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Abstract. A model of soil variability as a continuous background process with superimposed point contami-
nation was applied to 569 measurements of metal concentrations (Cr, Ni and Pb) in the topsoils of Sheffield,
England. Robust estimators of the variogram were shown to be required to describe spatial variation of the
metal concentrations at most sampled locations. This is diagnostic of the presence of a contaminant process.
Values of the standardized kriging error from the cross-validation of each datum were used to identify spatial
outliers for each metal. The ordinary kriged estimates of Cr, Ni and Pb were mapped after removing the out-
liers to estimate the background variation. Each of the 35 spatial outliers that occured in gardens have con-
centrations exceeding their Soil Guideline Value for residential land use with plant uptake, highlighting a
potentially significant exposure pathway. The frequent observation of coal and furnace waste at these sites
suggests that their dispersal, following domestic use and industrial processes, respectively, represents a signifi-
cant point contaminant process. There was no evidence for spatial clustering of the point process. However,
the spatial outliers of Cr and Ni showed a significant association with disturbed sites identified from historical
land use maps, in part due to their prevalence in areas of historical steel manufacture. The magnitude of dif-
fuse pollution for each metal in the urban soil was estimated by removing the spatial outliers and comparing
robust measures of location with those from a survey of soils developed over the same parent materials in
adjacent rural and peri-urban environments. The Winsorized mean Pb concentrations in urban topsoil
(203 mg kg21) were twice the value in the rural environment (101 mg kg21), highlighting a very substantial
diffuse Pb load to urban soils. The equivalent estimated diffuse components in urban soils for Cr and Ni
were, respectively, 25% and 14% higher than the rural soils.
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INTRODUCTION

There is increasing interest in the quality and manage-
ment of urban soils, including the implications of elev-

ated concentrations of metals. Geochemical surveys have
been undertaken in cities throughout the world (Lux 1993;
Birke & Rauch 2000), and in the UK by the British Geo-
logical Survey (Rawlins 2002). The management of
contamination in urban soils requires estimates of concen-
trations at unsampled points or over blocks of land, which
can be done by geostatistics where sampling and analytical
methods are consistent and there is a sufficient number of
samples.

Data on metal concentrations in urban soil typically show
very complex variation. In particular, there are spatially con-
tinuous variations arising from parent material and the
effects of diffuse pollution. Superimposed on this is point
contamination at hotspots. Sites influenced by point con-

tamination are likely to be spatial outliers in data on metal
concentration. By spatial outliers we mean observations
where the concentration of a metal in the soil is unusually
large (or small) in its spatial context (Laslett & McBratney
1990). Such variability may cause problems for conventional
geostatistical analysis using Matheron’s estimator of the var-
iogram (Matheron 1965). For this reason we considered
some robust methods proposed by Lark (2002). The objec-
tive was to model the continuous spatial variation of a vari-
able as a realization of a random function, and to estimate
the variogram of this random function from the data using a
robust estimator. We then identified which observations in
the data were not consistent with this modelled random
function, and investigated the possibility that they rep-
resented some quasi-point process of contamination.

Such an approach to the analysis might have advantages.
First, the identification of spatial outliers in the data may
give insight into sources and processes of pollution. Once
identified, further interpretation of the source of the con-
tamination can be aided by assessment of the soil samples
and historical map data. This would include the visual
appearance of the soil (such as the presence of any unusual
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particles or material), and historical map data (including
information on land use) that show the history and devel-
opment of the area. This may provide information on the
point processes that have influenced soil chemistry. Second,
if we can identify data most likely to represent point pol-
lution, then the best approach to spatial estimation of the
variable in question is to estimate the continuous back-
ground variability separately (either from an edited data set
(Lark 2002) or by robust kriging (Hawkins & Cressie
1984). Where an estimate of the natural geochemical com-
position of the soil is available from soil surveys in rural
and peri-urban areas over the same parent material types
(e.g. Rawlins et al. 2002), it may be possible to estimate the
magnitude of the diffuse contribution to the urban soil
after removal of outliers.

