ=HK0; ð2Þ

where the subscript 0 denotes the value at a reference
temperature T0, often taken as 300 K; in this paper we
define T0 = 0 K. (The second equality in (2) only holds
for shape anisotropy). A common analytical approximation
is

b Tð Þ ¼ TC � T

TC � T0

� �g
ð3Þ

with g � 0.5. For magnetite g = 0.43 is commonly used
above room temperature [Dunlop and Özdemir, 1997,
section 2.5]. Below room temperature the variation in
MS is weaker, and can be described by Bloch’s ‘‘T3/2

law’’ [e.g., Worm and Jackson, 1999] or by a lower
value of g.

2.2. Remanent Coercivity HCR

[11] For real samples, there is always a distribution of
grain shapes and orientations, and consequently there is a
distribution of switching fields f(HSW). The remanent coer-
civity HCR, the field axis intercept of the remanent hyster-
esis loop, represents a weighted average or expected value
of this distribution, in the absence of thermal fluctuations.
For randomly oriented identical particles, Stoner-Wohlfarth
theory predicts

HCR ¼ f HSWð Þh i ¼ 0:524HK ; ð4Þ

where the angle brackets denote (weighted) averaging. HK

is in general not directly measurable, but an expected
value can be obtained by this equation from a measured
HCR.
[12] The coercivity distribution [Dunlop, 1972, 1986;

Robertson and France, 1994; Heslop et al., 2002; Egli,
2003, 2004a, 2004b] is typically quantified by calculating
the derivative (with respect to applied field) of a magneti-
zation or demagnetization curve including isothermal
remanent magnetization (IRM) acquisition; DC demagneti-
zation of IRM (the backfield remanence curve); and AF
demagnetization of IRM. In the absence of interactions,
each of these yields the same coercivity spectrum for a
given SD population [Dunlop and Özdemir, 1997]. The

coercivity spectrum thus obtained is closely related to (but
not necessarily identical to) the distribution of HSW.

2.3. Thermal Fluctuation Field Hq

[13] Differences between the experimentally defined HCR

and the theoretically defined h f (HSW)i in noninteracting
nanoparticle populations are primarily due to the effects of
thermal fluctuations, for which the theory was developed by
Néel [1949] and elaborated by Brown [1959, 1963]. Ran-
dom thermal fluctuations sporadically add to the applied
field energy in driving magnetic moments over the energy
barrier for reversal, and thus in effect they act as an
additional applied field, which Néel called the thermal
fluctuation field Hq.
[14] The relaxation time for an aligned population of

identical grains with volume V, in an applied field Happ �
HK parallel to the grain long axes, is

t ¼ t0 exp
m0VMSHK 1� Happ

�� ��=HK

� �a
2kT

 !
; ð5Þ

where t0 � 10�9–10�10 s, m0 = 4p 	 10�7 H/m, k = 1.38 	
10�23 J/K, and a depends on the relative orientations of field
and easy axes; for the parallel case treated by Néel, a = 2.
As the applied field strength approaches HK, the relaxation
time drops sharply and the magnetization quickly equili-
brates. Following Néel, we can define the blocking field as
that which reduces t to a value equal to the measurement
time constant tm:

HB ¼ HK � 2kTHK ln tm=t0ð Þ
m0VMS

� 	1=2

¼ HK � 2kTDN ln tm=t0ð Þ
m0V

� 	1=2

¼ HK � Hq; ð6Þ

obtained by setting t = tm in (5) and solving for Happ = HB.
Note that Hq is proportional to T1/2 and to V�1/2, so it is
most important for small grains and/or high temperatures.
[15] For a randomly oriented population of identical

grains, the derivation is considerably more complicated,
but Egli and Lowrie [2002] have obtained an expression
equivalent to

Hq ¼ 0:801
kT

ffiffiffiffiffiffiffi
HK

p

m0VMS

� 	2=3

ln2=3

� 1

3:8t0fACm0D ~H
ffiffiffiffiffiffiffiffiffiffiffi
m0HK

p
kT

VMS

� 	3=2
" #

ð7Þ

for the case of alternating fields with frequency fAC and half
cycle decrement D ~H . Here we modify this for DC fields:

Hq ¼ 0:801
kT

ffiffiffiffiffiffiffi
HK

p

m0VMS

� 	2=3

ln2=3
texp

t0m0DHDC

kT

VMS

� 	3=2
" #

; ð8Þ

where the exposure time texp for the backfield treatments is
approximately 1 sec, and DHDC is the difference between
successive backfields. A log-log plot of the tabulated values
from Egli and Lowrie [2002] (not shown) indicates that to a

B12S07 JACKSON ET AL.: THERMAL FLUCTUATION TOMOGRAPHY

3 of 33

B12S07



fairly good approximation, Hq is in this case proportional to
T3/4 and to V�3/4, so the thermal fluctuation field changes
more rapidly with temperature and with grain size for a
randomly oriented population than for an aligned one.
[16] In general, for a sample containing identical SD

grains we have the following relations:HB(T)� h f (HSW (T))i
� HK(T) = DNMS(T). The first inequality is due to thermal
fluctuations (in whose absence HCR can be equated with the
Stoner-Wohlfarth mean switching field) and the second
inequality is determined by the orientation distribution.

2.4. Thermal Fluctuation Analysis

[17] Dunlop [1976] assumed dominant shape anisotropy
(equation (2)), took HCR(T) � HB(T) and rearranged (6) to
obtain

HCR Tð Þ
b Tð Þ ¼ HK0 �

2kHK0 ln tm=t0ð Þ
m0VMS0

� 	1=2
T1=2

b Tð Þ : ð9Þ

Thus for an aligned population of identical grains, a plot of
measured HCR(T) against T

1/2 (each scaled by measured or
assumed values of 1/b(T)) should yield a straight line, with
an intercept of HK0 and a (negative) slope from which grain
volume may be calculated, assuming MS0 is known. For
samples with known narrow unimodal distributions of grain
size and shape, Dunlop [1976] found that (9) gives
reasonable estimates of the mean values hVi and hHK0i. In
this article we will compare the results of thermal
fluctuation analysis to those produced by our thermal
fluctuation tomography technique. The two techniques are
closely related and a comparison of the two is pedagogically
useful.
[18] Equation (9) properly applies to aligned particles and

a parallel applied field. For the randomly oriented case it
would be appropriate to begin with equation (8), but (8) is
not easily linearized. We start with equation (5) and follow
Dunlop’s [1976] derivation with two modifications: we take
a = 3/2 [Victora, 1989; see also Walton, 1990], and replace
HK0 in the field-dependent term with HCR0 = hf(HSW)i0 =
0.524 HK0. We obtain the following approximation for the
randomly oriented population:

HCR Tð Þ
b Tð Þ ¼ HSW0 � HSW0

2k ln tm=t0ð Þ
m0VMS0HK0

� 	1=a
T1=a

b Tð Þ½ 
2=a
; ð10Þ

where HSW0 = 0.524HK0.

2.5. Grain Distribution f(V, HK0)

[19] For broad or polymodal distributions of grain size
and shape, thermal fluctuation analysis may be expected to
yield nonlinear plots of HCR(T) against T

1/2, with slopes and
intercepts that may not have a simple relationship to modal
grain dimensions. A more general approach developed by
Dunlop [1965] [see also Dunlop and West, 1969; Dunlop
and Özdemir, 1997, section 8.12] allows us to map out f(V,
HK0), i.e., the detailed two-dimensional distribution of grain
volumes and microcoercivities/shapes.
[20] Dunlop’s approach is based on repeated steps of

selective magnetization and stepwise demagnetization. For
an aligned population of nonidentical grains, the unique
blocking contour for each experimental condition (T, Happ,

tm) is the set of (V, HK0) for which t(T, Happ, V, HK0) = tm
(equation (5)), or equivalently, for which HB(T, V, HK0, tm) =
Happ (equation (6)). A weak field pTRM given over the
temperature interval (T1, T2), where T1 > T2, selectively
magnetizes grains with (V, HK0) lying between the weak
field blocking contours for those temperatures (Figure 1a).
Subsequent stepwise AF demagnetization progressively
erases the pTRM, and the loss at each step can be equated
with the remanence contribution from grains lying in a
small, well-defined quadrilateral region of the Néel plot,
bounded by the room temperature blocking contours for ~H1

and ~H2, and the weak field blocking contours for T1 and T2
(Figure 1). Repeating the process for pTRMs imprinted over
different temperature intervals thus allows mapping out of
the entire grain distribution [Dunlop, 1965].

