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Abstract

Two isotropic vector hysteresis models are constructed based on the classical Preisach model, to be applied in

magnetostatic computations with an integral equation formulation. One model endows complete Preisach operators

with orientation governed by a friction-like mechanism. The other approach—a natural generalization of the classical

Preisach model—considers a set of vector operators with various coercive fields, mean interaction field (shifted spheres

of various radii) and weights. The principles of the inclusion of these models in magnetostatic computations are

outlined.
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1. Introduction

In the general case (and in most cases of
technical interest) the magnetic field strength and
magnetization vectors are not parallel to each
other inside a ferromagnetic body and vector
hysteresis models are required to describe the
behavior of the material under the given condi-
tions of excitation.
The classical Preisach model [1] can accurately

and efficiently (from the computational point of
view) describe scalar hysteresis, where the mag-
netic field strength is always parallel to magnetiza-
tion. This is the case of stacked toroidal cores of
isotropic iron sheets, cast iron rings or infinite
sheets excited along a fixed direction, parallel to
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the surface. The Preisach model also allows
various vector generalizations [1–3].
Vector study is required when the field strength

and magnetization vectors are not parallel. This
occurs in isotropic materials due to remanence
(anisotropy induced by magnetic history) while
anisotropic materials are intrinsically character-
ized by different magnetic properties in different
directions [4]. The highly non-linear, multivalued
vector hysteresis operator can then be applied for
material description in magnetic field computation
algorithms based on contraction iteration (fixed
point) techniques [5].
2. The friction model

The first proposed isotropic vector hysteresis
model consists of n scalar (classical) Preisach
d.
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Fig. 1. Major scalar hysteresis loop.
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operators endowed with orientation governed by a
friction-like mechanism. Hysteresis itself is char-
acterized by the effect lagging behind the cause. In
the case of the classical Preisach model this is
realized by the elementary operators with rectan-
gular characteristic, which again is a friction-like
feature. An assembly of scalar operators, each
following the input variation with a different lag
describes vector magnetizing processes.
The magnitude of the output of individual

operators is computed by the classical Preisach
model with the projection of field strength on their
direction as input ðH cos ykÞ:

Mk ¼ HðH cos ykÞ ¼ HðH � MkÞ; k ¼ 0; 1;?; n

ð1Þ

where H stands for the scalar hysteresis operator,
H is the applied field strength and yk is the angle
between the field strength and the magnetization
vector of the operator. This angle is determined by
the equilibrium between a driving torque H � Mk

tending to rotate magnetization towards field
strength and a friction-like resistive torque (mainly

due to pinning [6]), proportional to M
3=2
k ðMS �

MkÞ
1=2 with MS being the value of magnetization.

This damping term is chosen in order to comply
with the experimental fact that at saturation the
magnetization vector rotates together with field
strength. The orientations of the magnetization
vectors change when the driving torque overcomes
the resisting one, leading to:

jsin yk jpxk

HS

jH j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jMk j
MS

1�
jMk j
MS

� �s
; k ¼ 0; n; ð2Þ

where HS is the saturation field strength. The
‘‘friction coefficients’’ xk are different for each
operator and the weighted sum of the outputs of
these individual operators is the output of the
vector hysteresis operator—the averaged magneti-
zation in the region of space characterized by it [7].
The magnetization vector lies in the plane defined

by the new position of the applied field strength and
the old position of the magnetization, obeying:

M 0
k � ðH � MkÞ ¼ 0;

M 0
k � H

M 0
kH

¼ cos yk; ð3Þ
where Mk is the old, M 0
k the new magnetization

vector of the operator k and yk is determined
according to Eq. 2. In the two-dimensional case
(2D), Eq. (2) is sufficient to determine the position
of the magnetization vector, since it always lies in
the same plane.
Figs. 1–4 illustrate the operation of the model in

the 2D case. Fig. 1 shows the scalar major loop of
the considered material, Figs. 2 and 3, illustrate
the result of rotational magnetization subsequent
to saturation in one direction ðxÞ and reduction of
field strength to some value, while Fig. 4 depicts
linear magnetization subsequent to saturation in
an orthogonal direction (illustrating remanence-
induced anisotropy). The thin gray lines connect
points of the M and H plots occurring simulta-
neously.
Uniaxial anisotropy can be introduced by means

of an anisotropy field oriented along the easy
axis, which gives a further term in the torque
balance [8].
3. The coercive spheres model

In analogy with the classical Preisach model, a
3D vector model can be constructed as a set of
elementary vector operators. These operators are
defined by a mean interaction field Hk

m and
coercivity Hk

c : The output of such an operator is
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Fig. 2. Rotational magnetization subsequent to saturation in

one direction without magnetization reversal.

Fig. 3. Rotational magnetization subsequent to saturation in

one direction.

Fig. 4. Remanence-induced anisotropy.

Fig. 5. Coercive sphere operator.
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a vector Mk with constant magnitude. It is parallel
to H � Hk

m if H is outside the sphere of radius Hk
c

centered at Hk
m (Fig. 5) and preserves the

orientation it had at the moment it entered the
sphere as long as the tip of H lies inside it.
A distribution of such operators with respect to

Hk
m and Hk

c is considered similar to the case of the
classical Preisach model. The output of the model
is the weighted sum of the elementary operator
outputs.
Figs. 6 and 7 illustrate the operation of the

model in two dimensions (where the spheres are
replaced by circles) for a simple configuration of
two rings of 36 operators each, with Hc ¼ 15;
Hm ¼ 10 and Hc ¼ 12; Hm ¼ 15; respectively. In
Fig. 6 the major loop for a unidirectional
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Fig. 6. Major loop for alternating excitation.

Fig. 7. Remanence-induced anisotropy.
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alternating excitation is plotted, while Fig. 7
depicts the trace of the tip of M at linear
magnetization subsequent to saturation in an
orthogonal direction (illustrating remanence-
induced anisotropy).
4. Inclusion in magnetostatic computations

The integral equation method can be applied for
the computation of magnetic fields in large areas,
in the presence of ferromagnetic bodies. Only the
bodies are divided into uniformly magnetized
elements and coefficient matrices ½Ckl 	 constructed,
which give the influence of the element magnetiza-
tions on each other:

Hk ¼ H0 þ
XN

l¼1

½Ckl 	M l ; k ¼ 1;N; ð4Þ

where M l is the magnetization of element l; H0 is
the external field in the center of element k; Hk

being the field strength in the same place.
Then the magnetizations of the elements are

computed iteratively, so that the M2H relation-
ship on each element fulfills the magnetic char-
acteristic of the material. As for the iterative
method, a fixed-point technique [5], non-linear
minimization of an error function:

e ¼
XN

k¼1

jMk � *Mk j2-min; *Mk ¼ HðHkÞ; ð5Þ

or a contraction iteration can be applied:

M iþ1
k ¼ tM i

k þ ð1� tÞ *M i
k; 0ot51: ð6Þ

In Eq. (5) and (6) Mk is the predicted, *Mk the
computed value of the magnetization vector.
These methods can also be combined (e.g. when
the error minimization gets stuck in a local
minimum, the contraction iteration can bounce
the process out of such traps).
5. Conclusions

The described vector hysteresis models, intended
to be included in magnetostatic computation
codes, yield results in qualitative agreement with
the experiment. Further advantages are the mem-
ory economy and high computational speed. A
trade-off is sought between the higher accuracy of
more complex models and the computational
efficiency of the classical Preisach model.
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