We suggest that our approach has advantages over sim-
pler data editing, as might be used in non-spatial statistics,
that would only identify outliers which appear unusual
relative to the overall distribution of the data, so-called
marginal outliers. First, a contaminant observation from a
process other than the continuous background variation is
likely to appear unusual in its spatial context but might not
be a marginal outlier. By contrast a large value that genu-
inely reflects the continuous variation (e.g. as a result of
diffuse pollution) is likely to be surrounded by other large
values, and so will not appear to be a spatial outlier. We
wished to identify the spatial outlier in the first instance,
and not the marginal outlier. The second advantage of our
approach is that it proposes a model of the data as a con-
taminant process, and a method based on robust statistics
to decide whether or not this model holds. We therefore
evaluated evidence that spatial outliers were present using
all the data, and only proceeded to edit the data when this
evidence supported it. This avoided the risk, attendant on
all simple data editing methods, that we biased our infer-
ences from data as a result of excessive trimming of unu-
sual values (Omre 1984; Genton 1998a).

In this paper we used robust geostatistics to identify con-
taminant hotspots (spatial outliers) for three metals (Pb, Cr
and Ni) from a soil survey of Sheffield (England) – a city
with a long history of metal manufacturing and processing.
We mapped these metals by kriging, after removing the
outliers. We investigated the outliers to highlight significant
historical factors contributing to point pollution, looking
particularly at whether the spatial outliers were more clo-
sely associated with historical disturbance than the other
sample sites. Finally, we used data from a previous study to
estimate the typical contribution from diffuse pollution to
soils in the urban area of Sheffield.

METHODS

Study region
Soils in the city of Sheffield have developed predominantly
over the Carboniferous Lower and Middle Coal Measures
Formations, although part of the west of the city is over
the older Millstone Grit Formation (see Figure 1). The
Lower and Middle Coal Measures in this region consist of
cyclothems, including mudstones, shales and inter-bedded
sandstones. Soils derived from the Coal Measures in this

region were shown to have naturally elevated concentrations
of several trace elements including Pb, Cr and Ni in com-
parison to their average contents throughout England and
Wales (Rawlins et al. 2002). There are no extensive Qua-
ternary deposits, ensuring that all soils were derived from
these two parent material types.

A resumé of industrial activity throughout the city of Shef-
field has been provided by Gilbertson et al. (1997). The most
notable features in the context of the present study are sum-
marized here. Coal has been mined and burnt for space heat-
ing and industrial purposes in Sheffield since Roman times.
The dispersal of trace elements associated with historic coal
use was cited as a source for further enhancement of topsoil
metal concentrations in urban areas (Rawlins et al. 2002).
The metal working industries of Sheffield have been located
in the valleys of the rivers Don, Sheaf and Porter for much of
the last century (see Figure 1). In the middle of the 18th cen-
tury more than 150 firms were dedicated to steel manufacture
within the city and high-quality cutlery has been manufac-
tured since that time. In the 1960s, British Steel opened a
large works at Tinsley (Figure 1) to produce special steels.
The dispersal of slag from locally produced stainless steel
(ferrochrome) may have led to elevated concentrations of Ni
and Cr in Sheffield soils. For example, recent studies have
reported that slag from Swedish stainless steel production
(ferrochrome) contains 2.7% Cr and 542 mg kg21 Ni (Lind
et al. 2001), while Proctor et al. (2002) reported total Cr con-
tents in American slags between 132 and 3390 mg kg21.

Historically, Pb was used for the manufacture of special
alloys, and more recently as an additive (alkyl-lead) in pet-
rol. Although this practice ceased in the UK in 2000, the
high density of the road network and the associated heavy
traffic typical of cities in industrialized nations was evident
throughout Sheffield since the 1970s. The city has a long-
history of coal-mining, metal manufacturing and processing
industries, resulting in both point and diffuse pollution of a
range of metals, including Cr, Pb and Ni.

