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Abstract. The two approaches most commonly applied to characterizing the chemical form and ‘reactivity’ of
metals in the soil solid phase are sequential extraction procedures (SEPs) and isotopic dilution (ID). The develop-
ment and limitations of both approaches are described and their application to contaminated soils discussed. It may
be argued that ID offers a better means of discriminating between ‘reactive’ and ‘inert’ forms of metal. However, the
literature on SEPs is considerably larger, providing greater scope for comparative analysis of new data. Although ID
methods are subject to operational constraints, the procedural dependency of SEPs is probably much greater. Thus
greater effort has been expended to standardize and verify methodologies for SEPs. However, despite achieving a
level of ‘political ratification’ at the procedural level, the use of SEPs within risk assessments for planning or devel-
opment purposes is currently almost absent. The future for ID methods in this context may lie in site-specific risk
assessments that include improved methods for the prediction of metal solubility and bioavailability.
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INTRODUCTION

This paper and its sequel review the methods used to
characterize metal mobility and bioavailability in con-

taminated soils. This is a dynamic field, in which the gap
separating the fundamental science from legislative and
advisory standards is gradually closing. In part I we con-
sider characterization of metals in the soil solid phase. In
part II techniques for speciating the soil solution phase are
discussed.

The pool of metal in the solid phase of the soil, which
is capable of immediately buffering the metal ion activity
in the soil solution, may be functionally described as
‘labile’, ‘available’ or ‘reactive’. Such broad classifications
avoid more explicit terms such as ‘exchangeable’ or
‘adsorbed’ which have more specific physicochemical
meanings. Other important functions of the labile pool of
metal may include slow interactions with ‘non-labile’ or
‘fixed’ metal phases and some degree of control over
bioavailability following direct ingestion of soil by higher
organisms. All of these functional relations are the sub-
jects of active research in the soil, water and geochemical
literature.

In part I, two prominent techniques used to quantify
labile metal pools are examined: (i) chemical extraction
schemes and (ii) isotopic dilution.

CHEMICAL EXTRACTION SCHEMES

Sequential extraction procedures (SEPs)
Quevauviller et al. (1996) give a concise insight into the
wide range of materials and testing protocols developed to
assess risk from metal mobility and bioavailability. Soil
metal fractionation methodologies have been the subject of
some excellent reviews (Kersten & Forstner 1995; Ure
1996; Clark et al. 2000; McLaughlin et al. 2000; Gleyzes
et al. 2002; Hlavay et al. 2004), which illustrate the remark-
able variety of protocols developed for metal extraction and
the considerable uncertainty that limits their application.
Kersten & Forstner (1995) identified 25 fractionation
schemes, published over two decades (1973–93), that
employed between 3 and 7 sequential extraction steps.
Hlavay et al. (2004) tabulate 21 SEPs in which 10 identifi-
able metal fractions are extracted in various combinations
and sequences. However, most recent publications that
attempt to use sequential extraction to recover metals
bound to specific soil phases have employed variations on
two basic protocols: the schemes of Tessier et al. (1979)
and of the Standards, Measurements and Testing
Programme (formerly BCR) of the European Community
(Quevauviller 1998a, b). Notwithstanding some important
differences, both schemes recognize essentially the same
(nominal) metal fractions (Table 1). The BCR method was
originally developed for sediments (Gleyzes et al. 2002)
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and is presented as a 3- or 4-stage system in which the
‘exchangeable’ and ‘carbonate’ fractions are combined and
the ‘residual’ fraction determined as an additional step.
The ‘3-step’ BCR scheme, with minor variations, has been
applied to soils contaminated by smelter fallout (Barona
et al. 2001), industrially contaminated soils (Davidson et al.
1999), dredged canal sediments (Dodd et al. 2000; Ste-
phens et al. 2001), road-deposited sediments (Sutherland
et al. 2000), and tested on a variety of reference materials
(coal fly ash, soil, river sediment) (Petit & Rucandio 1999).