2.6. Thermal Fluctuation Tomography

[21] Dunlop’s approach is not readily extended to the
finest grain populations that are superparamagnetic at room
temperature, because presently available commercial instru-
mentation does not allow the necessary AF demagnetization
and measurement cycles to be carried out at very low
temperatures, where such grains would be thermally stable
and able to carry a remanence. Therefore we have devel-
oped an alternative approach based on low-temperature DC
demagnetization of saturation IRM (SIRM), using a vibrat-
ing sample magnetometer (VSM; Princeton Measurements
Model 3900 MicroMag) equipped with a liquid helium
cryostat, enabling measurements down to 10 K.
[22] The magnetization and ‘‘demagnetization’’ processes

involved are much less selective than those used by Dunlop
[1965], and consequently we require a significantly differ-
ent approach to processing the data in order to map out the
grain distribution. A saturating field applied and removed
isothermally at a specified temperature T3 magnetizes the
entire thermally stable population at that temperature, i.e.,
all the grains with (V, HK0) plotting above and to the right of
the zero-field blocking contour for T3 (Figure 1b). Subse-
quent application and removal of a reverse-polarity DC field
H1 flips the magnetic moments of grains with (V, HK0)
plotting below and to the left of the blocking contour for T3,
H1 (Figure 1b). Each DC backfield treatment similarly
reverses the moments of grains plotting in a region of the
diagram bounded by two blocking field contours for the
specified temperature. Thus the change in remanence DMRi

produced by each treatment i can be equated with the
remanence contribution of the set of grains lying in this
bounded region W:

DMR ¼
Z
W

f V ;HK0ð ÞdW

W ¼ V ;HK0jHi�1 � HB � Hif g:
ð11Þ

This region is indicated by the hatched area shown in
Figure 1b for i = 1. Note that (11) implicitly defines f(V, HK0)
as the SIRM contribution per unit area on the Néel diagram,
which is proportional to the total volume of grains that have
individual volumes between V and V + dV and zero Kelvin
microscopic coercivities between HK0 and HK0 + dHK0.
[23] The inverse problem of calculating f (V, HK0) from a

DC backfield remanence data set MR(HDC, T) can be
heuristically linked to the tomographic imaging problem
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by imagining the area integrals (11) to collapse to line
integrals in the limit @MR/@HDC = lim

DHDC!0
DMR/DHDC when

we differentiate the backfield curves:

@MR=@HDC ¼
Z
G

f V ;HK0ð Þ dG;

G ¼ V ;HK0jHB ¼ HDCf g:
ð12Þ

Tomography can be generally defined as the reconstruction
of a two- or three-dimensional distribution from a collection
of measured line integrals along paths that sample the
distribution with sufficient spatial coverage and with a

suitable range of ‘‘viewing’’ angles. Most commonly, the
distribution sought is the spatial variation in a physical
property such as seismic P wave velocity (e.g., Vp(x, y, z));
each measured traveltime represents the line integral of
slowness (reciprocal velocity) along a particular ray path.
Here we wish to determine the statistical distribution of
grain characteristics in a parameter space, f (V, HK0), but the
inverse problem is mathematically equivalent, because the
measured data represent line integrals of the distribution to
be determined.
[24] In practice, we find that the one-dimensional approx-

imation (12) is not sufficiently accurate for the forward
calculations, and we use (11) or its discrete equivalent.

Figure 1. (a) Schematic illustration of Dunlop’s [1965] selective magnetization/demagnetization
approach for reconstructing f (V, HK0). A pTRM imprinted over the temperature interval (T1, T2)
selectively magnetizes grains with (V, HK0) in the region between the low-field blocking contours for T1
and T2 (light gray and black shading). Subsequent stepwise AF demagnetization progressively erases this
pTRM from left to right; the magnetization removed between H1 and H2 is carried entirely by grains with
(V, HK0) in the black-shaded area, and the magnitude of the remanence loss indicates the average value of
f (V, HK0) over that small and well-defined area. (b) Magnetization/demagnetization processes we use for
our technique are less selective: A strong field IRM imprinted at temperature T3 is carried by the entire
thermally stable population at that temperature (gray shaded area); A DC backfield H1 applied and
removed at T3 reverses the moments of grains in the hatched area.
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Nevertheless the inverse problem can still be addressed using
the methods of tomography. We use an iterative algebraic
inversion technique similar to that described by Spakman and
Nolet [1988] [see also Kak and Slaney, 1988]. We specify an
arbitrary starting model 0f(V, HK0), for which we can
calculate expected back-field remanence spectrum curves
0DMR(HDC, T) by numerical integration of equation (11).
For each individual measurement DMRi(HDC, T), we then
adjust the model over the region of integration (bounded
by the appropriate blocking contours), by an amount
proportional to the difference between measured and
predicted values. After adjustments for all measured values
we have an improved model 1f(V, HK0), and the next
iterative cycle begins with forward calculations yielding
the synthetic data set 1DMR(HDC, T). These iterations are
repeated a prescribed number of times (typically on the
order of 100) or until specified goodness-of-fit criteria are
met.
[25] In detail, the calculations involve a discrete repre-

sentation of f(V, HK0). We divide the Néel diagram into a
rectilinear grid of cells, within each of which f is uniform.
Because we are interested in volumes spanning several
orders of magnitude (for magnetite, roughly 10�25 to
10�21 m3), we scale the V axis logarithmically. The discrete
equivalent of equation (11) is

DMRi ¼
Xncells
j¼1

fjaij: ð13Þ

Here DMRi is the ith measured remanence difference, fj is
the value of the function f for the jth cell in the grid, and aij
is the area of cell j within the area bounded by the blocking
contours for the temperature and applied DC fields used in
measuring DMRi (see below for a description of how this
area is calculated).
[26] The matrix a thus encapsulates the physics of the

problem (i.e., the relationship between grain characteristics
V and DN, intrinsic mineral properties MS(T), experimental
conditions T and Happ, and measurable changes in rema-
nence DMR). It is calculated once and then remains un-
changed by the iterative adjustments to the f(V, HK0) model.
To construct HB contours for each temperature we evaluate

HB V ;HK0;MS0; T ; b T½ 
; tmð Þ ¼ 0:524HK HK0;b T½ 
ð Þ

�Hq V ;HK0;MS0;T ; b T½ 
; tmð Þ
ð14Þ

for the (V, Hk0) coordinates of each node in the grid, using
equation (8) for calculation of Hq, and using a specified
model of MS(T) = MS0b(T). Each temperature and applied
field pair (T, Happ) represented in the data set corresponds to
a unique blocking contour, defined as the locus of (V, HK0)
for which HB(T, V, HK0) = Happ. We calculate the
intersection points of the contours with the grid lines by
linear interpolation between nodes, and we approximate the
contours by straight-line segments between these intersec-
tion points in calculating the areas aij.
[27] In most cases we use a uniform starting model with

0fj = 0 for all j. In order to evaluate resolution and
uniqueness, it is useful to repeat the inversion using a
variety of different starting models, and for this purpose

we also employ 2-D Gaussian distributions and nonzero
constant distributions. The starting model is used to generate
a synthetic data set according to (13), and residuals are
calculated as the difference between measured and synthetic
data:

sRi ¼ DMRi;measured � sDMRi;calculated ; ð15Þ

where s is the iteration number. The model is then adjusted
by ‘‘back-projecting’’ the residuals [Kak and Slaney, 1988]:

sDfij ¼
sRiaijPncells
k¼1

a2ik

: ð16Þ

For each measurement i, the adjustment applied to cell j is
proportional to Ri and to the area of the cell lying within the
integration area. The updates are applied after they have all
been calculated for the current iteration (simultaneous
iterative reconstruction technique [Kak and Slaney, 1988]):

sþ1fj ¼ sfj þ
C

nmeasurements

Xnmeasurements

i¼1

sDfij j ¼ 1::ncellsð Þ: ð17Þ

The dimensionless constant C in (17) is used to control the
rate of convergence; higher values generally cause the
iterative process to converge to a solution more rapidly, but
excessive values can cause the process to become unstable
and diverge.

