УЛК 550.38433

ПАЛЕОМАГНЕТИЗМ ВЕРХНЕМЕЛОВЫХ И КАЙНОЗОЙСКИХ ГЕОЛОГИЧЕСКИХ КОМПЛЕКСОВ ЗАПАДНОЙ И ВОСТОЧНОЙ КАМЧАТКИ

© 2002 г. Д. В. Коваленко, Е. Е. Чернов, Д. В. Курнлов

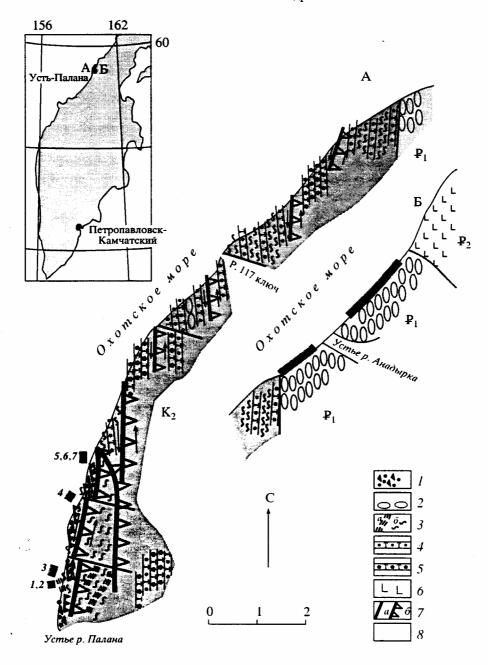
Институт литосферы окраинных и внутренних морей РАН, г. Москва Поступила в редакцию 25.01.2001 г.

Приведены новые палеомагнитные данные для районов Западной и Восточной Камчатки. Установлено, что позднемеловые островодужные толщи бассейна р. Палана формировались на сороковых градусах северной широты и не входили в позднем мелу ни в состав континентальной окраины Евразии, ни Северо-Американской плиты. Среднеэоценовые породы свиты мыса Тоне формировались на широте $62\pm8^{\circ}$ С и не испытали значимых вращений в горизонтальной плоскости. В это время они могли входить как в состав континентальной окраины Евразии, так и Северной Америки. Исследованные толщи во всех трех районах в разной степени перемагничены. Перемагничивание происходило после главных этапов деформаций толщ, в разное время, в периоды разной полярности магнитного поля, и, по-видимому, связано с разными процессами.

Ключевые слова: палеомагнетизм, Камчатка, вергентность, деформация, верхний мел, палеоцен.

ВВЕДЕНИЕ

В статье приводятся результаты исследований районов Западной и Восточной Камчатки. На Западной Камчатке изучались позднемеловые аллохтонные островодужные комплексы и палеоценовые неоавтохтонные толщи. Интерес к аллохтонным островодужным комплексам Западной Камчатки вызван тем, что по данным геологической съемки [Демидов, Сулима, 1988] породы этих комплексов одновозрастны и близки по составу с аллохтонными островодужными комплексами Восточной и Центральной Камчатки. Эти данные легли в основу гипотезы о том, что островодужные комплексы и Западной и Восточной Камчатки являются остатками единой островной дуги, перекрывающей всю Камчатку в виде гигантского аллохтона [Шапиро, 1995]. Существование такого аллохтона вызывает недоверие в ряде работ [Чехович, Богданов, 1999; Богданов и др., 2001]. В этих работах предполагается, что в структуре Западной и Восточной Камчатки находятся остатки разных островных дуг. Для проверки этих гипотез сотрудниками Института литосферы были проведены дополнительные геологические, стратиграфические и палеомагнитные исследования позднемеловых и палеоценовых толщ Западной Камчатки в районе пос. Палана и на п-ве Утхолок. Полученные новые результаты палеомагнитных исследований и некоторые новые геологические материалы, важные для интерпретации палеомагнитных данных, представлены в данной работе.


На Восточной Камчатке исследовались кайнозойские отложения о. Карагинского. Важность их изучения состоит в том, что до сих пор палеомагнитные определения имелись только для позднемеловых террейнов Восточной Камчатки. Время же их прибытия не оценивалось палеомагнитным методом. Для того, чтобы оценить время тектонического совмещения террейнов с материком, нами был исследован кайнозойский опорный стратиграфический разрез о. Карагинского, захватывающий стратиграфический интервал от эоцена до плиоцена [Гладенков, Гречин, 1969; Гладенков, 1972; Басилян и др., 1993].

ГЕОЛОГИЧЕСКОЕ СТРОЕНИЕ ИЗУЧЕННЫХ РАЙОНОВ И ОБЪЕКТЫ ПАЛЕОМАГНИТНЫХ ИССЛЕДОВАНИЙ

Устье реки Палана

По данным геологической съемки [Демидов, Сулима, 1988], стратиграфических исследований [Нижний палеоген..., 1997] и тематических работ авторов статьи, в береговых обнажениях Охотского моря к северу от устья р. Палана выделяются мезозойские аллохтонные кремнисто-вулканогенный и кремнисто-обломочный комплексы пород и кайнозойский неоавтохтонный комплекс (рис. 1).

Кремнисто-вулканогенный комплекс включает две толщи - кремнисто-туфогенную и вулканогенную. Кремнисто-туфогенная толща сложена переслаивающимися серыми и зелеными кремнями, туфогенными песчаниками и кремнистыми

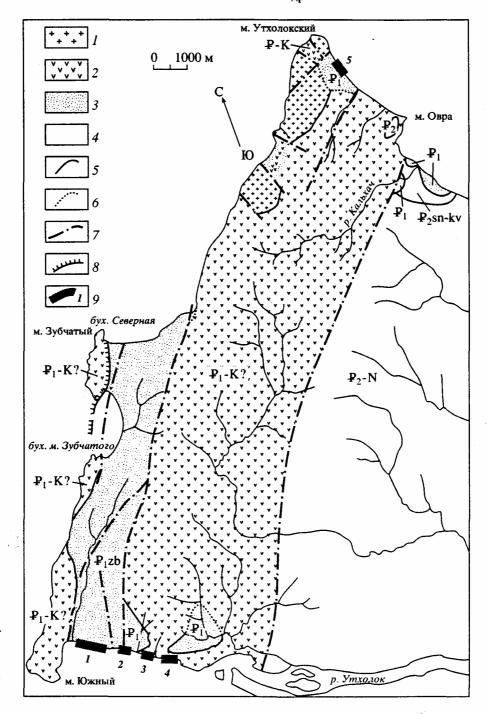
Рис. 1. Геологическая схема побережья Охотского моря к северу от устья р. Палана: A – район распространения мезозойских отложений, B – район распространения палеогеновых отложений. Условные обозначения: I – обломочная толща, 2 – конгломераты, 3 – кремнистые породы: иноцерамовые слои (A), кремни (B), 4 – туфопесчаники, 5 – туфобрекчии, 6 – лавы кинкильской свиты, 7 – разломы: субвертикальные (A), надвиги (B), 8 – положение опробованных блоков и их номера.