The Tessier scheme was also originally developed for flu-
vial bottom sediments but has been widely applied to soils.
Thus, Dang et al. (2002) used soils contaminated with colli-
ery spoil to examine changes in metal fractionation follow-
ing oxidation of pyrite. Emmerson et al. (2000) used a
slightly modified Tessier scheme to fractionate metals in
soil subjected to marine inundation. To assess remediation
success, the Tessier scheme has been used to determine
which metal fractions were removed by soil washing pro-
cedures (Hong et al. 2002) and electrokinetic remediation
(Reddy et al. 2001). Other recent studies using the Tessier
scheme to fractionate metals have included soil reference
standards (Li et al. 1995), soils in Derbyshire contaminated
by past mining and smelting activities (Li & Thornton
2001), engineered landfill materials (Munoz-Melendez et al.
2000), roadside soils (Norrstrom & Jacks 1998), canal sedi-
ments (Tack & Verloo 1996) and contaminated river sedi-
ments (Lead et al. 1998; Taylor & Kesterton 2002).

More elaborate schemes are usually first or second gener-
ation developments of the original Tessier et al. (1979) pro-
tocols. For example, Kabala & Singh (2001) used an
extended, modified scheme to fractionate metals in soil con-
taminated by output from a copper smelter. To fractionate
metals in industrially contaminated soils, Cappuyins et al.
(2002) and Van Herreweghe et al. (2002) adapted the 7-step
scheme of Kersten & Forstner (1986), which was originally
developed from the Tessier et al. (1979) scheme. Similarly,

new schemes are often compared with the standard Tessier
procedures (e.g. Ma & Uren 1998). Dinel et al. (2000) used
an 8-step fractionation scheme under three broad categories
applied to soil amended with ‘lime-sanitized biosolids’.
Krishnamurti et al. (1995) proposed an 8-step scheme,
applied to Kenyan soils by Onyatta & Huang (1999). Elliot
et al. (1990) proposed a 5-step scheme for sewage sludges
used by Obrador et al. (Obrador et al. 1997, Obrador et al.
2001) for soil-sludge incubations. Wenzel et al. (2001)inves-
tigated a 10-stage and a 5-stage SEP for arsenic in soils.

The Tessier scheme has also been used to fractionate
anionic metalloids, for example, arsenic (As) (Carbonell-
Barrachina et al. 1999). However, most extraction schemes
for anionic contaminants place greater emphasis on associ-
ations with Al and Fe oxides and with releasing analyte
occluded within Ca compounds. As extractants often fea-
ture phosphate salts, or are based upon older phosphate
fractionation schemes (e.g. Chang & Jackson 1957), because
of the chemical similarity of arsenate and phosphate (Alam
et al. 2001; Cappuyins et al. 2002). Other extractants pro-
posed include NH4F (Al-bound), NaOH (Fe-bound) and
HCl/H2SO4 (Ca-bound), (Onken & Hossner 1996; Pro-
haska et al. 1997). Wenzel et al. (2001) have proposed one
of the most recent and comprehensively assessed SEPs for
As (Table 2). They fine-tuned their choice of reagents and
conditions by using comparisons with extractants for simi-
lar ions (Se, P), testing extraction from single oxide adsor-
bents, varying ionic strength, extractant concentration,
extraction time and intermediate wash steps, using a single
extractant co-ion (NH4), avoiding large changes in pH
between extraction steps and referring to independent
methods (EDXMA, X-ray absorption fine structure anal-
ysis) used to speciate bound As.

More specialized SEP methods have been developed for
Hg. For example, Eganhouse et al. (1978) proposed an 8-
step scheme. The sequence of reagents employed reflected
the dominant role of organic matter in binding Hg and

Table 1. Sequential extraction schemes for soils: Tessier and BCR.

Fraction (nominal) Tessier BCR

Salt-extractable ‘Exchangeable’ F1 1 M MgCl2, pH 7 F1 0.11 M acetic acid
Acid-soluble ‘Carbonate-bound’ F2 1 M NaOAc, pH 5
Reducible ‘Fe/Mn oxide-bound’ F3 0.04 M NH2OH.HCl in 25% HOAc, pH 2 F2 0.5 M NH2OH.HCl in 0.01 M HNO3, pH 2
Oxidizable ‘Sulphide/humus-bound’ F4 30% H2O2, pH 2 (HNO3) 0.8 M NH4OAc

in HNO3

F3 30% H2O2, pH 2 (HNO3) 1 M NH4OAc, pH 2 (HNO3)

Acid-digestible ‘Residual’ F5 HF, HClO4 Aqua Regia (ISO 11466 protocol)

Table 2. Sequential extraction procedure of Wenzel et al. (2001) for arsenic.