2.7. Rigorous Forward Model With Random
Orientations

[28] In the forward calculations used in our tomographic
modeling (equations (11) and (14)) we only partially
account for differences between an aligned population and
a more realistic randomly oriented population. Specifically,
in comparison with an aligned population, a randomly
oriented population of identical noninteracting grains has
both a lower average switching field and a broader distri-
bution of switching fields; our tomographic inversion cal-
culations account for the reduced average value but not for
the broadened distribution. Here we compare the results of
these simplified forward calculations with those of a more
rigorous model, in order to evaluate the effects of the
simplifications.
[29] We begin with an analytically defined lognormal

distribution of sizes and an orthogonal normal distribution
of microcoercivities (Figure 2a). For the forward model we
assume an infinite set of noninteracting, uniaxial particles
with a random orientation distribution, and we adopt the
most detailed thermal fluctuation model currently known.
The magnetization of the sample as a function of time is
given by

M tð Þ /
Z p=2

0

m t;8ð Þ sin 28 d8; ð18Þ

where m(t, 8) is the magnetic moment of all particles whose
easy axes are at an angle 8 with respect to the applied field.
The time evolution of the total magnetization of these
particles is given by

m t;8ð Þ ¼ m1 þ m0 � m1ð Þe�ft; ð19Þ
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Figure 2. (a) Synthetic f(V, HK0) model with hVi = 2.4 	 10�24 m3; standard deviation is 0.2 log units;
m0hHK0i = 100 mT; standard deviation is 20 mT. (b and c) Backfield remanence spectra calculated using
the f(V, HK0) model in Figure 2a, assuming TC = 850 K, MS0 = 480 kA/m, and g = 0.43, and using a
rigorous model (Figure 2b) that accounts for the angular dependence of thermally assisted switching for a
randomly oriented population of identical grains, or using a simplified model (Figure 2c) in which the
angular dependence is incompletely addressed.
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where f is the switching frequency of the particles, t the time
elapsed in the same configuration (i.e., applied field and
zero field), m0 = m(t = 0), and

m1 ¼ m t ! 1ð Þ ¼ tanh
m0VMSHapp

kT

� 	
ð20Þ

with Happ being the applied field (a positive saturating field
during acquisition, a negative field at each backfield step,
and zero during the measurements). We use the thermal
activation model of Brown [1959, 1963] to calculate the
switching frequencies in zero field (fz) and in applied field
(fa). Following Dormann et al. [1997], we obtain

fz ¼ 2F0m0HKl1=2e3=2 exp �leð Þ

fa ¼ f ¼ F0m0HKl1=2e3=2 exp �leð Þ
ð21Þ

with F0 = 2g0/
ffiffiffi
p

p � 99.2 GHz/T, l = m0MsVHK/(kBT), and e
is a numerical factor that accounts for the actual value of the
energy barrier. In zero field e = 1/2, and fz in equation (21)
equals 1/t in (5), with Happ = 0 and t0

�1 = 2F0m0HKl
1/2e1/2.

In an applied field, e cannot be calculated analytically; Egli
and Lowrie [2002] obtained the following approximation:

e H ;8ð Þ ¼ 2

3

� 	3=2

sin 2qsw 1� H

Hsw

� 	3=2

; ð22Þ

Hsw ¼ HK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2 þ t4

p

1þ t2
; t ¼ tan1=3 8; ð23Þ

tan qsw ¼
ffiffiffi
3

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4hsw � 1

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2sw

p ; ð24Þ

where hsw = Hsw/Hk and qsw is the angle at which the
moment switches irreversibly. Equation (22) becomes exact
as H ! Hsw.
[30] For the synthetic f(V, Hk0) model (Figure 2a), we

calculate backfield remanence curves over the temperature
interval 10–300 K, using both the rigorous approach
(equations (18)–(24)), and the simplified approach ((13)
and (14)). As expected, the backfield distributions calculat-
ed with the rigorous model (Figure 2b) are broader than
those calculated with the simplified calculations (Figure 2c).
In all other respects, however, the synthetic backfield data
sets have the same essential character: with increasing
temperature the peaks shift to lower fields and decrease in
height, and the shifts occur at the same rate in both cases.

2.8. Predicting k( f, T) Using Calculated f(V, HK0)

[31] Once the grain distribution has been determined, it
can be used to calculate the behavior expected in other
experiments. For example, Dunlop [1965] calculated f(V,
HK0) from AF demagnetization of a set of weak field
pTRMs, and then used it to predict the thermal demagne-
tization spectra of pTRMs acquired in different DC fields.
Here we use the grain distributions obtained from thermal
fluctuation tomography to model the frequency and tem-
perature dependence of susceptibility, k(f, T), using Néel

theory [Néel, 1949; see also Worm and Jackson, 1999;
Shcherbakov and Fabian, 2005].
[32] The equilibrium magnetization Meq reflects a balance

between the aligning influence of an external field and the
randomizing effects of thermal energy. For an aligned
assemblage of SP or SSD particles in an applied field Happ,
the equilibrium magnetization is:

Meq V ;Ms;Happ;T
� �

¼ Ms tanh að Þ ¼ Ms tanh
m0VMs Tð ÞHapp

kT

� 	
:

ð25Þ

For a randomly oriented assemblage,

Meq ¼ MsL að Þ ¼ Ms coth að Þ � 1=a½ 
; ð26Þ

which for small a approximates to m0VMs
2Happ/(3kT), one

third the small a value for the aligned assemblage. The in-
phase susceptibility is

k0 ¼ Meq0

H0 1þ w2t2ð Þ ¼
keq

1þ w2t2
; ð27Þ

and the out-of-phase (also known as quadrature or
imaginary) component is

k00 ¼ wtMeq0

H0 1þ w2t2ð Þ ¼
wtkeq

1þ w2t2
; ð28Þ

where keq = m0VMs
2/(3kT) and t is given by equation (5)

with Happ � 0.
[33] Equations (27) and (28) describe the thermally acti-

vated component of susceptibility, i.e., the part due to
irreversible rotation of moments over anisotropy energy
barriers into minimum energy orientations along the applied
field. These components vanish for sufficiently high fre-
quencies and/or long relaxation times (wt � 1), i.e., for the
SSD state. The quadrature component also vanishes for
sufficiently low frequencies and/or short relaxation times
(wt � 1), i.e., the ‘‘pure’’ SP state, where k0 becomes equal
to the equilibrium (DC) susceptibility keq. It is in the
transitional region between these states (wt � 1) that AC
behavior is most interesting, with significant frequency
dependence and nonmonotonic temperature dependence.
[34] Given a discrete model of the grain distribution f(V,

HK), we can use equations (27), (28), and (26) to calculate
k0 and k00 as functions of frequency and temperature for
each grid cell, using the average values of V and HK for the
cell. We then sum over the whole assemblage, weighted
cell-by-cell according to f(V, HK), to obtain the predicted
k(f, T) for the sample.

