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Thermoremanent magnetization of multidomain hematite
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[i] We have studied thermoremanent magnetization (TRM) produced by fields of 10-
140 u.T in the (0001) basal plane of a 10 x 6 x 2 mm natural single crystal of hematite,
both before and after zero-field cycling through the Morin transition at TM = 260 K.
Stepwise thermal demagnetization of TRM indicated high-unblocking temperatures
between 680°C and the Curie-Neel temperature TN = 690°C. In contrast, TRM was easily
demagnetized by alternating fields, TRM intensity decreasing exponentially with
increasing field in typical multidomain fashion. The observed WTRM is 1.1 kA/m.
This strong TRM, almost equal to the saturation remanence, results from hematite's weak
internal demagnetizing field. Domain walls move almost unhindered to their limiting
positions, and TRM intensity approaches saturation. On cooling through TM, spins rotate
to the antiferromagnetic c axis, and hematite's weak ferromagnetism is largely lost.
However, on reheating in zero field through TM, as the spins rotate back into the basal
plane, a "memory" remanence is regenerated in the original TRM direction. This
TRM memory was about 25% of MTRM for our crystal and was even more resistant to
thermal demagnetization than the original TRM. The 25% memory of TRM is similar to
that of 0.12- to single-domain hematites. High-unblocking-temperature TRM
and TRM memory must be due to magnetoelastic pinning of spins in the basal plane by
lattice defects, because both TRM and memory decrease with high-temperature treatment,
which anneals out defects. The memory phenomenon seems to be in essence an
amplification of residual magnetism that survives below the Morin transition. Remanence
produced in a demagnetized sample below TM and room temperature remanence that
has been cooled through TM increase in identical ways on warming through the
transition. We propose that small regions of canted spins, pinned by crystal defects, remain
below TM when the bulk of spins have aligned with the antiferromagnetic c axis.
These nuclei serve to regenerate room temperature domain structure and remanence in
warming through TM.
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1. Introduction

[2] Hematite (a-Fe2O3) is a common oxide mineral on
Earth and Mars. It is antiferromagnetic (AF), the spin
sublattices lying along the rhombohedral c axis at temper-
atures below the Morin transition (TM = 260 K) and in the
(0001) c plane above TM. The basal plane of hematite's thin
platy crystals is (0001).

[3] Hematite is of paleomagnetic interest because above
TM its antiferromagnetism is not perfect. Spins lie in the
basal plane but are canted out of exact antiparallelism by a
very small angle (~0.13°), creating a weak ferromagnetism
(WF) in the basal plane perpendicular to the spin sublattices.
The WF moment amounts to ~2 kA/m, ~0.2% of either
sublattice magnetization. Triaxial magnetocrystalline anisot-
ropy within the basal plane is usually overshadowed by
uniaxial or triaxial anisotropy of magnetoelastic origin. This
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anisotropy governs WF remanence directions within the
basal plane. A much stronger anisotropy binds the AF
sublattices parallel or perpendicular to the c axis. Neel
and Pauthenet [1952] measured an almost temperature-
independent AF susceptibility of ~ 1.2 x 10-3 SI above'
and below TM, implying that a field of ~100 T would be
required to pull antiparallel spins away from their preferred
axis into ultimate alignment. Before this can happen, the
spin lattices will rotate 90°, but this "spin flopping" itself
requires a field of 16.2 T at temperatures well removed from
TM [Foner and Shapiro., 1969; Shapira, 1969].

[4] Although hematite is, in principle, perfectly AF below
TM [Dzyaloshinsky, 1958], it has been known since the time
of Neel and Pauthenet [1952] that some remanence survives
below TM when hematite crystals are cooled through the
WF —> AF transition. In the present paper we will show that
it is not necessary to magnetize the WF phase above TM and
to cool it through the transition: A field applied to a
demagnetized sample at low temperature produces a rema-
nence directly. In either case, wanning the sample through
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domains and a memory of the original room temperature
remanence with a reduced intensity (37%) but unchanged
direction. Memory is reduced by annealing and must be
related to internal stresses.

[41] We propose that the mechanism of memory is spins
pinned magnetoelastically by lattice defects such as dislo-
cations. These spins rotate only partially out of the basal
plane during cooling through TM. Some basal plane anisot-
ropy, also magnetoelastic in origin, must remain below TM
in order to guide the spin nuclei into the preferred orienta-
tions that they originally had above TM on rewarming
through the transition.

[42] This mechanism works equally well for remanence
produced below TM, both in principle and in practice. The
experimental ratio between room temperature remanence
and the low-temperature "defect" remanence that nucleated
it is 20-25 for our crystal, whether the original remanence
was produced above or below TM.
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