Extractant As fraction

F1 0.05 M (NH4)2SO4; 4 h shaking at 20 8C Non-specifically adsorbed
F2 0.05 M (NH4)H2 PO4; 16 h shaking at 20 8C Specifically absorbed
F3 0.2 M NH4-oxalate; pH 3.25; 4 h shaking in the dark at 20 8C Bound within amorphous hydrous oxides
F4 0.2 M NH4-oxalate þ0.1 M ascorbic acid; pH 3.25; 30 min at 96 8C (water bath) in the light Bound within crystalline hydrous oxides
F5 Microwave digestion in HNO3/H2O2 Residual

All extractions were at a solid:solution ratio of 1:25, except F5 (1:50). F3 and F4 included a 10 min wash step with 0.2 M NH4-oxalate at pH 3.25 in the
dark using a soil:solution ratio of 1:12.5 (Wenzel et al. 2001).

S.D. Young et al. 451



placed the greatest emphasis on dissolution of humic acid
in alkali or oxidation of residual organic material. Renne-
berg et al. (2001) further developed the scheme into a
10-stage SEP, including ‘hydrocarbon-bound’ and ‘elemen-
tal’ Hg fractions for sites contaminated with Hg from
manometers used to meter hydrocarbon flow. They used
Soxhlet extraction (dichloromethane) to determine ‘total
extractable organic’ bound Hg and elemental Hg, by differ-
ence, after volatilization at 83 8C for 16 h (Windmoller et al.
1996).

Biester & Scholz (1997) used controlled Hg-pyrolysis
(ambient to 600 8C), linked to cold vapour atomic absorp-
tion spectrophotometry, to derive Hg thermal release
curves for pure Hg compounds and contaminated soils.
They followed changes in Hg thermal lability following
each step of a SEP proposed by DiGiulio & Ryan (1987)
which identified water soluble, exchangeable, humic–fulvic
bound, organic/sulphide and residual fractions of Hg.
They identified some overlap between different stages of
the SEP such as deficiencies in the oxidizing step associated
with extraction of organic/sulphide Hg, which increased
the apparent size of the residual fraction. It was suggested
that some flexibility in the duration of the SEP treatments
may be required depending upon the soil Hg content and
composition.

Single extraction schemes
Single extraction schemes provide a simpler generic
approach by dividing the sorbed phases into just two cat-
egories: labile and non-labile. The most widely utilized
reagents for single extraction schemes are powerful chelat-
ing agents, such as ethylenediamine tetra-acetate (EDTA)
and diethylenetriamine penta-acetate (DTPA), which do
not feature in the Tessier or BCR sequential extraction
schemes. The BCR single extraction scheme uses 0.05 M

EDTA or 0.43 M acetic acid (Ure 1996). Applications of
the EDTA scheme have been particularly widespread: Gar-
rabrants & Kosson (2000) used 0.05 M EDTA to assess
‘leachability’ of metals in municipal solid waste incinerator
ash, while Stalikas et al. (1999) investigated soil contami-
nated by polluted lake water. Similarly, the extractant used
by Lindsay & Norvell (1978) to diagnose deficiency in agri-
cultural soils (0.005 M DTPA, 0.01 M CaCl2, 0.1 M triethy-
lene acetate) has also been used as an estimate of ‘labile’
metal pools in contaminated soils (Maiz et al. 1997, 2000),
soils contaminated with sewage sludge (Obrador et al.
1997) and canal sediments (Stephens et al. 2001). Tipping
et al. (2000) used extraction with 0.1 M HNO3 to estimate
the labile adsorbed metal pool in organic soils assumed to
control solid , solution equilibrium. This approach may
be most suitable for soils in which acid dissolution of min-
eral adsorbents (e.g. CaCO3) is not a consideration.

Other single extraction schemes have been proposed
only for specific metals. Robinson et al. (1999) used extrac-
tion with potassium hydrogen phthalate to assess the viabi-
lity of phytomining with Ni hyperaccumulators. Young et al.
(2000) proposed extraction of labile Cd with 1 M CaCl2
following a comparison with isotopically exchangeable Cd;
a similar relation was found by Gray et al. (2004).