алевролитами и аргиллитами. Песчаники имеют вулканомиктовый состав, кварцевая кластика практически отсутствует [Кузьмичев, Сухов, 2000]. Это свидетельствует об удаленности района накопления этих толщ от источников континентального сноса. Из кремнистых пород толщи авторами статьи были выделены радиолярии кампан-маастрихтского возраста. Вулканогенная толща сложена туфобрекчиями клинопироксеновых

базальтов. Менее распространены щелочные базальты, андезито-базальты и андезиты. По химическому составу вулканиты толщи образуют непрерывный ряд от известково-щелочных калиевых базальтоидов до шошонитов и имеют островодужную природу [Кузьмичев, Сухов, 2000]. Для туфобрекчий имеются определения абсолютного возраста (K/Ar) – 72.5 ± 3.5 и 72 ± 3.5 млн. лет [Палечек и др., 2000]. Кремнисто-туфогенная толща

комплекса смята в изоклинальные складки западной вергентности. Вулканогенная толща дислоцирована в меньшей степени и граничит с кремнисто-туфогенной по надвигам западной вергентности. Толщи кремнисто-вулканогенного комплекса разбиты на многочисленные блоки и часто характеризуются крутыми углами падения пород, иногда близкими к вертикальным. Таким образом, по-видимому, толщи кремнисто-вулканогенного комплекса являются фрагментами позднемезозойской островной дуги, существовавшей в Тихом океане на удалении от континентальных источников сноса.

В составе кремнисто-обломочного комплекса, закартированного на юге района и имеющего тектонические взаимоотношения с кремнисто-вулканогенным, выделяются кремнистые и терригенно-обломочные породы, залегающие в виде пластин и чешуи в системе надвигов западной вергентности. Верхнее структурное положение в этой системе занимает пластина, сложенная переслаивающимися красными и зелеными кремнями с многочисленными иноцерамовыми горизонтами. Мощность пластины 200-300 м. Кремнистая пластина надвинута на сложную систему мелких (мошность до 30 м) тектонических чешуи, сложенных переслаивающимися красными и зелеными кремнями, иноцерамовыми слоями, телами лавобрекчий базальтов и терригенно-обломочными пачками, представленных песчаниками, гравелитами и глыбовыми конгломератами и брекчиями повидимому, олистостромовой природы. В обломках зафиксированы красные и зеленые кремни, иноцерамовые породы, базальты и песчаники. Терригенно-обломочные породы в ряде мест с осадочными контактами залегают на пластично деформированной в неясно слоистую массу кремнистой толще. В ней зафиксированы многочисленные обломки пород аналогичные тем, которыми сложены залегающие стратиграфически выше терригенно-обломочные пачки. В одном месте обнажается осадочный контакт терригенно-обломочных пород с верхней кремнистой пластиной, свидетельствующий о том, что первые фазы надвигообразования проходили в период, когда терригенно-обломочные породы еще не были литифицированы. Наиболее нижнее положение в структуре опять-таки занимают переслаивающиеся красные и зеленые кремни, вероятно, представляющие собой самостоятельную пластину. Кремнистые породы слагают около 90% объема исследованных нами обнажений кремнисто-обломочного комплекса. Для кремней и яшм верхней и нижней пластин авторами статьи получены многочисленные определения возраста по радиоляриям, соответствующие кампану-маастрихту. Из пластично деформированных кремнистых толщ, с обломками пород, подстилающих терригенно-обломочные пачки получены определения


возраста по радиоляриям от поздней юры до позднего мела. Указанные ассоциации пород, скорее всего, накапливались в окраинно-морском бассейне к западу от островодужных комплексов. Породы кремнисто-обломочного комплекса разбиты на многочисленные блоки и деформированы в сложные (до изоклинальных) складки разного масштаба (от первых метров до десятков метров) с субвертикальными шарнирами. Возможно, формирование этих складок связано с левыми сдвигами. Элементы залегания пород в крыльях складок и отдельных блоках кремнисто-обломочного комплекса повсеместно близки к элементам залегания пород кремнисто-вулканогенного комплекса. Этот факт указывает, что деформации пород обоих комплексов, по-видимому, происходили в период одного и того же тектонического импульса.

Толщи неоавтохтона субгоризонтально с угловым несогласием залегают на аллохтонных комплексах. Нижнее стратиграфическое положение занимает палеоценовая анадыркская свита. Она представлена переслаивающимися конгломератами, гравелитами, песчаниками, алевролитами и аргиллитами. Преобладают крупнообломочные разности - конгломераты и гравелиты. Выше с размывом залегают углистые песчаники, алевролиты и аргиллиты с многочисленными остатками окаменевшей древесины и отпечатков листовой флоры усть-анадыркской свиты эоценового возраста. Они перекрыты потоками базальтов, андезито-базальтов, андезитов, липарито-дацитов, дацитов с прослоями туфопесчаников и туфоалевролитов среднеэоценовой кинкильской свиты. Завершается разрез терригенными породами гахкинской свиты: переслаивающимися песчаниками, конгломератами и алевролитами [Нижний палеоген..., 1997].

Образцы для палеомагнитных исследований были отобраны из кремней и яшм кампан-маастрихтского возраста (нижняя и верхняя кремнистые пластины кремнисто-обломочного комплекса) (опробованы 7 тектонических блоков различной мощности, взято 48 ориентированных образцов) и из мелкозернистых разностей палеоценовых терригенных пород анадыркской свиты (опробованы 2 блока, 23 образца) (рис. 1).

Полуостров Утхолок

По материалам стратиграфических исследований [Нижний палеоген..., 1997] на полуострове Утхолок выделяются утхолокский вулканогенный комплекс (поздний маастрихт-ранний даний), свита мыса Зубчатого, сложенная терригенными породами палеоценового возраста, и осадочные

Рис. 2. Геологическая схема п-ова Утхолок (по [Нижний палеоген..., 1997]]. Условные обозначения: I — миоценовые гранитоиды, 2 — утхолокский вулканогенный комплекс (K_2 — \mathbf{P}_1), 3 — свита мыса Зубчатого (\mathbf{P}_1), 4 — осадочные толщи снатольско-ковачинского комплекса (\mathbf{P}_2 — \mathbf{N}), 5, 6 — геологические границы: 5 — выявленные, 6 — предполагаемые; 7 — разрывные нарушения, 8 — надвиги, 9 — положение опробованных блоков и их номера.

толщи снатольской и ковачинской свит (рис. 2).

Вулканиты утхолокского комплекса являются субаэральными, местами субаквальными. Они представлены дифференцированной известковощелочной серией пород: двупироксеновыми базальтами, амфиболовыми андезитами, липаритами

и, скорее всего, были сформированы в условиях активной континентальной окраины. Характерно большое количество грубой пирокластики – агромератовых туфов и псефитовых разностей среднего состава. Возраст пород вулканогенного комплекса определялся К-Аг методом, были полу-

чены следующие датировки - 60 ± 4 ; $61 \pm 5,56 \pm 4$, 63 ± 4 ; 64 ± 4 млн. лет [Нижний палеоген..., 1997].

Терригенные породы свиты мыса Зубчатого согласно залегают на вулканитах утхолокского комплекса. Они представлены переслаивающимися песчаниками, аргиллитами, алевролитами. Часто встречаются угли. Песчаники и алевролиты по составу отвечают кварц-полевошпатовым разностям, часто с примесью вулканомиктового и, иногда, ювенильного материала. Возраст свиты по комплексам флоры считается палеоценовым [Нижний палеоген..., 1997]. Толщи утхолокского комплекса и свиты мыса Зубчатого в разной степени дислоцированы и разбиты на блоки. Углы падения пород часто близки к вертикальным. В районе мыса Зубчатого закартирована тектоническая пластина, сложенная вулканогенными породами утхолокского комплекса, надвинутая с юго-запада на терригенные породы свиты мыса Зубчатого. В принадвиговых зонах фиксируются изоклинальна складки [Нижний палеоген..., 1997].