3. Samples, Measurements, and Conventional
Analysis

[35] The basal section of the Tiva Canyon Tuff on Yucca
Mountain (Nevada) contains fine titanomagnetite grains
that crystallized in a silicate glass matrix during cooling
after emplacement [Schlinger et al., 1988, 1991]. Thermo-
magnetic analyses indicate that these grains are low-
titanium titanomagnetites with a composition of Fe3-xTixO4
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(x � 0.10 or TM10). Careful transmissionelectronmicros-
copy (TEM) studies [Schlinger et al., 1991] and numerous
magnetic investigations [Schlinger et al., 1991; Rosenbaum,
1993; Worm and Jackson, 1999; Egli and Lowrie, 2002;
Shcherbakov and Fabian, 2005] have shown that at each
stratigraphic level the distribution of grain sizes and shapes is
very narrow, and that it closely approximates a Stoner-
Wohlfarth population of identical, randomly oriented elon-
gate grains. Sizes increase from approximately 5	 5	 15 nm
(4.5 	 10�25 m3) to 25 	 25 	 250 nm (1.6 	 10�22 m3)
over a 3-m span near the base of the flow (Table 2)
[Schlinger et al., 1991]. In this study we have analyzed
some of the same samples characterized by Schlinger et al.
[1991] as well as a new set of samples that we collected in
2004 and 2005 from the same location. The wealth of
previous work allows us to rigorously ‘‘ground truth’’ our
inversion results.
[36] For purposes of comparison, we also apply thermal

fluctuation tomography to (1) a ferrofluid, containing a
strongly interacting population of nanoparticles with a
narrow distribution of sizes/shapes (Ferrofluidics APG
512 A, nominal particle diameter of 10 nm); and (2) a
paleosol sample from the Chinese loess plateau (at Weinan),
with a broad range of SP and SSD grain sizes.

3.1. Low-T Hysteresis and Determination
of MS0 and b(T)
[37] At the heart of Dunlop’s [1965] method and ours is

the temperature dependence of HB (equation (14)), which
is controlled by the grain characteristics V and HK0; and by
the magnetic mineralogy, which governs MS0 and b(T).
Thus we must begin by determining or assigning values
for MS0 and b(T), and then use field- and temperature-
dependent measurements to solve for the distribution of
V and HK0.
[38] Experimental determination of MS0 and b(T) is more

complicated for nanophase materials than for thermally
stable ones. For the latter, we can attribute the high-field
slope of a hysteresis loop entirely to paramagnetism, dia-
magnetism, and/or antiferromagnetism, and calculate the

ferrimagnetic saturation magnetization as the intercept of a
best fit line. By measuring hysteresis loops as a function of
temperature we determine the saturation moment mS(T) =
cVSMS0b(T), where VS is the specimen volume and c is the
concentration of ferrimagnetic material in the bulk sample.
Using the measured values mS(T) we can fit a function of
the form (3) by a suitable choice of g and TC, to approx-
imate b(T). From the Curie temperature, we estimate the Ti
substitution parameter x or the oxidation parameter z from
the relations given in Hunt et al. [1995], and from this we
can estimate MS0.
[39] For populations near or above their blocking temper-

atures, however, the ferrimagnetic high-field slope may be
significantly nonzero [e.g., Tauxe et al., 1996; Lanci and
Kent, 2003]; the magnetization is no greater than the
equilibrium value (26), which may be significantly less
than MS(T). Conventional processing as described above
yields an erroneously rapid drop in MS with increasing T as
the strong field equilibrium magnetization diminishes. This
is apparent in samples lacking any appreciable paraferro-
magnetic or antiferromagnetic contribution to high-field
slope, and with ferrimagnetic grain sizes of �10 nm or
less, such as the ferrofluid. The rapid drop in the calculated
MS(T) values (Figure 3a, circles) implies either a low TC or
a relatively high g: we obtain a good fit with g = 0.66 and
TC = 850 K. However, the addition of a nonlinear term to
high-field slope fitting more accurately describes the
approach to saturation [Fabian, 2006] and yields better
values for MS(T) (Figure 3a, squares). This approach yields
parameters appropriate for oxidized magnetite: g = 0.43 and
TC = 880 K.
[40] For the Tiva Canyon tuff samples (Figure 3b), the

paramagnetic contribution to high-field slope is dominant,
especially at low temperatures. Moreover, at least for the
samples with larger grain sizes and blocking temperatures
near or above room temperature, the strong field Meq � MS,
and the latter can thus be calculated by standard linear
regression. Using either linear or nonlinear high-field
fits, we obtain MS(T) that is consistent with g = 0.43 and

Table 2. Tiva Canyon Sample Stratigraphy and Grain Characteristicsa

Sample/Site Z, m

Measured
Dimensions Expected Values Inverted Mode

Modal
Dimensions Inverted Mean

Mean
Dimensions

L, nm w/L V, 10�24 m3 m0Hk0, mT V, 10�24 m3 m0Hk0, mT L, nm w/L V, 10�24 m3 m0Hk0, mT L, nm w/L

CS913 1.39 85 0.11 7.43 245.32
TC04-12-7 1.4
TC04-12-6 1.1 6.31 190 41.7 0.295 3.21 226 46.4 0.18
CS914 0.98 50 0.17 3.61 228.69 5.01 250 84.6 0.091 4.04 226 49.9 0.18
TC04-12-5 0.8
TC04-10 0.75
TC04-11 0.75 5.01 180 36.1 0.326 3.23 213 40.4 0.221
CS915 0.57 37 0.2 2.03 219.70
TC04-12-4 0.5 3.16 180 31 0.326 2.34 208 34.5 0.238
TC04-12-3 0.3 2 160 23.6 0.39 1.74 215 33.5 0.215
CS916 0.17 18 0.28 0.46 194.73
TC04-12-2 0.12 1.58 160 21.9 0.39 1.41 206 28.8 0.243
CS917 0.03 15 0.36 0.44 169.42 1 150 17.8 0.422 1.97 179 26.3 0.329
TC04-12-1 0.05

aCS samples/sites are those of Schlinger et al. [1991]; TC04 sites were sampled at the same locality by the authors of this paper. Not all samples are
analyzed in this paper. Z is the stratigraphic height above the base of the flow, approximately determined by measurements in the field. Measured
dimensions L and w/L are the mean grain length and aspect ratio determined by Schlinger et al. [1991] from TEM images. V is the volume of a rectangular
parallelepiped with the given dimensions (V = L3*(w/L)2); the volume of an ellipsoid with the same dimensions is approximately half as large. Zero-Kelvin
microcoercivities are calculated as DNMS0 using the demagnetizing factor formula of Stoner [1945] and assuming MS0 � 420 kA/m.
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Figure 3
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TC = 775 K (502 C), corresponding to an unoxidized
composition of approximately TM12 [Hunt et al., 1995].
There is significant uncertainty in the best values for these
parameters, since the measurements are all made far below
the Curie point, but this composition agrees well with those
estimated previously [Schlinger et al., 1988, 1991;Worm and
Jackson, 1999]. The room temperature mass-specific satura-
tion magnetization for this composition is �78.4 A m2/kg
[Hunt et al., 1995], which for a density of �5150 kg/m3

yields MS � 404 kA/m at room temperature.
[41] In the Weinan paleosol sample the major magnetic

phase is presumably maghemite (TC � 645�C = 918 K

[Özdemir and Banerjee, 1984]) or oxidized magnetite
(575�C � TC � 645�C). Taking TC = 900 K, we obtain a
good fit using g = 0.66 forMS(T) determined by linear high-
field fitting, or g = 0.72 for nonlinear high-field fitting
(Figure 3c). Conversely, if we take a lower value for
g (�0.43), an equally good fit is obtained for MS(T) over
this temperature range with TC � 600 K. We emphasize that
for our purposes it is not essential to have an exact value for
either TC or g, as long as the combination used provides an
accurate description of MS(T) over the temperature range of
interest. It is interesting to observe that the linear and
nonlinear high-field fits yield strongly divergent estimates

Figure 3. Temperature dependence of saturation magnetization for (a) ferrofluid, (b) Tiva Canyon tuff sample CS914, and
(c) paleosol WN510. Circles show the saturation moment ms [A m2] determined by linear high-field fitting of hysteresis
measurements up to 2 T; the gray curve shows the linear high-field slope. Squares show ms(T) determined by nonlinear
high-field fitting. The solid black curve is the analytical approximation ms = ms0[(TC � T)/TC]

g, based on the nonlinear
high-field calculations. Fit parameters are (a) g = 0.43 and TC = 880 K (607�C), corresponding to moderately oxidized
magnetite; (b) g = 0.4 and TC = 775K (502�C), corresponding to an unoxidized composition of approximately TM12;
(c) excluding the data below 50 K, g = 0.72 and TC = 900 K (627�C), close to maghemite.