Soil survey
A total of 569 soil samples were collected from individual
sites across the city at a density of four samples per square
kilometre in June and July 1996 (Figure 1). Sample sites were
selected from open ground as close as possible to the centre
of each of four 500-metre squares, within each kilometre
square of the British National Grid (BNG). Typical locations
for sampling were gardens, parks, sports fields, road verges,
allotments, open spaces, schoolyards and waste ground. Each
sample was based on three samples of equal size from the cor-
ners of a triangle of side-length 2 m. Each bulked sample was
collected at a depth range of 0–15 cm from the soil surface
using an auger of diameter 35 mm. At each site, information
was recorded on location using 1:10 000 scale Ordnance Sur-
vey maps, a description of any visible contamination (e.g.
metallic, pottery, bricks, plastics etc.), Munsell colour, soil
clast lithologies (e.g. sandstone, limestone, etc.), and land use.
All soil samples were disaggregated following air-drying and
sieved to less than 2 mm. All samples were coned and quar-
tered, and a 50-g subsample ground in an agate planetary ball
mill. The total concentration of 23 major and trace elements
(including Cr, Ni and Pb at detection limits 1 mg kg21) were
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determined in each sample by wavelength and energy disper-
sive X-ray fluorescence (XRF).

Geochemical data are also available from topsoil surveys in
rural and peri-urban areas for soils derived from the same
parent materials that occur in the urban environment of Shef-
field. Sampling in the rural survey was undertaken during the
summer months of 1994, 1995 and 1996 – at around the
same time of the urban survey (1996). The only difference
between the sampling and analytical protocols was the scale of
the sampling support and the number of incremental samples;
the rural survey was based on five auger holes at the corners
and centre of a square of side-length 20 m.

Geostatistical analysis for the identification of spatial outliers
We assumed that our data, z, was a realization of a hybrid
random variable Z with normal background (b) and contami-
nant (c) processes (means and standard deviations mb, sb and
mc, sc, respectively) superimposed. Observations drawn
from a contaminant process occur with intensity pi, so:

Z ~ ½piNðmc;scÞ; {1 2 pi}Nðmb;sbÞ� ð1Þ

We tested the plausibility of this model by robust estimation
of the variogram (to characterize the background process),

a comparison of robust and non-robust variogram estimators
to decide whether a contaminant process seemed to exist,
then the application of a robust variogram to identify those
data that seemed inconsistent with the background. Here we
summarize the steps in the geostatistical analysis of the soil
metal data.

Exploratory analysis
We plotted empirical cumulative distribution functions (cdfs)
with the equivalent normal cdf based on robustly estimated
parameters of location (median) and scale (median absolute
deviation) for each element. We also calculated the skew and
octile skew (Brys et al. 2003). The octile skew is a measure of
the assymetry of the first and seventh octiles of the data about
the median, and so it is insensitive to extreme values.

We usually transform data if their conventional coefficient
of skew is outside [21, 1]. We wish to identify a corre-
sponding interval for the octile skew to use as a rule of
thumb to decide when a transformation is necessary. We
considered Tukey’s g distributions, which is a family of
statistical distributions whose skewness depends on a
continuous parameter, g, such that the variable may have
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Figure 1. Location of Sheffield and soil survey sampling locations by parent material type. Cross hairs show the vertices of the 2 km grid.
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a negative skew (g , 0), no skew (g ¼ 0) or a positive skew
(g . 0) (see Hoaglin et al. 1985). We found that a variable
with a distribution from Tukey’s g-family with the conven-
tional coefficient of skew in the range [21, 1] has an octile
skew in the range [20.2, 0.2]. We therefore propose that
data are transformed if the octile skew is larger than 0.2 or
smaller than 20.2. The octile skews of Cr, Ni and Pb were
0.45, 0.24 and 0.49, respectively, so we transformed each
variable by calculating their natural logarithms. Summary
statistics are presented in Table 1. The transformed data and
their robustly estimated normal cdfs are shown in Figure 2.

Geostatistical characterization of the background variation
After checking that there was no significant anisotropy in
the spatial data, we estimated isotropic variograms for each
variable based on the natural log transformed data using
Matheron’s estimator (Matheron 1965) and three robust
estimators due to Cressie & Hawkins (1980), Dowd (1984)
and Genton (1998a). We then fitted a variogram model by
weighted-least squares with the MVARIOGRAM procedure in
GENSTAT (Payne 2002). The model parameters are shown
in Table 2 and the variograms in Figure 3. Note that the
estimates of the variogram obtained with Matheron’s esti-
mator are generally larger than those obtained with the
robust estimators. This is consistent with the contaminated
normal model of equation (1), because Matheron’s estima-
tor is not resistant to spatial outliers (Lark 2000). However,
a proper validation of a robust variogram against a vario-
gram based on Matheron’s estimator is required, because
Matheron’s estimator is more statistically efficient than the
robust alternatives, and the robust estimators may be biased
if the background process is not bivariate-normal.