Осадочные толщи средне-, верхнеэоценовых снатольской и ковачинской свит с угловым несогласием с конгломератами в основании перекрывают толщи утхолокского комплекса и свиты мыса Зубчатого. Эоценовые породы также дислоцированы, углы падения пород варьируют от 20 до 60°. Вся структура Утхолокского полуострова прорвана миоценовыми гранитоидами [Нижний палеоген..., 1997].

Образцы для палеомагнитных исследований отбирались из тонкообломочных туфов (2 тектонических блока, 17 ориентированных образцов) и лав (2 тектонических блока, 15 образцов) утхолокского комплекса, из мелко- и тонкозернистых терригенных пород и карбонатных конкреций свиты мыса Зубчатого (5 блоков, 36 образцов) (рис. 2).

Остров Карагинский

Остров Карагинский, по данным В.Д. Чеховича [1993], является аккреционной призмой. Детальное описание геологического строения позднемеловых и палеоценовых аккреционных комплексов острова и результатов их палеомагнитного изучения приведено в [Чехович, 1993; Коваленко и др., 1999]. В настоящей статье предметом изучения являлись более молодые толщи кайнозойского возраста [Гладенков, 1972; Басилян и др., 1993], распространенные на юге и западе острова, формирование которых связывается не только с развитием аккреционной призмы, но и с геологической эволюцией преддугового прогиба, которым является пролив Литке (рис. 3).

Расчленение и детальное стратиграфическое изучение кайнозойских толщ о. Карагинского бы-

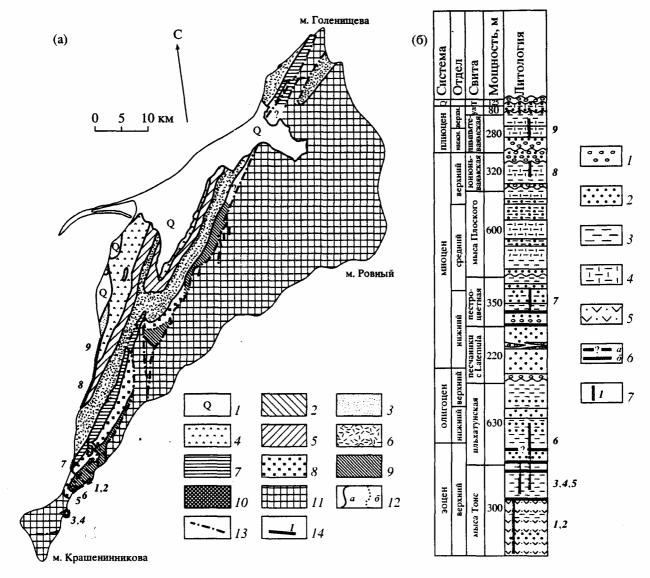
ло проведено Ю.Б. Гладенковым, В.И. Гречиным, А.Э. Басиляном [1972; 1969; 1993]. Нижнее положение в разрезе кайнозойских отложений занимает свита мыса Тоне среднеэоценового возраста. Нижняя часть свиты сложена в основном разнозернистыми туфами, туффитами, туфоалевролитами и туфоаргиллитами основного и среднего состава. В верхней части в разрезе преобладают кремнистые туфоаргиллиты, очень редко - туфопесчаники. Мощность свиты 300 м.

Выше согласно залегает ильхатунская свита верхнеэоцен-олигоценового возраста. Она включает пачки переслаивающихся туфопесчаников, туфоалевролитов и туфоаргиллитов. К отдельным слоям приурочены горизонты карбонатных конкреций. Мощность свиты 630 м.

Еще выше с размывом и конгломератами в основании залегает толща свиты песчаников с Laternula. Возраст свиты - верхний олигоцен-низы нижнего миоцена. Она сложена туфопесчаниками и песчаниками с карбонатными конкрециями и линзами туфогравелитов и конгломератов. Мощность свиты 220 м.

Далее вверх разрез наращивается пестроцветной свитой, сложенной песчаниками, туфоалевролитами и туфодиатомитами общей мощностью 350 метров. Они накапливались в конце нижнегоначале среднего миоцена.

На них с размывом залегает свита мыса Плоского средне-, верхнемиоценового возраста. Это переслаивающиеся туфопесчаники, туфоалевролиты, туфодиатомиты, туффиты опоковидные. Мощность свиты 600 м.


Свита мыса Плоского с размывом и конгломератами в основании перекрыта туфоалевритами, туфопесчаниками и туфодиатомитами юнюньваямской свиты, накапливавшимися в течение большей части верхнего миоцена. Верхние горизонты свиты представлены чередованием гравелитов и конгломератов. Мощность свиты 320 м.

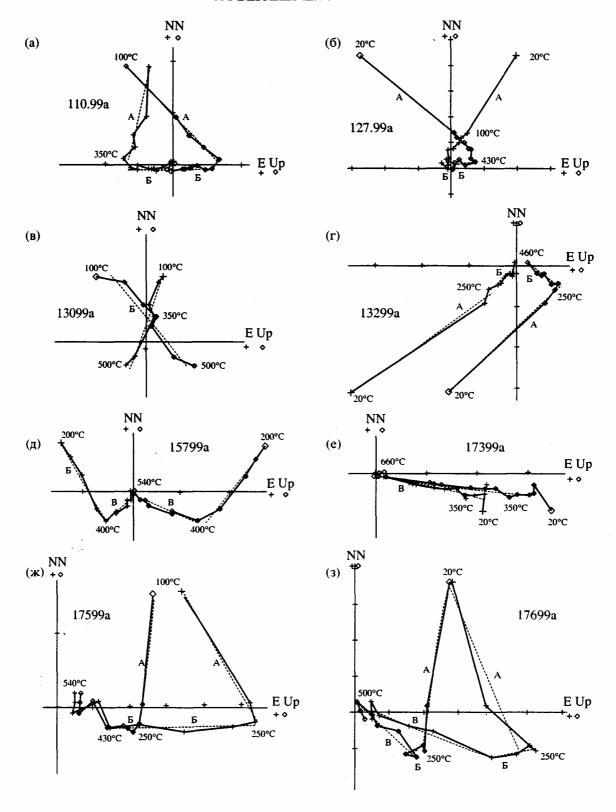
Выше с размывом залегают породы лимимтеваямской свиты. Разрез свиты начинается с горизонта конгломератов, на которых лежат туфопесчаники с прослоями и линзами конгломератов. Мощность свиты 280 метров.

На породах лимимтеваямской свиты с размывом залегают туфопесчаники усть-лимимтеваямской свиты, содержащие прослои карбонатных конкреций. Мощность свиты 80 м. Толщи лимимтеваямской и усть-лимимтеваямской свит накапливались в течение всего плиоцена.

Кайнозойские толщи дислоцированы и разбиты на отдельные тектонические блоки.