Figure 4. Low-T behavior of sample CS914: (a) remanent magnetization as a function of applied
DC backfield and (b) derivative curves. Temperatures from 10 K to 300 K are indicated by gray scale
(DT = 10); field steps are 5 mT.

B12S07 JACKSON ET AL.: THERMAL FLUCTUATION TOMOGRAPHY

11 of 33

B12S07



Figure 5
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of MS for T < 50 K, which appears to be the ordering
temperature of a different magnetic phase. For this reason
we exclude back-field data for T < 50 K from the tomo-
graphic analysis for this sample.

3.2. Low-T Backfield Measurements and
Thermal Fluctuation Analysis

[42] The back-field remanence curves for the Tiva Can-
yon samples (e.g., CS914, Figure 4a) exhibit high stability
at 10 K (with m0Hcr on the order of 100 mT, and saturation
only reached in fields approaching 200 mT), and relatively
rapid softening as temperature increases. The back-field
derivative curves (Figure 4b) are approximately Gaussian

in shape for the lowest temperatures. On warming the
curves progressively shift to lower fields and become
truncated. The peak heights are roughly constant until they
fall sharply at higher temperatures.
[43] The remanent coercivity decreases quasi-linearly for

CS914 (Figure 5a), with some curvature at the lowest and
highest temperatures. Thermal fluctuation analysis accord-
ing to equation (9) produces a reasonably straight line,
although some curvature remains at the high-temperature
end (Figure 5b). The estimated mean grain characteristics
are (V, m0HK0) = (1.0 	 10�23 m3, 103 mT). This is a
significantly larger mean grain volume, by a factor of
approximately 2.5, than that found for this material

Figure 5. (a) HCR(T) for sample CS914, determined from the data of Figure 4a; (b) thermal fluctuation analysis using
equation (9), yielding m0HK0 = 103 mT and V = 1.0 	 10�23 m3; and (c) thermal fluctuation analysis using equation (10),
yielding m0HK0 = 185 mT and V = 3.9 	 10�24 m3. In both cases the analysis is adversely affected by nonlinearity at the
high-temperature end; limiting the analysis to the interval 10–250 K yields m0HK0 = 106 mT, V = 9.3 	 10�24 m3

(equation (9)) and m0HK0 = 188 mT, V = 3.6 	 10�24 m3 equation (10)).

Figure 6. Low-T behavior of ferrofluid sample: Remanent magnetization as a function of applied
(a) DC backfield and (b) derivative curves, for temperatures from 10 K to 300 K (DT = 10), measured in
steps of 5 mT.
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Figure 7. (a) HCR(T) for the ferrofluid sample, determined from the data of Figure 6a. Above 90 K the
magnetization is completely unblocked and no meaningful HCR values can be calculated; (b) thermal
fluctuation analysis using equation (9), yielding m0HK0 = 30 mT and V = 1.2 	 10�23 m3; (c) thermal
fluctuation analysis using equation (10), yielding m0HK0 = 51 mT and V = 5.6 	 10�24 m3. In both cases
the strong nonlinearity at all but the lowest temperatures undermines the analysis.
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(Table 2) in previous studies [Schlinger et al., 1991; Worm
and Jackson, 1999; Egli and Lowrie, 2002; Shcherbakov
and Fabian, 2005]. The disparity is undoubtedly due in part
to the diminished slope at higher temperatures, related to a
separate population of larger grains. Excluding the data for
T > 250 K yields a slightly smaller volume and more
elongate shape (9.3 	 10�24 m3, 106 mT). When the
analysis is carried out according to equation (10), the
calculatedmean volume is in better agreement with published
estimates (Table 2), and HK0 is much larger, although still
somewhat low compared to expected values for the observed
grain shapes [Schlinger et al., 1991]: (3.9 	 10�24 m3,
185 mT) for all data and (3.6 	 10�24 m3, 188 mT) for
T � 250 K.
[44] It is evident in the back-field data and derivative

curves (Figure 6) that the ferrofluid contains dominantly
finer and less coercive grains. Even at 10 K the remanence
saturates by about 100 mT (Figure 6a), and a Gaussian fit
to the backfield derivative curves (Figure 6b) would
extend well into the negative backfield region. Magneti-
zation is completely unblocked by 80 or 90 K. HCR(T) is

strongly curved (Figure 7a), and the curvature largely
persists after rescaling for thermal fluctuation analysis
(Figures 7b and 7c).
[45] The paleosol data set (Figure 8) suggests a relatively

large mean grain size and moderate to weak grain elonga-
tions: m0HCR is less than 50 mT at 10 K, and it shifts
downward quite slowly with increasing T. At 400 K there is
still a significant thermally stable population of grains. The
peaks in the back-field derivative curves (Figure 8b) shift
systematically with increasing T to lower fields and reduced
peak values. Strongly nonlinear and multiply inflected
curves in HCR(T) and thermal fluctuation analysis
(Figure 9) suggest a broad and possibly multimodal range
of grain sizes and/or shapes.

4. Tomographic Analysis

[46] Our data sets each typically contain 1800 back-
field remanence measurements (60 field steps at each of
30 temperatures). These are combined with a b(T) model and
mapped into blocking contours (Figure 10), successive pairs

Figure 8. Low-T behavior of the paleosol sample: Remanent magnetization as a function of (a) applied
DC backfield and (b) derivative curves, for temperatures from 10 K to 400 K (DT = 10), measured in
steps of 5 mT.
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of which define the regions of integration for equation (11).
The density and angular variation in the blocking contours
together determine the resolution of the tomographic inver-
sion, in the same way that ray path coverage does in seismic

tomography. The ideal situation is to have the entire region
crossed by many integration paths in all orientations, and
clearly our coverage is less than ideal. First, the blocking
contour density is very nonuniform; we may thus anticipate

Figure 9. (a) HCR(T) for the paleosol sample, determined from the data of Figure 8a; (b) thermal
fluctuation analysis using equation (9), yielding m0HK0 = 42 mT and V = 1.4 	 10�22 m3; (bottom)
thermal fluctuation analysis using equation (10), yielding m0HK0 = 79 mT and V = 3.4 	 10�23 m3. In
both cases the strong nonlinearity probably reflects the broad distribution of sizes.
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no resolution or poor resolution of grain sizes less than a few
times 10�25 m3 and microcoercivities less than about 50 mT,
where coverage is poor or nil, and increasingly better
resolution as particle sizes and/or elongations increase.
Second, the range of contour orientations is limited. Be-
cause of the physics of thermal activation, the blocking
contours necessarily all curve through the Néel plot diago-
nally from the top edge to the right edge. We can therefore
expect some degree of smearing in the reconstructed f(V,
HK0), parallel to the dominant contour orientation, especially
in the poor-resolution areas along the left side and bottom
part of the plot.
[47] This is an example of what Menke [1984] calls a