Lark’s (2000, 2002) procedure to validate alternative var-
iogram models is based on cross-validation. Each of our
observations, z(xi), was excluded from the data in turn,
and estimated by ordinary kriging from the remaining
observations with the specified variogram model that we
wished to test. This returned an estimate, ẐðxiÞ, and the
error variance of this prediction, the ordinary kriging var-
iance s 2

OKðxiÞ. This latter term is particularly sensitive to
the specified variogram model. If the variogram is correct,
then we expected the statistic uðxiÞ to take the value 1.0.

uðxiÞ ¼
{zðxiÞ2 ẐðxiÞ}

2

s2
OKðxiÞ

ð2Þ

However, the mean value of this statistic over our data is a
poor diagnostic because the numerator in equation (2) is
itself not robust to outliers. For this reason Lark (2000)
proposed that the median over the data, ~u, be used instead.
This has an expected value of 0.455 when the variogram is
correct. Lark (2002) presented a method for bootstrapping
a confidence interval for an estimate of ~u. If the confidence
interval includes 0.455 for a variogram model based on
Matheron’s estimator, then this should be used and we do
not have evidence for the presence of a contaminant
process. If, on the other hand, ~u for the variogram based
on Matheron’s estimator is significantly smaller than 0.455,
then this is evidence for the presence of a contaminant
process, and a robust estimator of the variogram can be
used. An appropriate robust estimator could be selected by
the same cross-validation process. Provided that the inten-
sity of the contaminating process, pi in equation (1), is
smaller than the spatial breakdown point (Genton 1998b)

Table 1. Summary statistics for total and loge concentrations (mg kg21) of
metals in the soil (n ¼ 569).

Cr loge Cr Ni loge Ni Pb loge Pb

Mean 136 4.72 40 3.49 244 5.17
Median 101 4.62 32 3.47 164 5.1
MADa 31 0.31 12 0.43 98 0.61
SDb 140 0.52 39 0.54 298 0.75
Min 36 3.58 8 2.08 19 2.94
Max 1359 7.22 473 6.16 4300 8.37
Skew 5.2 1.86 6.5 1.04 7.2 0.36
Octile skew 0.45 0.26 0.24 20.01 0.50 0.13

aMedian absolute deviation; bstandard deviation.
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Figure 2. Log transformed cumulative frequency plots of concentrations
(symbols) and Gaussian cumulative density functions (solid trace) based
on robustly estimated parameters for Cr (a), Ni (b) and Pb (c).
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of the robust variogram estimators (which is about 0.3 for
the Dowd and Genton estimators), then these estimate the
variogram of the background process.

Results for the cross-validation are presented in Table 3.
In each case, the value of ~u for variogram models based on
Matheron’s estimator were significantly smaller than 0.455,
as judged by bootstrap estimates of the confidence interval
based on the variogram for which ~u was closest to 0.455.
The best variogram models for each of the three metals,
judged by the closeness of ~u to 0.455, were based on robust
estimators, namely Cr (Cressie-Hawkins), Ni (Genton) and
Pb (Dowd). This is evidence for the presence of a continu-
ous background variation in the concentrations of these
metals contaminated by a distinct spatial process.

Identification of spatial outliers
We wished to identify those observations most likely to rep-
resent the contaminant process, so we computed the nor-
malized deviation or standardized kriging error (SKE),

SKE ¼
zðxiÞ2 ẐðxiÞ

sOKðxiÞ
ð3Þ

A datum was classified as a spatial outlier (large) if its stan-
dardized kriging error was less than 21.96, that is, if it fell
below the lower 95% confidence interval for a standard
normal variate. This approach is similar to the Absolute
Normalized Deviation that Bárdossy & Kundzewicz (1990)
proposed as a diagnostic for outliers. Our procedure differs
firstly in the inferential approach (above) which indicates
that outliers are present in the data, and secondly, we are
specifically interested in large outliers arising from con-
tamination, so we wish to retain the sign of the deviation.