Палеомагнитные образцы отбирались из мелкозернистых туфопесчаников, туфоалевролитов, туфодиатомитов, опоковидных туффитов и карбонатных конкреций (рис. 3). Опробованы 2 бло-

Рис. 3. а — Геологическая схема о-ва Карагинский (по [Гладенков, 1972]). Условные обозначения: I — четвертичные рыхлые образования, 2 — тусатуваямские слои (Q), 3 — усть-лимимтеваямская свита (N_2^2), 4 — лимимтеваямская свита (N_1^1), 5 — юнюньваямская свита (N_1^3), 6 — свита мыса Плоского (N_1^{2-3}), 7 — пестроцветная свита (N_1^{1-2}), 8 — песчаники с Laternula (P_3^3 — N_1^1), 9 — ильхатунская свита (P_2^3 — P_3), 10 — свита мыса Тонс (P_2), 11 — комплексы аккреционной призмы (по [Чехович и др., 1990]), 12 — геологические границы: a — установленные, 6 — предполагаемые, 13 — разрывные нарушения, 14 — интервалы палеомагнитного опробования и номера блоков.


б – Разрез кайнозойских отложений о-ва Карагинский (по [Басилян и др., 1993]).

Условные обозначения: I – конгломераты, 2 – песчаники, 3 – алевролиты и аргиллиты, 4 – диатомиты, 5 – туфы основного состава, 6 – тектонические контакты: a – предполагаемые, 6 – установленные, 7 – интервалы палеомагнитного опробования и номера блоков. Свиты: УЛ – усть-лимимтеваямская, T – тусатуваямские слои.

ка нижней части свиты мыса Тонс (20 образцов), 3 блока верхней части свиты мыса Тонс (106 образцов), ильхатунская свита (26 образцов), пестроцветная свита (34 образца) юнюньваямская свита (27 образцов) и лимимтеваямская свита (23 образца).

МЕТОДЫ ЛАБОРАТОРНОЙ ОБРАБОТКИ ПАЛЕОМАГНИТНЫХ ОБРАЗЦОВ

Обработка палеомагнитных образцов проводилась в палеомагнитной лаборатории ИЛСАН РАН. Из каждого образца выпиливалось по 2 кубика с ребром 1 или 2 см в зависимости от величи-

Рис. 4. Примеры диаграмм Зийдервельда для образцов из палеогеновых терригенных пород (а)—(г) (неоавтохтонный комплекс) и мезозойских кремнистых пород (д)—(з) (кремнисто-обломочный комплекс) с побережья Охотского моря к северу от устья р. Палана.

ны магнитной восприимчивости образца. Каждый кубик подвергался термочистке в интервале температур 20-660°С. Термочистка проходила в печи, защищенной двумя пермаллоевыми экранами, позволяющими компенсировать магнитное поле Земли до 4-5 нанотесла. Верхняя граница чистки определялась появлением магнитных новообразований, искажающих остаточную намагниченность кубика. Появление магнитных новообразований в процессе температурной чистки определялось по резкому увеличению величины намагниченности кубика, и по тому, что направление вектора намагниченности от нагрева к нагреву начинало меняться хаотически. Для большинства кубиков проводилось 12-15 нагревов.

Измерение величины и направления остаточной намагниченности образцов проводилось на магнитометре JR-4. По данным термочистки для каждого кубика строились диаграммы Зийдервельда [Zijderveld, 1967], проводился компонентный анализ намагниченности [Kirschvink, 1980] и анализ распределения выделенных компонент естественной остаточной намагниченности на сфере. Для каждого образца по двум кубикам рассчитывались средние направления выделенных компонент намагниченности. Отбраковка направлений намагниченности образца производилась в тех случаях, когда диаграмма Зийдервельда не позволяла выделить компоненты (хаотическое распределение направлений намагниченности от нагрева к нагреву), либо когда среднее направление компоненты, рассчитанное по двум кубикам, имеет кучность меньше 10.

Направления выделенных компонент намагниченности образцов анализировались на сфере для каждого тектонического блока отдельно, а также совместно по всем опробованным блокам из каждой толщи исследованных комплексов пород в современной (ССК) и древней (ДСК) системах координат.

РЕЗУЛЬТАТЫ ЛАБОРАТОРНОЙ ОБРАБОТКИ

1. Устье р. Палана

Компонентный анализ естественной остаточной намагниченности позднемеловых кремнистых пород показал, что в трех из семи опробованных блоков направления всех выделенных компонент намагниченности образуют хаос. В четырех блоках присутствуют две, реже одна или три компоненты намагниченности (рис. 4). Наиболее низкотемпературная компонента (A) уничтожается, как правило, при нагреве до 250°, реже 350°С (рис. 4д, 4ж, 4з). Ее направления на стереограмме распределены хаотически и не представляют интереса. Вторая компонента (Б) имеет блокирую-

щие температуры 420–500°С (рис. 4д–43). Направления этой компоненты имеют обратную полярность и на стереограммах образуют четкие группы (рис. 5а, рис. 6). Применение теста складки [Храмов и др., 1982] по методу сравнения средних направлений [Баженов и др., 1988; Шипунов, 1995] показало, что это послескладчатая компонента намагниченности (рис. 5а, табл. 1).

Наиболее высокотемпературная компонента (В), образующая на стереограммах четкие векторные группы в ДСК и ССК и имеющая прямую и обратную полярности, была выделена в трех блоках (блоки 5, 6, 7). При термочистке она сохраняется до точки Кюри гематита (670–680°С), и прямолинейные участки, связанные с этой компонентой, на диаграммах Зийдервельда идут в начало координат (рис. 43).

Направление компоненты В в ДСК для блока 7 рассчитывалось в несколько этапов. В нем направление послескладчатой компоненты Б (в табл. 1 - 75) значительно отличается от направления поля перемагничивания (направление дипольного поля Земли обратной полярности для района Центральной Камчатки) (рис. 6а, 6б). Следовательно, исследуемый блок 7 после перемагничивания компонентой Б был наклонен в северсеверо-западном направлении вокруг горизонтальной оси на угол около 35° (в расчетах использовалось направление наклона 350° ∠ 35°) под действием какого-то тектонического импульса (Т). Отсюда для корректного расчета в ДСК направления компоненты B блока 7 (в табл. 1 – 7B) сначала были рассчитаны элементы залегания для исследуемых палеомагнитных образцов из блока 7 и направления векторов намагниченности компоненты В для этих образцов в промежуточной системе (в табл. 1 – направление $7B_{np}$), то есть, после совмещения послескладчатой компоненты 7Б с полем перемагничивания (после вращения блока из ССК на 35° по азимуту 170°) (рис. 6в, 6г). Затем направления этих векторов из промежуточной системы по элементам залегания, рассчитанных для них в этой же системе, были переведены в ДСК (в табл. 1 – направление $7B'_{\mu\nu}$) (рис. 6г). Конечно, деформации блока 7, связанные с тектоническим этапом Т, могли быть более сложными и не описываться простым вращением вокруг горизонтальной оси.

Так как полевые исследования не позволили установить, является ли залегание пород в блоке нормальным или опрокинутым, аналогичные расчеты были проведены для случая опрокинутого залегания слоев блока $(7\,B_{дp}^*)$. В табл. 1 также приведены направления компоненты В в ДСК, рассчитанные обычным способом, без учета деформаций тектонического этапа T, для случаев нормального и опрокинутого залегания пород блока $(7\,B\,u\,7\,B^*)$.

Вариант опрокинутого залегания рассмотрен и для блока 6.