‘‘mixed determined’’ inverse problem: overdetermined with
respect to some model parameters and underdetermined
with respect to others. A hallmark of such problems is an
extreme sensitivity of some of the model parameters to
noise or small errors in the data, and for this reason it is
important to examine the trade-off between fitting errors
and length of the solution vector

fj j ¼
Xncells
j¼1

f 2j

 !1=2

during convergence.
[48] Because the iterative model corrections are propor-

tional to fitting errors for theprevious iteration (equation (16)),
these errors decrease quasi-exponentially as the iterative
calculations proceed (Figure 11a). For the residuals there is
a break in slope after about 100 iterations for the CS914
data set (using C = 50 in equation (17)), beyond which the
differences between measured and predicted data decrease
much more slowly. The rate of change in j f j also decreases

after about 100 iterations, but less markedly. Beyond this
breakpoint, only marginal improvements are gained in the
goodness of fit, while the model parameters continue to
change more significantly, and thus to avoid the develop-
ment of large artifacts in the solution, we generally termi-
nate the process after 100 iterations (or more precisely, after
the product Cniterations reaches �5000). The best fit back-
field remanence spectra after 100 iterations (Figure 11b)
reproduce the essential features of the measured spectra
(Figure 4), differing only in fine-scale details. The root-
mean-square (RMS) of the residuals (equation (15)), is less
than 7% of the RMS of the measured DM values.
[49] The reconstructed distribution for CS914 (Figure 12a,

100 iterations) shows a unimodal f(V, HK0) distribution,
relatively sharply peaked, with a mean (V, m0HK0) = (4.0 	
10�24 m3, 226 mT). For this composition, these values
correspond to a length 50 nm and a width/length ratio of
0.18, in excellent agreement with the dimensions measured
by Schlinger et al. [1991] (Table 2). There is a clear
elongation of the distribution toward the upper left and
lower right, i.e., along the dominant blocking contour
orientation. This sort of elongation was also obtained by
Dunlop [1965] [see also Dunlop and Özdemir, 1997], but
here it may be due, at least in part, to our processing
technique. The distribution extends to microcoercivities
exceeding 300 mT, the upper limit for prolate spheroids
with magnetite-like magnetizations. There is also a rather
pronounced asymmetry in the distribution, with a sharp
dropoff toward the upper right and a more gradual decline in
the opposite direction. This resembles the asymmetry in the
size distributions calculated by Worm and Jackson [1999]
and by Shcherbakov and Fabian [2005]. Interestingly,
however, the integrated 1-D volume and microcoercivity
distributions here are nearly symmetric (Figures 12b and

Figure 10. Blocking contours for the fields and temperatures of the data set in Figure 4, calculated
assuming shape anisotropy and using b(T) = [(TC � T)/TC]g, with g = 0.4 and TC = 775K (502�C),
appropriate for the Tiva Canyon samples. Color scale indicates temperatures, from 10 K (blue) to 300 K
(red) in 10-degree increments.
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12c), respectively lognormal and normal. For comparison, a
model obtained for the same data set after 1000 iterations
(Figure 12d) is somewhat more narrowly peaked but other-
wise not significantly different (due to the high signal/noise
ratio for this data set).
[50] Susceptibilities calculated using the f(V, HK0) model

for CS914 agree reasonably well with measured values in
their temperature and frequency dependence (Figure 13).
The model differs primarily in having higher relative
susceptibilities and frequency dependence below 100 K,
related to the fine grain size tail visible in Figure 12b. The
calculated peaks in k0 and k00 occur at slightly lower
temperatures than those in the measured data set.
[51] One way to evaluate the resolution and uniqueness of

this (or any iterative) inverse solution is to use different
starting models for the same data set, and see how the final
models compare. We show the results of such an analysis in

Figure 14 for sample TC04-12-04, approximately the strati-
graphic equivalent of CS915 (Table 2), using two initial
models: a uniform model with 0f(V, HK0) = 0 for all cells;
and a Gaussian coercivity and log Gaussian volume distri-
bution with a peak at (V, m0HK0) = (100 	 10�24 m3,
225 mT). After 100 iterations, each converges to essentially
the same final model (Figures 14a and 14b), with a mode
at (V,m0HK0) = (3.2 	 10�24 m3, 180 mT) and a mean of
(2.3 	 10�24 m3, 208 mT), in good agreement with the
expected values. No visible trace remains of the peak of the
nonuniform initial distribution. Susceptibility behavior
computed for the final model for TC04-12-04 accords well
with the observed behavior (Figure 15). As we found for
CS914, the peaks in the model occur at slightly lower
temperatures than those in the measured data, and the model
rather strongly overestimates both susceptibility and its
frequency dependence at temperatures below 100 K.

Figure 11. (a) Iterative convergence for Tiva Canyon Tuff sample CS914. Residuals (black curve)
decrease quasi-exponentially, rapidly for the first 50 to 100 interations, and more slowly thereafter. The
length of the solution vector j f j increases continuously as the peak of the f(V, HK0) becomes larger and
sharper. (b) Back-field remanence spectra calculated for the f(V, HK0) model after 100 iterations. The
RMS residual is less than 7% of the RMS measured value.
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[52] For a direct test of the ability of thermal fluctuation
tomography to resolve multimodal populations, we crushed
and mixed Tiva Canyon Tuff samples from two levels:
TC04-12-3 (stratigraphically approximately equivalent to
CS916; Table 2); and TC04-12-6 (approximately equivalent
to CS914). The bimodality is subtly expressed in the
backfield curves (Figure 16a) and is more apparent in the
derivatives (Figure 16b), especially for intermediate temper-
atures. HCR(T) is strongly nonlinear (Figure 17a), with
multiple inflections due to the two nanoparticle populations,
and also a coarser third population residing in lithic frag-
ments. Thermal fluctuation analysis (Figure 17b) yields
what may be in some sense an average for the three
populations, with a larger volume (10.3 	 10�24 m3) and
lower HK0 (121.89 mT) than either of the main components
in the mixture.
[53] The calculated grain distribution (Figure 18) shows a

clearly bimodal f(V, HK0) distribution, with two elongated

but relatively sharppeaks, one at (V,m0HK0) = (5.2	10�24m3,
210 mT) and a slightly smaller one at (2.0 	 10�24 m3,
160 mT). These are in reasonable agreement with the
expected values (Table 2). It is interesting to note that the
trend described by Schlinger et al. [1991], with grain size
and grain elongation both increasing upsection, is quite
evident in the relative positions of the peaks, despite the
smearing along the dominant contour orientations.
[54] To evaluate the resolving power in the direction of

the dominant contour orientations, we constructed two
different (log) Gaussian starting models that have the same
product hVihHk0i (Figures 19a and 19b). As shown by
Shcherbakov and Fabian [2005], such distributions cannot
be distinguished on the basis of k(f, T) data alone, since the
distribution of weak field activation energies is the same for
each model, and indeed we find the predicted k(f, T)
behavior for these two models to be indistinguishable
(Figure 19c). However the predicted response to strong