Spatial analysis of the outliers
Having identified spatial outliers in the data, we investigate
whether their distribution in space appears to be an inde-
pendent random process – complete spatial randomness
(csr) (Cressie 1993) or show spatial dependence, such as
clustering, at some scale. We treat the distribution of outliers
as a quasi-point process (Lark 2002); that is to say, we recog-
nize that the extent of any local contamination is finite, but
patches are small enough so that any given patch would only
be represented at one sample site under our scheme. There
are many statistics for investigating spatial-point processes
(Cressie 1993) but these are usually for analysing events that

are exhaustively mapped on continuous coordinates over a
region. By contrast, we observe spatial outliers only at a sub-
set of our predetermined sample sites: we are investigating a
sampled quasi-point process.

We analysed the spatial outliers as a sampled point pro-
cess following Lark (2002) and computed the mean distance
between each observed spatial outlier and its nearest neigh-
bouring sample site, also identified as a spatial outlier, �v.
We computed the sample distribution of �v under a null
hypothesis of csr, conditional on the positions of all the
sample points and the overall proportion at which a spatial
outlier was observed. This was done by Monte Carlo simu-
lation, generating 10 000 realizations of the csr process and
estimating �v for each. The quantiles of the 10 000 values of
�v gave us estimates of points of the sample distribution of

the statistic under the null hypothesis. We did this for each
metal.

Identification of historical sources of contamination
The positions of the sample sites were superimposed over a
series of digitized historical Ordnance Survey maps for
Sheffield dating from 1855, 1906, 1924, 1948 and 2004.
Each site was investigated to see whether it had had some
historical disturbance that could result in locally elevated
concentrations of metal in the soil, such as the presence of
works (e.g. steel, railway, forge, industrial units, depots),
quarries, railway embankments and roads.

We proceeded to test null hypotheses that the occurrence
of spatial outliers for a metal and the occurrence of an his-
torical disturbance are mutually independent events (so
spatial outliers are no more likely on a disturbed site than
an undisturbed one). We undertook this analysis by calcu-
lating contingency tables. The columns of these tables cor-
responded to the presence or absence of spatial outliers for
a metal. The rows corresponded to the presence or
the absence of an historical disturbance. We assumed that
the observations for each category are independent (given
the results of the spatial point process analyses) and so we
tested the null hypothesis for each table by computing

X {O2 E}2

E
ð4Þ

over the four cells of the table, where O and E are the
observed and expected counts respectively. The resulting
statistic was tested against x 2 with one degree of freedom.
Given the large values of O and E in all cells, a Yates cor-
rection was not applied.

Table 2. Parameters of the variogram models (shown in Figure 3) for the variogram estimators.a

Cr Ni Pb

Ma CH Do Ge Ma CH Do Ge Ma CH Do Ge

Model Sph Sph Sph Sph Sph Sph Sph Sph Exp Exp Exp Exp
c0

b 0.0338 0.0206 0.0156 0.0175 0.0313 0.019 0.0131 0.0166 0.0839 0.0706 0.0638 0.0213
c1

c 0.0271 0.0161 0.0119 0.0151 0.0284 0.028 0.0273 0.0269 0.0507 0.0459 0.0464 0.0117
a d 6923 5883 5436 6139 6256 5454 5035 6153 7691 3885 3265 4105

Ma ¼ Matheron (Matheron 1965) CH ¼ Cressie–Hawkins (Cressie & Hawkins 1980), Do ¼ Dowd (Dowd 1984) and Ge ¼ Genton (Genton 1998) for
each of the three metals. Sph ¼ spherical; Exp ¼ exponential; bnugget; csill; drange (m) – range values for the exponential model are the effective range.
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Figure 3. Estimates (symbols) and fitted models (curves) for the four variogram estimators for Cr (a), Ni (b) and Pb (c).
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RESULTS

Geochemical maps and spatial outliers
There were between 29 and 48 high-value spatial outliers
for each of the three metals. There were 127 unique sample
locations classified as high-value spatial outliers, of which
110 samples were so-classified for only one of the three
metals, 15 samples for two of the three metals, and 2
samples for all three metals. We removed the spatial out-
liers from each of the variates of the three metals and gen-
erated kriged estimates of their concentrations on a regular
grid at intervals of 200 m and threaded contours through
the values (Figures 4, 5 & 6).