Problems associated with extraction schemes
Unfortunately, this apparent enthusiasm for applying SEPs
is matched by a profound mistrust of their validity and the
bleak realization (by users) that operational artefacts
confound interpretation of results. Thus, a considerable pro-
portion of the literature is still focused on criticisms and
development issues, usually presented alongside the appli-
cation of the SEP to a specific purpose. The major problems
associated with the use of sequential extraction schemes
include: poor selectivity of extractants, re-distribution of
metals during extractions, extended protocols, and sensi-
tivity to minor changes in procedure. Virtually all oper-
ational aspects of extraction schemes are potential sources of
variability: soil preparation and storage, solid-to-solution
ratio, extraction time and temperature, concentration of
extractants, shaking speed, duration and method, etc.

Gleyzes et al. (2002) presents a thorough analysis of the
problems associated with lack of specificity and re-distri-
bution during extraction. A primary problem is incomplete
dissolution of the target phase during extraction of the
acid-soluble, reducible and oxidizable fractions, which
results in ‘carry-over’ and thus overestimation of sub-
sequent metal fractions. The reverse effect also occurs with,
for example, premature dissolution of MnO2 during acid
extraction and release of specifically bound metals in the
exchangeable fraction (e.g. chloro-complexation of specifi-
cally adsorbed Cd by MgCl2, which ostensibly targets only
the ‘exchangeable’ pool, Table 1). In addition, re-adsorption
of metal, especially during extraction of the most soluble
fractions, has been demonstrated by many authors.

Lack of selectivity and incomplete dissolution. It is widely
accepted that complete specificity is unachievable in
sequential extraction schemes, and ascribing a specific
chemical origin to each step should probably be regarded as
a nominal classification exercise (Kim & Fergusson 1991).
The problem is aggravated if the sequence of extractants
involves changing suspension pH, which most SEPs use as
part of their protocol. Bermond (2001) demonstrated
problems of pH changes and pH-dependent re-adsorption
during both the reducing and oxidizing steps of the BCR
scheme. He viewed the problem of setting extractant pH as
a compromise between the objectives of preventing re-
adsorption while retaining selectivity. Schramel et al.
(2000) suggested that BCR-F2 (the reduction step in
Table 1) may be incomplete because of the poor reducing
power of hydroxylamine-hydrochloride (HA-HCl) for
crystalline Fe oxides. Previous authors have shown that the
HA-HCl step required a lower pH to dissolve Fe oxides,
and Sahuquillo et al. (1999) suggested lowering the pH
of BCR-F2 from 2.0 to 1.5. However, progressive
dissolution of tri-octahedral clays during the reduction
and oxidation steps of SEPs was demonstrated using
quantitative X-ray diffraction by Ryan et al. (2002). Dodd
et al. (2000) used SEM-EDXA to demonstrate that a
number of selectivity problems occurred during extraction
of canal sediments by the schemes of both Kersten &
Forstner and the BCR. They showed that calcite
dissolution was incomplete during BCR-F1 and vivianite
was partially dissolved.

Characterizing metal availability in contaminated soils452



Re-distribution and re-adsorption. ‘Re-distribution’ arises for
at least two reasons: (i) undissolved residues of a metal
phase can be released in the subsequent extraction and
wrongly ascribed and (ii) any extraction which increases the
metal ion activity in solution or changes the pH or exposes
new adsorption surfaces may cause re-adsorption of metal
on remaining adsorbents.

Re-distribution following extraction with EDTA, as
assessed by changes in subsequent BCR fractions, was
demonstrated by Barona et al. (2001). Chomchoei et al.
(2002) used metal-spiked extractants to show that the
nature of re-adsorption was metal specific: Pb and Cu
spikes added to BCR-F1 were recovered in F2 and F3,
respectively, reflecting a high affinity of Pb for oxides and
Cu for humus. Schramel et al. (2000) suggested that still
further re-adsorption of Cu could occur on oxidized silicate
residues following BCR-F3 (H2O2 oxidation). Raksasataya
et al. (1996) demonstrated differences in the extent of re-
distribution between the BCR and Tessier schemes and
highlighted the role of metal scavenging by MnO2 and
humic acids during the first stages of extraction (carbonate
dissolution) as a principal problem. Kheboian & Bauer
(1987) used mixed solids individually spiked with metals to
demonstrate redistribution throughout all fractions of the
Tessier scheme. Although the extent of redistribution may
be exaggerated in such trials, by adding large metal spikes,
the phenomenon is widely recognized as a problem
(Gleyzes et al. 2002). Some authors have concluded that
the extent of re-distribution may be sufficiently great to
invalidate SEPs (Bermond, 1997).