Породы в блоке 5 смяты в изоклинальную складку с субвертикальным шарниром (элементы залегания шарнира 70° ∠ 70°). Формирование этой складки скорее всего связано с левосдвиговыми деформациями. В блоке 5 послескладчатая относительно низкотемпературная компонента намагниченности (5Б) близка по направлению к полю перемагничивания (рис. бд). Направления единичных векторов, по-видимому, более древней высокотемпературной компоненты намагниченности (5В) в ССК распределены с большим разбросом, а в ДСК образуют две группы – прямой и обратной полярности (рис. 6е). Средние направления намагниченности этих групп (таблица 1 – 5BN и 5BR) близки в ДСК по абсолютным значениям наклонений, но не противоположны по склонениям. Скорее всего, это связано с тем, что замеренная ориентация шарнира складки не является первичной. Чтобы исключить влияние шарнира, мы для простоты привели его к горизонтальному положению, и крылья складки распрямляли относительно горизонтального шарнира. Методика расчетов использовалась такая же, как для блока 7. Вращением вокруг горизонтальной оси в направлении 250° на угол 70° мы привели блок в промежуточное положение (горизонтальный шарнир), в котором для всех палеомагнитных образцов были рассчитаны новые элементы залегания и новые направления векторов высокотемпературной компоненты 5В (рис. 6ж). Элементы залегания образцов и их направления высокотемпературной компоненты намагниченности 5В, рассчитанные для промежуточной системы, использовались для расчета направлений компоненты 5В этих образцов в ДСК. После такой операции направления прямой и обратной полярности (в табл. 1 – 5B'N и 5B'R) стали практически противоположными (рис. 63). Тем не менее, статистическое сравнение средних направлений прямой и обратной полярности компоненты 5В показало, что они не равны в ДСК (табл. 1). Это незначительное несовпадение может быть связано с погрешностями замера ориентации шарнира складки.

В табл. 1 и на рис. 5в видно, что для случаев нормального залегания пород блоков средние направления компоненты намагниченности В в ДСК близки во всех блоках по наклонениям и отличаются по склонениям. При предположении опрокинутого залегания пород блоков 6 и 7 склонения направлений компоненты намагниченности В блоков становятся ближе. В блоке 5 видно, что степень группированности векторов компоненты В обратной полярности значительно выше в ДСК, чем в ССК (Кд/Кс = 6.4). Отсюда вытекает, что, скорее всего, компонента намагниченности В имеет доскладчатое происхождение. Время складчатости оценивается как маастрихтское по следующим

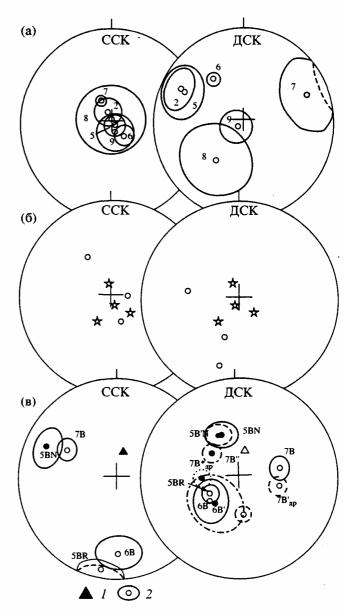


Рис. 5. (а) — Распределение средних направлений компоненты Б с кругами доверия, рассчитанных для блоков пород кремнисто-обломочного (блоки 2, 5, 6, 7) и неоавтохтонного (блоки 8 и 9) комплексов на побережье Охотского моря к северу от устья р. Палана; (б) — распределение векторов компоненты Б из образцов пород анадыркской свиты (блоки 8 и 9. Кружки — блок 8; звездочки — блок 9. (в) — распределение средних направлений компоненты В с кругами доверия, рассчитанных для блоков 5, 6 и 7 кремнисто-обломочного комплекса в районе устья р. Палана: *1* — направление современного теомагнитного поля в районе исследования, 2 — средние направления компоненты В с доверительным интервалом. Обозначения компонент см. в табл. 1.

фактам: 1) маастрихсткие кремни деформированы в пластическом состоянии; 2) сложно деформированные маастрихтские толщи перекрыты с угловым несогласием слабо деформированными палеоценовыми породами. Таким образом, склад-

Таблица 1. Палеомагнитные данные для комплексов пород в районе устья реки Палана

Компонента	Кол-во образцов	D_{c}	$I_{\mathbf{c}}$	K _c	α _{95c}	D_{π}	I_{μ}	K _A	α _{95д}
2	Крем Карактери		бломочн амагниче			2		-	
2Б	6	327	-79	11	17	297	-21	11	17
2	Карактери	стики на	амагниче	нности д	ля блока	5	•		•
5Б	12	241.4	-89.2	21.6	8.7	295.5	-28.4	3.4	22.1
5BN до приведения шарнира в горизонтальное положение	5	297	18	18.3	14.6	338.7	50.8	25.9	12.3
5В'N после приведения шарнира в горизонтальное положение	5	297	18	18.3	14.6	336.1	50.2	36.8	10.3
5BR до приведения шарнира в горизонтальное положение	5	196	-4.7	16.7	15.3	248.9	-59.8	84.4	6.8
5В'R после приведения шарнира в горизонтальное положение	5	196	-4.7	16.7	15.3	184.2	-59.5	107.8	6
(тест обращения): $F_{2\text{cosp}} = 4.1336$;	$F_{2\pi p} = 0.7$	758; F _{2кр}	= 0.4542	; •	•	1	•	'	
2	Карактери	стики на	магниче	нности д	ля блока	6			
6Б	2	148.5	-76.5	166.3	7.7	324	-43.7	353.7	5.2
6B	2	182.6	-26.5	34.5	16.9	237.8	-56.6	30.7	17.9
6B'	2	186.6	-26.5	34.5	16.9	231.1	57.9	16.1	24.7
2	Карактери	стики на	імагниче	нности д	ля блока	7	•		
7Б	8	330.1	-68.1	89.8	5.2	68.9	-22.1	3.2	27.5
7B	11	303.5	-36.1	24.5	8.5	81.4	-58.8	29	7.8
7B _{пр}	11	271.4	-53.3	24.5	8.5				
$7B_{\rm gp}$	11					107	-58.8	30	7.8
7B"	11	303.5	-36.1	24.5	8.5	313.8	57.6	31.8	7.5
7 B**	11					272.4	58.3	34.8	7.2
	еоавтохто				_				
8Б, 9Б	7	202.8	1	11.7	15.4	225.1	-71.1	8.2	18.7
(тест складки): $F_{2\text{cosp}} = 0.05359$; F	$_{2\text{дp}} = 0.0.51$	$13213; F_2$	$_{\rm kp} = 0.820$	056;					•

Примечание: $D_{\rm c}$, $D_{\rm g}$, $I_{\rm c}$, $I_{\rm g}$, $K_{\rm c}$, $K_{\rm g}$, $\alpha_{\rm 95c}$, $\alpha_{\rm 95g}$, $\alpha_$

чатость практически не была оторвана от времени формирования пород, и выделенная компонента может рассматриваться как первичная.

В намагниченности терригенных пород палеоценовой анадыркской свиты присутствуют две, реже одна, компоненты (рис. 4а–4г).

Низкотемпературная компонента уничтожается, как правило, при нагреве до 250–350°С, реже до 400°С. Эта компонента имеет обратную поляр-

ность. Провести тест складки непосредственно для пород анадыркской свиты невозможно из-за слабых вариаций элементов залеганий пород. Скорее всего, она послескладчатая, так как направление компоненты в ССК совпадает с направлением послескладчатой компоненты Б, выделенной в кремнисто-обломочном комплексе (рис. 5а).