The distributions of the high-value spatial outliers for
Cr (Figure 4) and Ni (Figure 5) have broad similarities.
A large proportion occur in areas of current and historical
steel manufacturing to the northeast of the city centre in
close proximity to the River Don, and to a lesser extent
along the River Sheaf towards the southwest. The contour
maps show that the highest concentrations (representing
the background process) of Cr (140 mg kg21) and Ni
(70 mg kg21) also occur to the northeast of the city. The
elevated concentrations may reflect a strong regional trend
in aerial particulate deposition of Cr and Ni originating
from the centres of steel manufacturing to the northeast of
the city. This is supported by unpublished data from a

survey of the inorganic composition of 642 tree bark samples
collected throughout Sheffield. In contrast, there are con-
siderably more Pb outliers close to the city centre, and along
a corridor stretching towards the southwest along the River
Sheaf (Figure 6). Although the highest Pb concentrations
(.350 mg kg21) reflecting the background process are gen-
erally confined to the south and west of the city, we do not
have sufficient knowledge of the location and magnitude of
historical, diffuse sources of Pb to give a detailed interpret-
ation. To provide a comprehensive interpretation of the
metal distributions presented in Figures 4–6 would also
require further understanding of the local distribution and
geochemistry of the different components of Coal Measures
cyclothems and how these relate to the native metal concen-
trations in the soils derived from them.

Table 4 shows �v for the spatial outliers for each metal,
and for historical disturbances at the sample site. Also
shown are confidence intervals for this statistic under a null
hypothesis of complete spatial randomness, obtained by the
Monte Carlo procedure described above. These show that

Figure 4. Contour maps of Cr concentrations (mg kg21) based on punctually
kriged estimates with spatial outliers (†) removed from the original data.

Table 3. Values of ~u from cross-validation based on the four variogram
modelsa and the bootstrapped confidence intervals (CIs) for the selected
estimator.

Ma CH Do Ge CIs

Cr 0.28 0.48b 0.71 0.61 0.367–0.557
Ni 0.25 0.39 0.54 0.48b 0.372–0.551
Pb 0.34 0.39 0.42b 1.27 0.368–0.558

aFor model key, see Table 2. bModel selected and that upon which boot-
strapped confidence intervals were estimated because of the four models; it
has the smallest difference from 0.455, the value of ~u we expect when the
variogram is correct in accordance with Lark (2002).

Figure 5. Contour maps of Ni concentrations (mg kg21) based on punctually
kriged estimates with spatial outliers (†) removed from the original data.

Figure 6. Contour maps of Pb concentrations (mg kg21) based on punctually
kriged estimates with spatial outliers (†) removed from the original data.
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in no case can we reject a null hypothesis of complete
spatial randomness, and so we can regard the observations
for any one of these point processes as independent.

High-value outlier sites occurred in 35 residential gar-
dens, highlighting a widespread and potentially significant
exposure pathway to these three metals in the soil. The Soil
Guideline Values (SGVs) for residential land use with plant
uptake (Department of the Environment Food and Rural
Affairs and the Environment Agency 2002a–c) are
(mg kg21): Cr (130), Ni (50) and Pb (450). At each of these
residential sites, the metal concentrations exceeded these
published values. Of the residential garden sites that were
classified as outliers, there were 18 and 19 observations,
respectively, associated with coal waste particles and slag
or furnace waste recorded during sample collection
(see Table 5). The prevalence of waste material related to
coal and coal-burning is unsurprising in the residential soils
of Sheffield given that coal was the dominant domestic
energy source for more than a century. Both domestic coal
ash and the contents of coalbunkers may have been spread
on gardens during both the 19th and 20th centuries. The
frequent observation of slag or furnace waste suggests that
this material has been dispersed widely throughout gardens
in the urban area and may have had a significant impact on
soil metal concentrations.

The other sites with no clear historical local source of
contaminants were dominated either by recreational land
uses, such as parks, golf courses and school playing fields, or
by the verges of roads and car parks. Of this series of
locations, the metal spatial outliers were dominated by Ni

(20 samples) and Cr (12 samples), with relatively few occur-
rences of Pb (5 samples). The contaminants observed during
soil sampling at these sites included eight instances of coal
waste particles and eleven instances of slag/furnace waste.