Innovations and developments
The time and tedium associated with most sequential
extraction schemes is well known to those who use them.
For example, Maiz et al. (1997) compared the extraction
time required by their 2-step scheme (6 h) with the Tessier
(15 h) and BCR (50 h) approaches. Thus, although the
danger of deviating even slightly from protocols has been
clearly demonstrated (Quevauviller, 1998a), various short-
cuts to the established methods have been proposed and
tested. Campos et al. (1998) reduced the time required for
the Tessier scheme by an order of magnitude by using
microwave heating, although the practicalities of the
method created some problems and there was the risk of
greater re-adsorption due to evaporation. Chomchoei et al.
(2002) adapted the normal ‘batch’ approach of the BCR
scheme as a continuous flow method and demonstrated
reduced problems of re-adsorption; this was thought to be
due partly to reduced reagent contact time. Marin et al.
(2001) used ultrasonic dispersion at 20 kHz (‘cold boiling’)
and reduced the shaking time of 16 h required by each step
of the BCR scheme to just 10 min; results were validated
against analysis of a certified soil.

To overcome problems of re-adsorption, it may be poss-
ible to use ‘hold back’ reagents, usually chelating agents, to
prevent re-adsorption during extraction. Schultz et al.
(1998) investigated EDTA as a means of preventing re-
adsorption during extraction of actinides in soils. However
partial dissolution of CaCO3 and MnO2 by the EDTA
compromised (still further) the phase selectivity of the

extraction reagents. Raksasataya et al. (1997) attempted a
similar exercise by adding a macrocyclic complexing agent
(‘cryptand 2.2.2’) to the first stage of the BCR scheme
(BCR-F1). Ideally such chelating agents should retain
metals in solution while promoting minimal additional dis-
solution from adsorption sites.

Some workers have attempted to ‘normalize’ sequential
extraction data to improve comparability. For example,
Clark (2000) suggested that metal concentrations should be
expressed in terms of the ‘potentially adsorbing metal
solids (PMAS)’ content, defined as the particle fraction
,63mm in sediments. They also recommended further
exclusion of any quartz and feldspar particles falling into
the ,63mm fraction (determined by X-ray diffraction).
Stalikas et al. (1999) normalized each metal fraction in the
Tessier scheme with respect to the mass of the soil com-
ponents extracted at each extraction step.

Several studies have sought to extend the information
gained from extraction schemes. Extraction with EDTA
has been used to examine the kinetics of metal release
with periodic sampling of batch suspensions (Fangueiro
et al. 2002). Ghestem & Bermond (1999) used extraction
with EDTA as a function of time to categorize metals,
while Maxted (2002) used a continuous range of EDTA
concentrations as a means of discriminating between
different pools of metal in a soil treated with sewage
sludge soil and validated the results by comparison with
isotopically exchangeable Cd and CaCl2-extractable Cd
(Figure 1).

Herreweghe (2002) used an extended ‘pH-stat’ scheme to
assess leachability from an industrially contaminated soil.
Potentially, such approaches can provide information on the
metal buffer power of soils, the risk of leaching following
changes in soil pH and, in association with solution speciation
models, may indicate which solid phases control solubility.