Figure 12. (a) Calculated f(V, HK0) for Tiva Canyon Tuff sample CS914, using the data of Figure 4
(contour interval = fmax/10). The distribution is unimodal, with a mean of (V, m0HK0) = (4.0 	 10�24 m3,
226 mT). For this composition, those values correspond to ellipsoidal grains of length 50 nm, with a
width/length ratio of 0.18. These are virtually identical to the dimensions determined from TEM images
by Schlinger et al. [1991]. (b) and (c) Distributions of volume and microcoercivity, obtained by summing
the rows and columns of the 2-D model in Figure 12a. (d) The f(V, HK0) model after 1000 iterations.
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back fields is quite different for the two distributions
(Figures 19d and 19e). When we invert the synthetic data
of Figure 19d, using the distribution of Figure 19b as a
starting model, the inversion converges (albeit slowly) to
one (Figure 20) that more strongly resembles the correct
distribution (i.e., that of Figure 19a).
[55] The calculated grain distribution for the Chinese

paleosol sample (Figure 21) is much broader than those for
the tuff samples, extending from volumes of 10�25 m3 up to
10�21 m3 and beyond, and spanning microcoercivities from
30 to 300 mT. The mode at (V, m0 HK0) = (12.6 	 10�24 m3,
90 mT) corresponds to a length of 31.8 nm and a width/
length ratio of 0.63 (assuming Ms0 � 420 kA/m), close to
the SP-SSD boundary at room temperature [e.g., Butler and
Banerjee, 1975]. Calculated susceptibilities (Figure 22a)
reflect that, with broad peaks in k0 and k00 near room

temperature and a strong frequency dependence at all
temperatures above 50 K. The agreement between calculated
(Figure 22a) and measured (Figure 22b) behavior is only
moderately good, in part because of a paramagnetic contri-
bution that is significant at the lowest temperatures and
that is not included in the modeled behavior. More impor-
tantly, the model shows a complete absence of particles with
Tb < 50 K; this is a consequence of our excluding the
backfield data for T < 50K. The inverse calculations populate
the model with such low-Tb (small V and/or HK0) particles
onlywhere the low-temperature back-field data demand them.
[56] The ferrofluid model (Figure 23a) shows a relatively

tight distribution, albeit with considerable elongation along
the dominant blocking contour orientation. The mode at
(V, m0HK0) = (0.8 	 10�24 m3, 90 mT) corresponds (assum-
ingMs0� 490 kA/m) to particle dimensions of L� 14.2 nm,

Figure 13. (a) In-phase (bold curves) and quadrature (fine curves) susceptibility calculated for the
f(V, HK0) model for CS914 (Figure 12a). Gray scale indicates frequency, from 1 Hz (black), through 3.16,
10, 31.6, 100, 316, to 1000 Hz (light gray). (b) Measured susceptibilities.
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w/L = 0.74, in reasonable agreement with those specified by
the manufacturer (10 nm, approximately equidimensional).
The greater smearing is presumably a consequence of the
very fine size and relatively low microcoercivities of these
particles, which place them near the resolution limit of our
technique (with measurements down to 10 K).
[57] Susceptibility behavior predicted for the ferrofluid

based on the calculated f(V, HK0) agrees rather poorly with
the observed behavior (Figure 24). The measured suscepti-
bilities show much broader peaks, at higher temperatures: In

effect they exhibit the sort of behavior that we would expect
for a much broader distribution of grain sizes/shapes, with a
higher mean product VHK0. We attribute the difference
between measured and predicted behavior primarily to the
effects of magnetostatic interactions, which are not included
in our model.

5. Discussion

[58] For both the Tiva Canyon Tuff samples and the
ferrofluid, independent data on particle sizes and shapes

Figure 14. Grain distributions for TC04-12-04 (contour interval = fmax/10) obtained from two different
starting models: (a), a uniform model with 0f(V, HK0) = 0 for all cells; and (b) a Gaussian coercivity and
log-Gaussian size distribution with a peak at (V, m0HK0) = (1 	 10�22 m3, 225 mT). In both cases the
final model has a mode at (V, m0HK0) = (3.2 	 10�24 m3, 180 mT) and a mean of (V, m0HK0) = (2.3 	
10�24 m3, 208 mT).
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are available, and thermal fluctuation tomography recon-
structs the mean and/or mode of the distribution f(V, HK0)
quite accurately. Bimodal distributions can be clearly
separated, particularly when the product VHK0 differs
significantly for the different modal dimensions. However
it is less clear exactly how much significance can be
attached to the finer-scale features of the calculated
distributions.
[59] There are two major limiting factors: (1) the

restricted range of ‘‘viewing angles’’ available for input
to the tomographic algorithm, a limitation imposed by the
physics of magnetic blocking; and (2) the string of
critical assumptions involved, including: uniform magne-

tization of the grains; coherent reversal [Newell and
Merrill, 1999]; angular dependence of switching field
HSW(8) according to Stoner-Wohlfarth theory [Stoner
and Wohlfarth, 1948; see also Stephenson and Shao,
1994; Dunlop and Özdemir, 1997; Madsen, 2002]; dom-
inant shape anisotropy, so that HK(T) is proportional to
MS(T); lack of magnetostatic interactions; and the grain
size and temperature dependence of the thermal fluctua-
tion field as developed from Néel theory by Egli and
Lowrie [2002].
[60] Let us first consider the general validity of the

model and its assumptions. Although our approach was
necessitated by instrumental constraints, it has the addi-

Figure 15. Measured k(f, T) for sample TC04-12-04 (Figure 15b) agrees reasonably well with that
calculated from the models of Figure 14 (Figure 15a). Gray scale indicates frequency as in Figure 13.
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tional advantage of providing an overdetermined (or
mixed determined) set of equations for determining f(V,
HK0) and thus it allows evaluation of internal self-
consistency of the model and data through goodness-of-fit
statistics. In Dunlop’s [1965] original method each DM
measurement uniquely determines f(V, HK0) for one small
area of the plot (since the pTRMs involve nonoverlapping
bands on the Néel plot, and these are chopped into
nonoverlapping quadrilaterals by AF demagnetization).
In effect the model parameter space is discretized by
quadrilateral tiling rather than by rectilinear gridding. The
matrix a in equation (13) is in this case a square identity
matrix, and each predicted DM depends on the value of f
for only one cell.
[61] In our approach the integration areas are strongly

overlapping (Figure 10), and each predicted DM depends
on a linear combination of f values for numerous cells.
The generally good fits we have obtained for the samples
in this study (normalized RMS misfits generally less than

10%) would not be possible unless the assumptions were
reasonably fulfilled. We have deliberately focused on
samples known to contain dominantly SP/SSD grains,
with compositions other than pure magnetite. For pure
magnetite, the microcoercivity changes abruptly at the
Verwey transition (TV � 120 K), and even for elongate
SD grains the assumption of dominant shape anisotropy is
not valid below TV because of the strong magnetocrystal-
line anisotropy of the monoclinic phase [e.g., Carter-
Stiglitz et al., 2002]. Slight titanium substitution in the
Tiva Canyon samples, and oxidation in the paleosol and
ferrofluid, suppress the transition and allow us to use the
entire 10–300 K temperature range. For MD grains there is
no reason to expect the behavior to obey equations (4)–(8),
and although we have not yet run the experiment on
such a sample, we expect that the proportional misfit
would be much higher than 10%. Single-domain grains
larger than a threshold size near 50–70 nm are likely to
reverse incoherently [Newell and Merrill, 1999], and may

Figure 16. Low-T behavior of a composite sample containing a mixture of two stratigraphic levels in
the Tiva Canyon Tuff: Remanent magnetization as a function of (a) applied DC backfield and
(b) derivative curves, for temperatures from 10 K to 300 K (DT = 10), measured in steps of 5 mT.
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also produce artifacts and/or large fitting errors in the
reconstructed grain distributions.
[62] Even in the ideal case, however, where particles

behave precisely according to theory, there remain resolu-
tion limitations in the inversion due to the restricted
orientation distribution of integration paths. Some regions
of the parameter space are entirely unconstrained by data
(Figure 10) in our temperature range (�10 K) and are
therefore completely unresolvable. Areas of marginal reso-
lution are sparsely sampled by subparallel contours, such as
the small-V high-HK0 region that is stable only at the lowest
temperature (Figure 10). Here we cannot resolve variations
in f(V, HK0) along the nonintersecting contours, exactly
equivalent to the nonuniqueness in inverting low-field
k(f, T) data [Shcherbakov and Fabian, 2005], which repre-
sent integrals along nonintersecting hyperbolas. Reasonable
resolution can only be expected in the densely sampled
region of Figure 10.
[63] All of our models appear to show that V and HK0

are distributed not independently but in a covariant way,

so that the contours are elongated, more or less along
the direction of hyperbolas of constant product VHK0.
Such distributions were also obtained by Dunlop [1965]
[see also Dunlop and Özdemir, 1997, sections 8.12 and
17.2.3], for synthetic materials and for lunar samples, so
they cannot be entirely dismissed as artifacts specific to
our tomographic inversion method. Nevertheless it seems
probable that these elongate distributions are artifacts of
both inversion methods, through their shared dependence
on a physical model and set of assumptions. In partic-
ular it appears that the grain orientation distribution,
which is treated incompletely in both our calculations
and those of Dunlop [1965], may be responsible for
most of the observed ‘‘smearing.’’ As Figure 2 clearly
shows, our simplified forward calculations underestimate
the width of the coercivity distribution. In the limit of
identical particles at zero Kelvin, our model predicts a
delta function switching distribution (all grains switching
at Happ = 0.524Hk0), whereas a more exact forward
calculation would yield a distribution of switching fields