Высокотемпературная компонента в породах анадыркской свиты сохраняется до точки Кюри

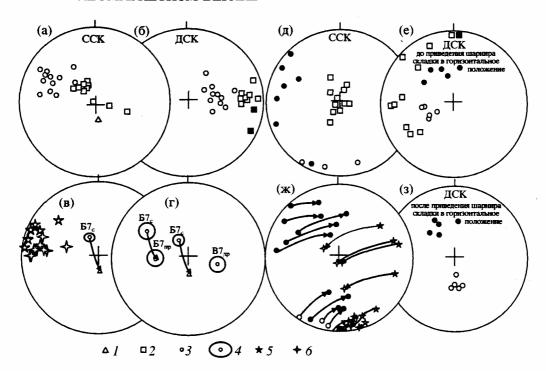
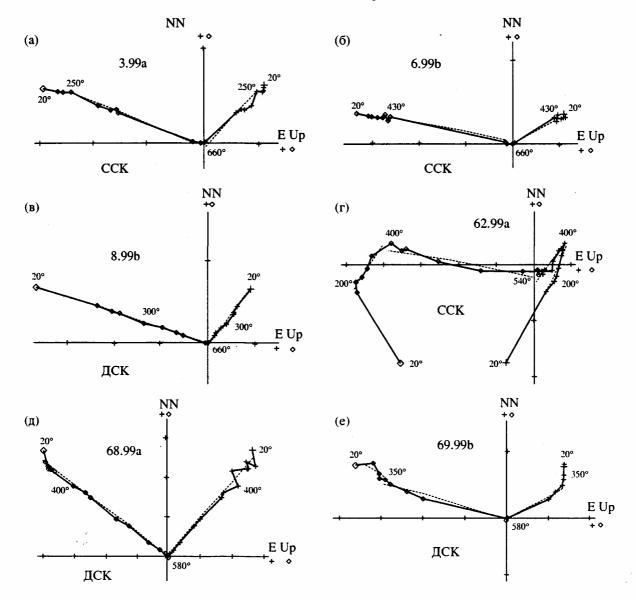


Рис. 6. (а)—(г). Направления компонент Б и В в породах блока 7 кремнистого-обломочного комплекса (район устья р. Палана): (а), (б) — распределение векторов компонент Б и В на уровне образцов в ССК и ДСК соответственно, (в) — положение нормалей к слоям до и после снятия последнего этапа деформации; (г) — направления компонент намагниченности блока в современной, промежуточной и древней (после исключения последнего этапа деформации) системах координат. Обозначения компонент см. в табл. 1; (д)—(з) — направления компонент Б и В в кремнистых породах блока 5 кремнисто-обломочного комплекса (побережье Охотского моря к северу от устья р. Палана): (д) — распределение векторов компонент Б и В на уровне образцов в ССК; (е) — направления компонент Б и В в ДСК до приведения шарнира складки в горизонтальное положение; (ж) — положение нормалей к слоям до и после приведения шарнира складки в горизонтальное положение и положение векторов компоненты В в промежуточной системе координат; (з) — направление компоненты В в ДСК после приведения шарнира складки в горизонтальное положение.


Условные обознаения: *1* – направление поля перемагничивания, *2* – направление компоненты Б, *3* – направление компоненты В, *4* – средние направления по блоку с кругами доверия, *5*, *6* – положение нормалей к слоям до и после снятия последнего этапа деформации соответственно. Залитые черным значки – нижняя полусфера, открытые – верхняя полусфера.

магнетита, она отчетливо выделяется для многих образцов, но направления этой компоненты на сфере расположены хаотически.

2. Полуостров Утхолок

Компонентный анализ естественной остаточной намагниченности палеоценовых туфов (утхолокский вулканогенный комплекс) показал, что в них чаще всего выделяется одна высокотемпературная компонента намагниченности прямой полярности, сохраняющаяся до точки Кюри гематита (рис. 7а-7в). Все высокотемпературные участки диаграмм Зийдервельда, связанные с этой компонентой, идут в начало координат. В небольшом количестве образцов также выделяется низкотемпературная компонента, уничтожающаяся при температурах 250-400°C. Направления низкотемпературной компоненты на сфере распределены хаотически. Векторы высокотемпературной компоненты хорошо сгруппированы. Применение теста складки [Храмов и др., 1982] (сравнение средних направлений [Баженов и др., 1988; Шипунов, 1995]) для высокотемпературной компоненты показало, что это послескладчатая компонента (рис. 8а, табл. 2).

В палеоценовых лавах утхолокского комплекса выделяются две, реже одна компоненты намагниченности (рис. 7г-7е). Низкотемпературная компонента "счищается" при температуре 300-350°C. На сфере направления намагниченности этой компоненты распределены хаотически. Высокотемпературная компонента имеет прямую полярность в ССК и сохраняется до точки Кюри магнетита (рис. 8б). Участки диаграмм Зийдервельда, отвечающие этой компоненте, идут в начало координат. Направления векторов этой компоненты намагниченности хорошо сгруппированы в ССК. Применение теста складки [Храмов и др., 982] (сравнение средних направлений [Баженов и др., 1988; Шипунов, 1995]) показало, что эта послескладчатая компонента.

Рис. 7. Примеры диаграмм Зийдервельда для образцов из туфов (а)—(в) и вулканитов (г)—(е) Утхолокского вулканогенного комплекса.

В намагниченности палеоценовых терригенных пород и карбонатных конкреций (свита мыса Зубчатого) присутствуют одна, реже две компоненты. В некоторых образцах направление вектора намагниченности от нагрева к нагреву изменяется хаотически. На сфере направления векторов намагниченности этих пород образуют хаос.

3. Остров Карагинский

Компонентный анализ намагниченности пород нижней части свиты мыса Тонс показал, что в них выделяются одна, реже две компоненты (рис. 9а, 9б). Низкотемпературная компонента уничтожается при нагревах до 250—400°С и на сфере не образует четких групп. Высокотемпературная компонента сохраняется до 500—520°С, об-

разует относительно четкие группы и имеет прямую и обратную полярности (табл. 3). Тест обращения для прямо- и обратно намагниченных пород блока 1 отрицательный (рис. 106, табл. 3).

В большинстве образцов верхней части свиты мыса Тонс выделяется единственная компонента прямой полярности, сохраняющаяся до температуры 500—520°С, чаще всего до 400°С (рис. 9в, 9г). В небольшом количестве образцов выделяется низкотемпературная компонента, уничтожающаяся при температурах 250—300°С. Низкотемпературная компонента распределена на сфере хаотически. Высокотемпературная компонента формирует четкие группы. Тест складки [Храмов и др., 1982] (сравнение средних направлений [Баженов и др., 1988; Шипунов, 1995]) показал, что вы-

сокотемпературная компонента является доскладчатой (рис. 10в, табл. 3).

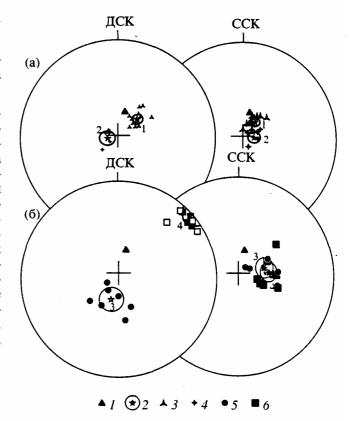
Направления векторов намагниченности пород ильхатунской и июнюньваямской свит на сфере образуют хаос.