Predicting bioavailability
Most comparisons of bioavailability with extractable metals
use single extractants (McLaughlin et al. 2000). Some
examples are shown in Table 3. One point worth noting is
that the correlations proposed cover a wide range of
strengths of extractant, from electrolytes that simulate the
soil pore water up to complete acid digestion. This reflects
an unresolved issue in the assessment of bioavailability in
soils: whether the ‘quantity’ (solid phase pool) or the ‘inten-
sity’ (activity in the soil solution) is likely to provide the best
predictor of uptake. Considering uptake of metal ions from
the soil solution, the intensity might be expected to correlate
precisely with uptake potential – in line with the ‘free ion
activity’ or ‘biotic ligand’ models of availability. However,
this simple premise is complicated by situations where sub-
stantial desorption from the solid phase contributes to bioa-
vailability. Local depletion in the rhizosphere may preclude
a constant metal ion activity in solution. Furthermore, in
organisms that ingest soil, the reactivity of metals in the
solid phase is clearly of critical importance.

Some workers have also attempted to link the results of
SEPs to measured bioavailability by multiple regression.
Qian et al. (1996) found that the more soluble fractions of
the Tessier scheme explained the majority of metal uptake
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by plants. Similarly, Li et al. (1998) observed that the most
soluble fraction of the BCR scheme explained the majority
of plant uptake of rare earth elements.

Recent attempts to assess toxic hazard from direct inges-
tion of soil have included the use of real or simulated body
fluids. Cooke (1995) used rumen liquor to extract soils.
Ruby (1996) developed a ‘Physiologically Based Extraction
Test’ (PBET) which employed synthetic saliva, gastric and
duodenal fluids for extraction of Pb and As. Hamel et al.
(1999) applied a similar approach to the study of Pb, As
and Cr availability in urban soils and slag materials. Ruby
et al. (1999) discuss more recent attempts to simplify and
validate in-vitro assessments of the bioavailability of soil
metals following the PBET approach.

ISOTOPIC DILUTION

By its nature, isotopic dilution (ID) should be the ideal
method to discriminate between labile and non-labile metal
pools (Smolders et al. 1999; Young et al. 2000). The
method simply reflects the pool of reactive metal in the soil
and is normally applied with minimum disturbance to solid
phases. Thus, the technique can be used to describe
solid , solution equilibria (Tye et al. 2002, 2003); and to
study the progressive assimilation of metal ions into less

reactive forms (Nakhone & Young 1993; Hamon et al.
1998; Young et al. 2001). In its simplest application, an iso-
tope of the analyte of interest is mixed with soil and, after a
period of equilibration, the specific activity of the analyte
(e.g. Bq mg21) is determined in a phase that is only acces-
sible to labile or bioavailable analyte. Normally, this is the
separated electrolyte of a soil suspension, a co-mixed ion
exchange resin or a growing plant. For example, where an
equilibrated solution is the phase sampled, the labile pool
may be calculated, as the unknown quantity (MLabile), in
equation 1.

A*
Soln

MSoln
¼

A*
Total

MLabile
ð1Þ

where [ATotal
* ] and [ASoln

* ] are the total activities of the iso-
tope added to the soil (Bq kg21) and measured in the sol-
ution phase (Bq L21); [MLabile] and [MSoln] are the
concentrations of the labile metal in the soil (mg kg21) and
in solution (mg L21), respectively. Equation (1) only applies
provided: (i) all metal species included in the assay of
MSoln are radiolabile, (ii) the isotope has successfully mixed
with the entire labile metal pool in the time allowed and
(iii) the isotope has not been partly assimilated into non-
labile forms through secondary reaction processes such as
co-precipitation. In theory, the isotope would mix with the
entire soil metal content given sufficient time; therefore, all
three considerations above are, to an extent, operational
definitions.

Overall, the literature suggests a reasonably robust tech-
nique which shows limited variation in E-values with vari-
ation in solid : solution ratio, suspension separation
method, electrolyte composition, suspension pre-equili-
bration time and (as normally applied) isotope equilibration
times (Young et al. 2005). The latter factor is probably the
most important source of variability, because mixing of the
added isotope with the solid phase will proceed continu-
ously and so E-values should increase at a progressively
smaller rate. Although most workers report a reasonably
distinct labile pool distinguishable as a reaction asymptote
after 2–3 days of isotopic equilibration, others (Echevarria
et al. 1998; Sinaj et al. 1999; Gérard et al. 2000; Gray et al.
2004) have attempted to deal with the problem of
continuing isotope sorption with kinetic expressions such
as:

P*
ðtÞ ¼ P*

ð1Þ½t þ P* 1=n
ð1Þ �2n þ PM ð2Þ

based on an infinite series of exponential terms, where P* is
the proportion of isotope in the solution phase at a speci-
fied time (t) or after 1 min (1), n is an empirical constant
and the proportion of soil metal in solution (PM) is the
value of P(t)

* at infinite time. This is potentially a very
powerful approach, which may enable prediction of ‘appar-
ent lability’ over time from measurements taken within just
a few minutes of adding the isotope. The kinetic approach
may therefore provide a more complete characterization of
metal reactivity compared to the single point E-value more
commonly employed.

