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The rock magnetic properties of the Chinese loess and paleosols
constitute a unique and sensitive record of East Asian paleodi-
mate through the Quaternary Period. Systematic variations in the
concentration and grain size of the magnetic minerals in these
sediments have produced systematic variations in the magnetic
susceptibility signal, which can be easily and rapidly measured at
many sites across the Loess Plateau. Variations in many other
rock magnetic properties can be used to identify the key shifts in
ferrimagnetic grain size, but magnetic susceptibility alone is suf-
ficiently sensitive to record stadial and interstadial climate stages,
as well as glaciations and interglaciations. Past changes in rainfall
and monsoon activity for this region are reconstructed from the
susceptibility variations. The susceptibility record is calibrated
using the modern relationship between rainfall and pedogenic
susceptibility on the Loess Plateau. Our rainfall reconstructions
identify enhanced summer monsoonal activity in the Chinese
Loess Plateau region in the early Holocene and the last intergla-
ciation. In the presently semiarid western area of the plateau,
annual precipitation in interglacial times was up to 80% higher
than at present; in the more humid southern and eastern areas,
values were up to 20% higher than today's levels. During the last
glaciation, precipitation decreased across the entire plateau, typ-
ically by -25%. The relationship between pedogenic susceptibil-
ity, climate, and weathering age was examined over the Northern
Hemisphere temperate zone and the observed positive correlation
between rainfall and susceptibility indicates that climate, rather
than soil age, is the predominant factor that controls pedogenic
Susceptibility enhancement in loeSS Soils. ©1995 University of Washington.

INTRODUCTION

Variations in the magnetic susceptibility records of the Chi-
nese loess and paleosols have been interpreted as proxy indi-
cators of Quaternary climate change. These variations in sus-
ceptibility, which reflect changes in the concentration and
magnetic grain size of the iron oxides in these sediments, have
been used to make qualitative assessment of climate change in
this region. Higher susceptibility values, associated with the
paleosol horizons, are interpreted as indicating warmer and

more humid phases; lower values from the less-weathered
loess layers represent cooler and drier phases (e.g., Heller and
Liu, 1986). More recently, we have made quantitative recon-
struction of paleoprecipitation patterns across the Loess Pla-
teau, for the last glacial/interglacial cycle, based on a cli-
mofunction calculated from the relationship between the in situ
pedogenic susceptibility of some modern Chinese soils and
present climate (Maher et al., 1994). This calculated cli-
mofunction calibrates susceptibility against rainfall and hence
enables paleorainfall reconstructions to be made from the pa-
leosusceptibility variations. Here, we extend our paleoclimatic
reconstructions to the last 1.1 myr at a central Loess Plateau
site (Xifeng) and examine the spatial pattern of monsoonal
rainfall for time slices through the last glacial/interglacial cy-
cle.

A key step in using any soil property for quantitative recon-
struction of paleoclimate is to establish its behavior with time.
Some soil properties develop in a linear fashion and hence are
mainly dependent on weathering duration; some evolve rapidly
toward a near-steady-state equilibrium, and hence reflect am-
bient soil-forming conditions. Some properties may develop at
a low initial rate and then an increasing rate with time. In the
case of a soil property displaying a linear rate of development,
that property has potential as a long-term (>104 yr) chronom-
eter (e.g., Pavich et al., 1986). Alternatively, where a soil prop-
erty rapidly changes and reaches "saturation," within hun-
dreds to a few thousand years (e.g., rapid changes in surface
pH), it could be used only as a short-term chronometer or as a
rapidly responding indicator of the soil-forming climate. Fur-
thermore, if such a rapidly evolving soil property reaches near-
steady state in a soil profile which is subsequently buried to
form a paleosol, a record of the past environment will be en-
capsulated and preserved as a natural archive.

In order to use the specific soil property, pedogenic suscep-
tibility, as a paleoclimate recorder for the Chinese loess and
paleosols, it is essential to establish that it is a property reach-
ing near-steady state within a few thousand years, and hence
one providing a "snapshot" of soil-forming conditions for
every paleosol that has had this minimum exposure time to
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to be ' 'under-enhanced'' for the rainfall they receive. Hence,
assuming these soils have not been eroded and that the time
controls ascribed are accurate, the duration of weathering ap-
pears to have been insufficient for the prerequisite of our hy-
pothesis, namely that near-steady state values of pedogenic
susceptibility have been achieved. As indicated by the list of
exclusions above, magnetic enhancement can be retarded un-
der unfavorable soil-forming conditions, such as a poorly buff-
ered soil environment.

The validity of our susceptibility/rainfall hypothesis can be
tested by further magnetic studies of both modern-day soils and
well-dated soil chronosequences. Given the unique and de-
tailed record of paleoclimate preserved by the Chinese loess
sequences, and the scarcity of records of paleoprecipitation,
testing and validation or refutation of this hypothesis is an
important step in quantitative reconstruction of paleoclimate
from these proxy records.
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