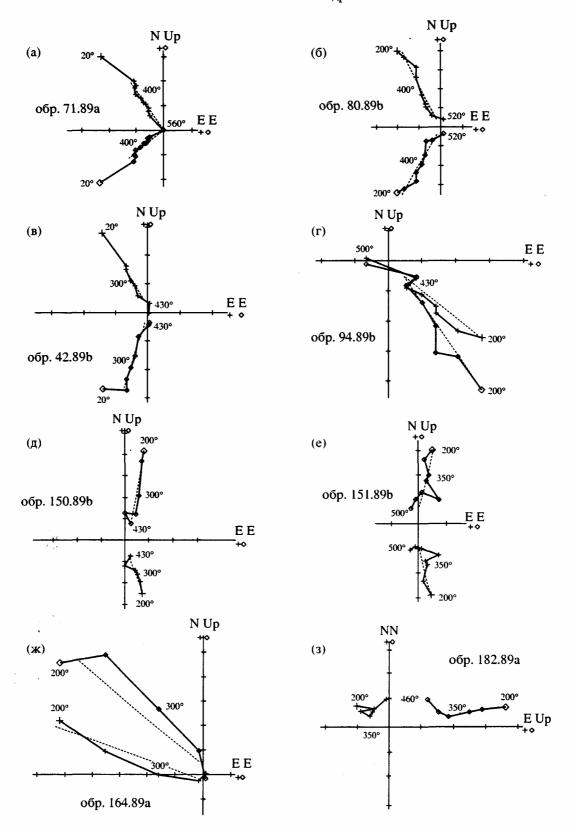
В процессе размагничивания образцов пестроцветной и лимимтеваямской свит было установлено, что в большинстве образцов направления намагниченности хаотически изменяется от нагрева к нагреву. На диаграммах Зийдервельда намагниченности этих образцов прямолинейные участки не выявляются. Все эти образцы были отбракованы. В единичных образцах пестроцветной и лимимтеваямской свит намагниченность закономерно изменяется в процессе термочистки. В них чаще всего выделяется одна компонента, сохраняющаяся до 430-520°C (рис. 9д, 9e). Есть образцы с прямой и обратной полярностью. На сфере векторы намагниченности этих образцов формируют слабо выраженные группы (рис. 10г, табл. 3). Элементы залегания в породах варьируют слабо, тест складки провести невозможно.

ИНТЕРПРЕТАЦИЯ РЕЗУЛЬТАТОВ

1. Устье р. Палана

В аллохтонных позднемеловых толщах кремнисто-обломочного комплекса и палеоценовых терригенных толщах неоавтохтона (анадыркская свита) выделяются послескладчатые и доскладчатые компоненты намагниченности. Палеоценовые терригенные породы перемагничены полностью полем обратной полярности. Эта же компонента выделяется и в кремнистых породах кремнисто-обломочного комплекса. Направления послескладчатой компоненты в большинстве опробованных блоков близки к направлению дипольного магнитного поля Земли обратной полярности в районе Центральной Камчатки. Следовательно, эти породы не были сильно деформированы после перемагничивания.




Рис. 8. Направления естественной остаточной намагниченности в породах Утхолокского вулканогенного комплекса ((а) – в туфах, (б) – в лавах). Условные обозначения: I – направление современного геомагнитного поля в районе исследования, 2 – средние направления намагниченности блоков с кругами доверия, 3—6: направления намагниченности для образцов из блоков I, 2, 3 и 4 соответственно, залитые значки – прямая намагниченность, пустые – обратная; цифры – номера блоков.

В намагниченности кремнистых пород кремнисто-обломочного комплекса помимо послескладчатой присутствуют доскладчатая компонента намагниченности. Рассчитанная по ней палеоширота района формирования кремнистых толщ для блока 5 равна $36\pm8^\circ$ с.ш., для блока $7-40\pm8^\circ$ с.ш.

Таблица 2. Палеомагнитные данные для вулканогенных комплексов полуострова Утхолок

Направления намагниченности	Кол-во образцов	D_{c}	$I_{\rm c}$	K _c	α ₉₅	$D_{\mathtt{g}}$	$I_{\rm p}$	K _д	α _{95д}
блок І (туфы)	12	33	72	109	4	66	67	107	4
блок 2 (туфы)	5	74	79	126	6	211	80	107	6
среднее для блоков 1 и 2	17	41	74	76	4	73	76	24	7
(тест складки): $F_{2\text{cosp}} = 0.59$	9012, $F_{2др}$ =	= 3.737592	$2, F_{\rm Kp} = 0.2$	221055	'	'	1	•	ı
блок 3 (лавы)	7	73	69	45	8	203	71	30	10
блок 4 (лавы)	8	83	65	36	8	52	-2	.40	8
среднее для блоков 3 и 4	15	79	67	41	6	62	46	2	24
(тест складки): $F_{2\cos p} = 0.04$	41841, <i>F</i> _{2др}	= 12.748	$5, F_{\kappa p} = 0$.259155	· . ·	1	•	1	ı

КОВАЛЕНКО и др.

Рис. 9. Примеры диаграмм Зийдервельда для образцов из осадочных кайнозойских толщ о-ва Карагинский. (a), (б) — нижняя часть свиты мыса Тонс; (в), (г) — верхняя часть свиты мыса Тонс; (д), (е) — пестроцветная свита; (ж), (з) — лимимтеваямская свита.

Таблица 3. Палеомагнитные данные по породам острова Карагинский

Направления намагниченности	Кол-во образцов	$D_{\rm c}$	I_{c}	K _c	α _{95c}	D_{π}	I_{π}	K_{μ}	α _{95д}
		Нижн	яя часть с	виты мы	а Тонс				
блок 1	11	302	65	15	11	320	50	15	11
1 N	8	318	63	35	8	329	45	35	8
1 R	3	76	-61	9	27	284	-58	9	27
сравнение 1 N и 1 R (тест с	бращения): F _{2cosp} =	0.56934,	$F_{2\text{gp}} = 0.6$	$56766, F_{\kappa_1}$	= 0.3949	51	1	•
блок 2	3	268	80	6	32	276	60	6	32
среднее для блоков 1 и 2	14	299	68	12	11	313	53	10	12
(тест складки): $F_{2\cos p} = 0.00$	$09882, F_{2др}$	= 0.22340	$01, F_{\kappa p} = 0$.283569		•		•	•
	-	Верхн	яя часть о	виты мы	са Тонс				
блок 3	8	9	82	30	9	317	78	34	9
блок 4	8	326	66	47	7	324	73	67	6
блок5	9	80	75	11	14	12	70	26	9
среднее направление по блокам 3, 4 и 5	25	7	80	13	8	343	75	29	5
(тест складки): $F_{3\cos p} = 6.5$	$S, F_{3,p} = 3.9$	$F_{\rm Kp}=2.$	67	l	ı	•	'	•	•
среднее направление по блокам 3 и 4	16	336	75	25	7	321	76	46	5
(тест складки): $F_{2\text{cosp}} = 0.5$	$50974, F_{2\pi p}$	= 0.0538	$7, F_{\kappa p} = 0$.238599	ı	•	•	•	•
•	Π	естроцве	тная и ли	мимтевая	мская сви	ты			
среднее направление по блокам 7 и 9	8	81	58	10	16	1	68	9	16
(тест складки): $F_{2\cos p} = 0.11$	$39527, F_{2\pi p}$	= 0.20730	$55, F_{\kappa p} = 0$.647549	1	•	•	•	

Сравнение рассчитанных наклонений доскладчатой намагниченности кремнистых пород с "ожидаемыми" наклонениями, т.е. с наклонениями, рассчитанными для координат данного района из кампанских палеомагнитных полюсов Евразии и Северной Америки [Besse, Courtillot, 1991], проведенное по методу [Beck, 1980] с поправкой Демареста [Demarest, 1983], показало, что изучаемый район в верхнем мелу не входил в состав континентальной окраины ни Евразии, ни Северо-Американской плиты (для Евразии F = 21, $\Delta F = 6$; для Северной Америки F = 22, $\Delta F = 6$).