Assessment of the point process
We plotted the SKEs for pairs of metals (Figure 7) indicat-
ing for each point whether the sites are likely to have been
disturbed. These plots show that the sites with the smallest
SKE values for Ni and Cr are dominated by the disturbed
sites, but a close look at Figure 7b suggests no such
relationship for Pb.

We present in Table 6 a set of three contingency tables.
The first number in each cell is the count of our sample
sites corresponding to each contingency. The expected
counts for each cell under the null hypothesis are shown in
parentheses; these were computed from the marginal totals
of the table. Note that for Cr and Ni we observe substan-
tially more sites with historical disturbance and spatial out-
liers than is expected under the null hypothesis, which is
rejected with a small P-value. By contrast, the observed
and expected counts are very similar for Pb, and the null
hypothesis is accepted.

The association of the spatial outliers in Ni and Cr with
historically disturbed sites is interesting and supports the
inference that these points are sites where the metal con-
centration results from local contamination. We find Cr
and Ni hotspots in the northeast of the city (see previous
section) where the steel manufacturing industry dominated
land use for much of the 20th century. By contrast the
occurrence of Pb hotspots is less clearly associated with our
disturbed land use categories.

Estimates of diffuse pollution
A previous study comparing topsoil metal concentrations in
peri-urban and rural environments demonstrated significant
differences in median concentrations of Ni and Pb in soils
developed over Lower and Middle Coal Measures lithologies
(Rawlins et al. 2002). In such circumstances it is necessary to
compare topsoils within the same parent material class to
avoid any differences due to natural, pedo-geochemical vari-
ation. A greater proportion of the soil samples in the urban
survey are derived from the Lower Coal Measures (n ¼ 390)
than from to the Middle Coal Measures (n ¼ 118; Figure 1).
For the purpose of assessing the magnitude of diffuse pol-
lution in the urban area (over and above that in peri-urban
and rural areas), we chose to limit our comparison to urban
and rural soils developed over the Lower Coal Measures. We
removed 76 spatial outliers from the urban soil samples over
the Lower Coal Measures; the remaining samples represent
the natural soil composition plus the diffuse component. We
calculated median and Winsorized mean values for the three
metal concentration distributions representing robust
measures of location in each distribution. We calculated the
same statistics for 415 samples from the rural and peri-
urban survey over the same parent material. The statistics
are presented in Table 7.

It is important to note that Rawlins et al. (2002) also
reported statistically significant elevated concentrations of
Pb and Ni in areas of high, compared to low, population

Table 4. Observed values of �v and confidence limits under the null
hypothesis of complete spatial randomness.

Confidence interval of �v under the
null hypothesis

Event �v 95% 99% 99.9%

Historical disturbance 570.6 561–619 553–627 543–639
Spatial outlier
Cr 968.8 851–1126 808–1166 756–1229
Ni 1002.8 843–1112 795–1157 743–1204
Pb 1306.5 1022–1494 940–1571 858–1694

Table 5. The number and type of solid contaminants observed at a total of
94 high-value outlier sites during soil sample collection.

Contaminant type Count

Bricks 35
Coal waste 26
Slag/furnace waste 24
Plastics 23
Bulk industrial waste 17
Clear glass 13
Coloured glass 8
Metal 6
Iron/steel wire 4
Ceramics 3
Tiles 3
Galvanized iron 2
Rubber 2
Solid fertilizers 1
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density for the rural topsoil samples over the Coal Measures.
Therefore, any significant difference between the urban and
rural distributions should be dominated by the magnitude of
diffuse pollution in the urban and rural environments.

For each of the three elements, the urban survey median
and Winsorized mean values were greater than those from
the rural survey. By far the largest difference was observed
for Pb, the two measures having 83 and 102% higher con-
centrations in the urban environment, respectively. This
estimate represents a very significant diffuse load to top-
soils in the urban, relative to the rural, environment.
Although there are several potential point-sources of Pb in
the urban environment (e.g. solder, paints, alloys and bat-
teries), diffuse pollution is likely to have been dominated
by atmospheric deposition of aerosols from sources such as
coal burning and vehicle exhaust emissions. Previous
research based on soil Pb isotopic composition from sites
in Switzerland identified vehicle exhaust emissions related
to the use of leaded petrol and fly-ash from waste incinera-
tion as significant contributory sources of Pb in polluted
soils (Hansmann & Koppel 2002). The authors of this
study observed that in soils subject to significant pollution
(66 mg kg21) of anthropogenic Pb, the Pb isotopic
composition could not clearly identify pollutant sources
due to there being several possiblities. Given that the mag-
nitude of the diffuse load to the urban soils of Sheffield
(73–102 mg kg21; differences between urban and rural
median and Winsorized mean concentrations, respectively)
is comparable to that in the Swiss study, we presume that
given the likely plethora of diffuse Pb sources throughout
urban Sheffield, particularly over the last 150 years, the
same difficulties in defining sources would be observed if
Pb isotope data were available.