Figure 1. Extraction of Cd with increasing concentration of EDTA (open
circles) from a soil historically amended with sewage sludge. The total soil
Cd content, radio-labile Cd (E-value; Young et al. 2000) and Cd extracted
by 1 M CaCl2 are shown for comparison.

Table 3. Correlations between extractability and bioavailability.

Metals Extractant(s) Organism Reference

All 0.01 M CaCl2 Plants Houba et al. 1996
Cd, Pb, Zn 0.1 M CaCl2 Earthworms Conder & Lanno 2000
Cs, Pu, Am Rumen liquor Ruminants Cooke et al. 1995
Pb, As, Cd, Cr Synthetic digestive

fluids
Mammals Hamel et al. 1999

Ni, Co, Cu, Pb Tessier scheme Wheat Qian et al. 1996
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Historical use of isotopic dilution in the soil science literature
Young et al. (2005) presented a review of past and present
applications of ID techniques. Isotopic dilution, normally
undertaken with radioisotopes, was first used to study the
dynamics of major nutrients (using the isotopes 32P, 42K,
45Ca) in the 1950s and 1960s (Larsen 1952; Deist & Talibud-
een 1967) and micronutrient metals (60Co, 54Mn, 59Fe, 65Zn,
63Ni & 64Cu) in the 1970s (Tiller et al. 1972a, b; Lopez &
Graham 1972; Graham 1973). In an interesting parallel with
some chemical extraction methods, the ID approaches orig-
inally applied to nutrient studies have been extended to the
study of potentially toxic metals (109Cd, 111Cd, 115Cd, 63Ni,
65Zn, 203Hg & 73As) over the past two decades (Fuji &
Corey 1986; Nakhone & Young 1993; Hamon et al. 1997;
Pandeya et al. 1998; Smolders et al. 1999; Gérard et al.
2000; Hutchinson et al. 2000; Stanhope et al. 2000; Young
et al. 2000, 2001; Collins et al. 2001; Tye et al. 2003).

Describing solubility and fixation
Isotopic dilution is an underexploited technique in the
study of metal solubility. Graham (1973) described the
solid , solution equilibria of Zn, Co, Mn and Fe as isoto-
pic distribution coefficients. Tiller et al. (1972a) expressed
a Quantity:Intensity (Q/I) relation for Zn from the distri-
bution of added 65Zn in soil suspensions. Tye et al. (2002)
described arsenate solubility in soils as competitive
exchange between radiolabile As (73As) and bicarbonate-
extractable phosphate. Tye et al. (2003) compared total and
radiolabile Cd and Zn as predictors of solution metal
activity in soils incubated with added metals over 2 years.
In the study of metal ion fixation, studies are equally thin
on the ground. Hamon et al. (1998) described long-term
Cd fixation from differences in isotopically exchangeable
Cd in soils treated with superphosphate. Young et al.
(2001) followed changes in Zn radiolability in soils incu-
bated with added Zn(NO3)2 over 800 days.

Predicting bioavailability
Radiolabile metal contents determined through solid ,
solution equilibration or by plant uptake from the (labelled)
labile pool are commonly referred to as the ‘E-value’ and
‘L-value’, respectively. Several studies (Hamon et al. 1997;
Echevarria et al. 1998; Smolders et al. 1999; Hutchinson
et al. 2000; Gérard et al. 2000, 2001; Stanhope et al. 2000)
have looked for differences between E and L values which
might suggest mobilization of non-labile metal through rhi-
zospheric processes (pH changes, reduction, production of
microbial or phyto-chelating agents, etc.). Although there
are operational difficulties in interpreting such compari-
sons, to date only limited evidence has emerged of signifi-
cant differences between E and L values. However, this
approach remains a potentially useful tool for future use
with, for example, genetically modified hyperaccumulators
intended for use in ‘phytoextraction’. The significance of
the radiolabile fraction in the context of soil ingestion has
yet to be investigated. However, there is some evidence that
E-values increase with a reduction in soil pH (Pandeya et al.
1998; Sun et al. 2000; Collins et al. 2001; Degryse et al.
2004). This might suggest, for example, that the radiolabile

metal pool is an underestimate of the available reservoir fol-
lowing entry into the human stomach (pH < 2.0).