Figure 17. (a) HCR(T) for the composite sample, determined from the data of Figure 16a, is strongly
nonlinear. (b) Thermal fluctuation analysis for the mixture using equation (10) yields erroneously large
volumes and low coercivities: 1.03 	 10�23 m3 and 121.89 mT.
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with 0.5Hk0 � HSW � Hk0. In order to match the
broader observed backfield spectra, the inversion is
forced to broaden the distribution of microcoercivities,
and to introduce a spurious compensating variation in
grain volumes. We are currently working on a more
accurate forward computation algorithm that is still
efficient enough to run iteratively (i.e., one that solves
the forward problem by matrix multiplication as in
equation (13)).
[64] Linear thermal fluctuation analysis (equations (9)

and (10)) is a much faster, simpler way to process the
data, but it is also much less effective. Since it uses only
one scalar quantity (HCR) derived from the backfield
curve for each temperature, the vast majority of the
information is discarded, and at best we obtain an
estimate of the mean or mode of the distribution. In
our calculations for these samples, the results tend to

overestimate volumes and to underestimate microcoerciv-
ities. Nevertheless they provide reasonable approxima-
tions, as long as the distributions are not too broad or
polymodal.
[65] The differences between calculated and observed

susceptibility behavior are systematically related to the
degree of interparticle interaction in the different sample
sets. The Tiva Canyon samples show a slight but signif-
icant mismatch, with observed susceptibility peaks occur-
ring at slightly higher temperatures than those predicted
for the f(V, HK0) models. Worm and Jackson [1999]
showed that according to the strong field remanence tests
of Henkel [1964] and Cisowski [1981], these samples
contain almost perfectly noninteracting SD populations.
Weak field properties such as k and ARM are more
sensitive to interaction fields, and evidence of weak but
nonzero mean fields in the Tiva Canyon samples has been

Figure 18. (a) Calculated grain distribution for the mixture of two Tiva Canyon Tuff samples with
different mean grain sizes and aspect ratios (contour interval = fmax/10). (b) Calculated back-field spectra.
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Figure 19. (a) A model with a Gaussian distribution of Hk0 and log-Gaussian distribution of volumes
(Vmean = 1.2 	 10�24 m3, SD = 0.2 log units, m0HK0mean = 200 mT SD = 50 mT) yields (c) the predicted
susceptibility behavior. (b) A similar model with twice the mean volume (2.4 	 10�24) and half the
coercivity (100 mT) and the same proportional variances yields exactly the same predicted susceptibility
behavior. (d and e) In contrast, the predicted backfield remanence spectra are quite different.
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found by Shcherbakov and Fabian [2005] and by Egli and
Lowrie [2002]. The disparity between calculated and
observed susceptibility characteristics is larger for the
paleosol sample, and largest for the ferrofluid, where
interactions may be expected to be quite strong.
[66] Dunlop’s [1965] method for determining f(V, HK0)

has not been widely applied, primarily because of the
rarity of natural samples dominated by SSD ferrimagnets.
Because of the broader SSD range for harder minerals
like hematite and pyrrhotite the technique may be quite
usefully adapted by taking HK(T) / [MS(T)]

n, where n
depends on the dominant anisotropy [e.g., Dunlop et al.,
2000]. Moreover, due to the importance of nanophase
ferrimagnets in environmental magnetism, it is of interest
to characterize the complete SD (SSD and SP) popula-
tion, and our extension of Dunlop’s [1965] method allows
this.
[67] A drawback of our method is the time and expense

involved in data collection. To measure 60 back-field
remanence steps for each of 30 temperatures takes 4–6
hours and expends �20 L of liquid helium, using our
instrument. We are currently working on adapting our
approach to use hysteresis measurements, which require a
small fraction of the time. The vertical separation of
ascending and descending branches as a function of applied
field, called the ‘‘delta-M’’ curve by Tauxe et al. [1996],
provides an estimate of the switching field distribution
[Jackson et al., 1990].

6. Conclusions

[68] Thermomagnetic granulometry methods based on
weak field or zero-field properties (e.g., k(f, T) [Shcherbakov
and Fabian, 2005] and thermal demagnetization spectra
[Worm et al., 1988; Worm and Jackson, 1999]) require
assumptions about f(Hk0) in order to estimate f(V). Dunlop’s

[1965] approach for determining the joint distribution
f(V, Hk0) for SSD ensembles, taking advantage of the joint
temperature and field dependence of relaxation time, is
elegant but not directly adaptable to the study of ultrafine
particles that are SP at room temperature. We have devel-
oped and tested a new procedure that follows Dunlop’s
general strategy to obtain f(V, Hk0) for ensembles containing
both SP and SSD grains.
[69] Our iterative algebraic technique uses tomographic

reconstruction methods to calculate f(V, Hk0) from back-
field remanence curves measured over a range of
temperatures. Previous work has shown that samples
from the base of the Tiva Canyon Tuff have narrow
size distributions of elongate Ti-poor titanomagnetite
[Schlinger et al., 1988, 1991]. Tomographic inversion
of the low-temperature backfield spectra yield sharply
peaked distributions, from which we calculate modal
grain dimensions in excellent agreement with those
observed in previous studies. Calculated k(f, T) based
on the reconstructed f(V, Hk0) distributions generally
reproduce the observed behavior with good accuracy;
slight differences are attributed to weak magnetostatic
interactions that affect k(f, T) more significantly than the
backfield remanence curves. Inversion of ferrofluid back-
field data also yields a f(V, Hk0) distribution in good
agreement with independent characterization. The dis-
agreement between modeled and measured k(f, T) for
the ferrofluid is much more substantial, due to the
strong interactions.
[70] The central tendency (mean and/or mode) of the

f(V, Hk0) distribution is accurately recovered by the
inversion, but finer details have to be interpreted judi-
ciously because of smearing and other artifacts that may
be present due to (1) imperfect ‘‘ray path’’ coverage,
(2) incomplete account of the grain orientation distribution,

Figure 20. Reconstructed grain distribution for the data set of Figure 19d, using the distribution of
Figure 19b as a starting model (contour interval of fmax/10).
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Figure 21. (a) Reconstructed grain distribution (contour interval of fmax/10) and (b) best fit back-field
spectra for the paleosol sample. The RMS misfit is <5%. Note that the V scale in Figure 21a is different
than in the other Néel plots in this paper.
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Figure 22. (a) Calculated and (b) measured susceptibilities (in-phase and quadrature) for the paleosol.
Frequencies are indicated by gray scale as in Figure 13.
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Figure 23. (a) Reconstructed grain distribution (contour interval of fmax/10) and (b) best fit backfield
spectra for the ferrofluid sample. RMS misfit is 9.3%. The distribution mode is at V = 1.58 	 10�24,
m0HK0 = 70 mT, corresponding to a grain length of 14.2 nm, and aspect ratio of w/L = 0.74.
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Figure 24. (b) Measured k(f, T) for the ferrofluid sample which agrees poorly with that (a) calculated
from the model of Figure 23a.
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and (3) possible deviations from numerous model
assumptions.
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