By contrast, the magnitude of the diffuse pollution com-
ponents for Ni and Cr in the urban environment were rela-
tively small. The two measures of location demonstrated
that diffuse pollution gave Ni concentrations in the urban
topsoils that were 25% greater than in the rural environ-
ment, and between 11 and 14% higher for Cr.

DISCUSSION

We noted that hotspots of both Cr and Ni were strongly
associated with historically disturbed sites, and this
was most likely explained by their occurrence in areas of
former steel manufacturing. By contrast, Pb was less clearly
associated with our disturbed land use categories. This may
in part be accounted for by the variety of small-scale his-
torical uses of Pb (e.g. paint, batteries and solder) leading
to frequent contaminant hotspots.

This finding contributes to our general understanding of
the circumstances in which historical land use maps can help
inform (or misinform) our decisions at the desk study stage
of the investigation of potentially contaminated land (British
Standards Institution 2001). One problem with our reliance
on historical land use maps to assess the likely presence or
absence of contaminant hotspots is that they cannot account
for the unrecorded removal and replacement of topsoil (or
soil-dominated material). This may result from natural pro-
cesses or anthropogenic activities, or the deliberate removal
of contaminants from site (waste disposal) across the city.

Although we have identified a substantial historical load
of diffuse Pb pollution to urban soil throughout much of
Sheffield, we know nothing of its current chemical form.
In terms of risk assessment, it would be valuable to
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Figure 7. Scatter plots of the standardized kriging error (SKE) for disturbed (†) and undisturbed (o) sites: (a) Cr vs Ni and (b) Cr vs Pb.

Table 6. Three contingency tabulations for the association of spatial outliers for each metal and the historical occurrence or otherwise of a local source of
disturbance.a

Historical disturbance Spatial outlier

Cr Ni Pb Row total

No Yes No Yes No Yes

No 392 (378.9) 21 (34.1) 387 (378.1) 26 (34.8) 392 (391.9) 21 (21.1) 413
Yes 130 (143.1) 26 (12.9) 134 (142.8) 22 (13.2) 148 (148.1) 8 (7.9) 156
Column total 522 47 521 48 540 29

P-value 7.5e–06 2.7e–03 0.98

aIn each cell the first number is a count, the second number is the expected count under a null hypothesis that the row and column categories are inde-
pendent and so the cell probabilities are determined entirely by the marginal probabilities for the table. The P-values reported are for this null
hypothesis.
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have some quantitative measure of Pb bioavailability or
bioaccessibility, to improve our understanding of Pb
exposure to both human (Ruby et al. 1999) and ecological
(Cook & Hendershot 1996) receptors. In undertaking such
measurements, it would be beneficial if the bioavailability of
Pb in these urban soils were compared to that of native Pb.
The latter could be determined from soils developed over
the same parent material in rural areas subjected to minimal
historical diffuse pollution. We would then be able to quan-
tify the relative importance of the diffuse and native Pb in
terms of current exposure, and establish the environmental
significance of the historical diffuse load.
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Table 7. Median and Winsorizeda mean metal concentrations (mg kg21) in
soils developed over Lower Coal Measures in the urban survey (outliers
removed) and a rural survey reported in Rawlins et al. (2002).

Cr Ni Pb

Rural median (n ¼ 415) 85 23 88
Urban median (n ¼ 316) 94 29 161
Difference (urban/rural) 11% 26% 83%
Rural Winsorized mean (n ¼ 415) 87 24 101
Urban Winsorized mean (n ¼ 316) 100 30 203
Difference (urban/rural) 14% 25% 102%

aBased on 5th and 95th percentiles.
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