Future research needs and applications for isotopic dilution
There is clearly potential for the future use of ID methods
as a tool to describe trace metal solubility, bioavailability
and time-dependent fixation. Some future applications are
suggested below:
. incorporation of the radiolabile fraction into models of

solid , solution equilibria (Tye et al. 2002, 2003) such
as WHAM (Tipping 1994);

. use of stable isotopes in preference to radioisotopes
(Ahnstrom & Parker 2001) to enable greater flexibility in
the design of long-term metal fixation studies and the
study of a wider range of elements;

. further examination of both the technique and its
interpretation in relation to reaction kinetics, as pro-
moted by Sinaj et al. (1999) and co-workers;

. coupling of isotopic dilution methodologies to techniques
such as X-ray absorption fine structure analysis (EXAFS)
and laser-ablation inductively coupled plasma mass spec-
trometry (LA-ICPMS) to relate chemical reactivity and des-
orption kinetics to specific forms of surface complex and
processes, such as slow migration into solid absorbents;

. comparative studies to find simple chemical extractants
that provide a genuine alternative to the hazardous use of
radioisotopes or expensive application of mass spec-
troscopy; currently this is an unresolved issue (e.g. Fuji
& Corey, 1986; Nakhone & Young 1993; Echevarria et al.
1998; Sinaj et al. 1999; Young et al. 2000; Tye et al.
2002; Ahnstrom & Parker 2001; Åsgeir & Singh 2001).
A recent survey of Zn in urban soils comparing the SEP

scheme of Li & Thornton (2001) and isotopically exchange-
able Zn is shown in Figure 2. Clearly radiolabile Zn
exceeds the exchangeable pool, and so includes specifically
adsorbed metal. The best agreement was with steps 1–3,
essentially equivalent to Tessier F1 þ F2, although there is
perhaps no reason to presuppose agreement with SEPs

Figure 2. Comparison of radiolabile Zn with Zn extracted using the SEP
scheme of Li & Thornton (2001) for 52 (urban) topsoils taken from
brownfield sites in Nottingham and Wolverhampton (UK). The solid line
shows a 1:1 relation.
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which focus on dissolution of soil solids that are likely to
contain occluded (non-labile) metal.

CONCLUSIONS

Sequential extraction procedures (SEPs) and isotopic
dilution (ID) are perhaps our two most widely applied
techniques for characterizing metals in the solid phase of
soils. Single extraction schemes share a common goal with
isotopic dilution methods – the determination of a ‘reactive
pool’ of metal. However, beyond their first extraction step
(soluble or exchangeable), SEPs are mainly concerned with
auditing the solid phase chemical forms of soil metals (car-
bonate, oxide, organic, residual, etc.).

The development of SEPs and ID have followed quite
different evolutionary paths with the former methods being
first to achieve a measure of international standardization.
However, evidence from the literature suggests that
attempts to address the operational shortcomings of SEPs
may have reached an impasse. Radiolabile assay may have
the advantage of a more credible mechanistic basis, but it is
only likely to form part of a legislative environmental anal-
ysis scheme in the long term. So the search for comparabil-
ity between the two approaches continues.

The legislative, advisory and screening standards for soil
metals in the UK still employ the principle of ‘conservative
totals’ with some allowance for pH-dependent solubility.
Examples include the regulations governing sewage sludge
disposal on arable land (MAFF 1998) and the soil guideline
values produced by Contaminated Land Exposure Assess-
ment (DEFRA & Environment Agency 2002). Currently,
the only extraction system normally used in risk assessment
of contaminated land in the UK is the assessment of bioa-
vailability through direct ingestion of soil using the PBET
method, applied to As and Pb. This is undertaken by a
small number of accredited laboratories.
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