Склонения доскладчатой намагниченности блоков 6 и 7 смещены против часовой стрелки относительно меридиана, Евразии и Северной Америки (для блока 7R = -107; $\Delta R = 14$ для Евразии; R = -119; $\Delta R = 15$ для Северной Америки). Следовательно, блоки 6 и 7 кремнисто-обломочного комплекса были развернуты против часовой стрелки на угол $107 \pm 14^\circ$ относительно Евразии и на $119 \pm 15^\circ$ относительно Северной Америки. Значительные вращения блоков против часовой стрелки могут быть объяснены левосдвиговыми деформациями в этом районе. Для блока 5 в ДСК склонения намагниченности отклонены относительно меридинана как по- (обратная полярность), так и против

часовой стрелки (прямая полярность). Такая ситуация может быть объяснена тем, что образцы из блока были отобраны в наиболее сложной шарнирной части складки, и вторичной ориентацией шарнира этой складки (первичную ориентацию шарниров складок в сдвиговых зонах установить практически невозможно).

Так как кампан-маастрихтские кремнисто-обломочные толщи, по-видимому, формировались в непосредственной близости от островодужного сооружения, то рассчитанные палеошироты являются индикаторами широтного положения и для островной дуги. Эти палеошироты отличаются от палеоширот, рассчитанных для позднемеловых островодужных комплексов Восточной и Центральной Камчатки и для юга Корякии [Левашова, 1999; Коваленко, 1999; Коваленко и др., 1999]. Создается впечатление, что островодужные толщи Западной и Восточной Камчатки и юга Корякии не могут быть частями единой островной дуги, находящейся в позднем мелу на сороковых широтах Тихого океана. Тем более, время деформаций островодужных толщ Западной и Восточной Камчатки резко различно. Деформации в Паланском районе, как было показано выше, произошли в маастрихте. Островодужные же

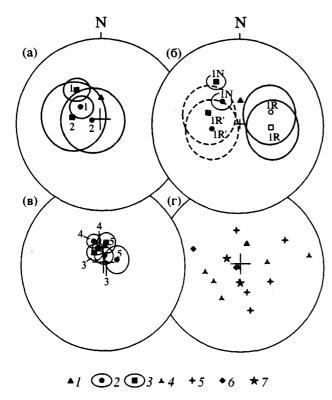


Рис. 10. Направления естественной остаточной намагниченности для кайнозойских пород о-ва Карагинский: (а) - средние направления намагниченности пород нижней части свиты мыса Тонс; (б) – тест обращения для прямо- и обратно намагниченных пород нижней части свиты мыса Тонс (блок 1); (в) - средние направления намагниченности пород верхней части свиты мыса Тонс; (г) - направления намагниченности для отдельных образцов из пестроцветной и усть-лимимтеваямской свит. Условные обознчения: 1 - направление современного геомагнитного поля в районе исследования, 2 - среднее по блоку направление намагниченности в ССК с кругами доверия, 3 – среднее по блоку направление намагниченности в ДСК с кругами доверия, 4 - направления намагниченности для отдельных образцов из пестроцветной свиты в ССК, 5 - то же в ДСК, 6 - направления намагниченности для отдельных образцов из лимимтеваямской ситы в ССК, 7 - то же в ДСК. Залитые значки - прямая полярность, пустые - обратная. 1R - среднее направление намагниченности обратной полярности для блока 1 до приведения его к прямой полярности, 18 - то же после приведения этого направления к прямой полярности.

толщи Восточной и Центральной Камчатки деформировались в позднем палеоцене, на границе палеоцена и эоцена [Коваленко, 2000]. Отсюда следует, что, скорее всего, в конце мела на сороковых—пятидесятых широтах Тихого океана существовала система островных дуг, в разное время претерпевших коллизию с материком.

2. Полуостров Утхолок

Проведенные палеомагнитные исследования пород полуострова Утхолок показали, что они

перемагничены магнитным полем прямой полярности. Направления послескладчатой намагниченности близки к дипольному полю Земли прямой полярности в этом районе. Следовательно, перемагничивание произошло после всех этапов деформаций толщ Утхолокского полуострова. Время перемагничивания отличается от времени перемагничивания пород в бассейне р. Палана, так как там перемагничивание произошло в период обратной полярности магнитного поля Земли. Возможно, перемагничивание пород связано с внедрением гранитных интрузий в миоцене.

3. Остров Карагинский

Вулканогенные породы нижней части свиты мыса Тонс скорее всего перемагничены. Об этом свидетельствует отрицательный тест обращения. Палеоширота (27° с.ш.), рассчитанная для этих пород, противоречит всем имеющимся для района Камчатки палеотектоническим реконструкциям. Присутствие послескладчатой намагниченности прямой и обратной полярности говорит о том, что перемагничивание протекало относительно долго, так как успела поменяться полярность магнитного поля Земли и, что, скорее всего, перемагничивание связано с химическим воздействием мигрирующих флюидов.

В породах верхней части свиты мыса Тонс (верхний эоцен) была выделена доскладчатая компонента намагниченности. Эти породы формировались на широте $62\pm8^\circ$ с.ш. Сравнение рассчитанных для этих толщ наклонений [Веск, 1980, Demarest, 1983], с "ожидаемыми" наклонениями [Вesse, Courtillot, 1991], показало, что изучаемый район в то время мог входить как в состав континентальной окраины Евразии, так и Северной Америки (F=3.5; $\Delta F=4.3$ для Евразии; F=4.3; $\Delta F=4.3$ для Северной Америки).

Сравнение склонений, полученных нами, и рассчитанных для Евразии и Северной Америки, показало, что толщи пород верха свиты мыса Тонс значимых разворотов не испытывали (R=-10; $\Delta R=17.3$ для Евразии; R=-15.2; $\Delta R=17.8$ для Северной Америки).

Приведенные данные подтверждают выводы, основанные на геологических материалах, о том, что в эоцене террейны восточной Камчатки были включены в структуру континентальной окраины. На шестидесятых широтах формировалась аккреционная призма о. Карагинского, и формировался прогиб пролива Литке, где накапливались исследованные нами осадочные толщи.

выводы

1. Позднемеловые островодужные толщи бассейна р. Палана формировались на сороковых градусах северной широты и не входили в позд-

нем мелу ни в состав континентальной окраины Евразии, ни Северо-Американской плиты.

Полученные средние палеошироты отличаются от палеоширот, рассчитанных для позднемеловых островодужных комплексов Восточной и Центральной Камчатки и для юга Корякин. Разный возраст деформаций островодужных толщ Западной и Восточной Камчатки также заставляет предполагать, что в структуре этих районов находятся остатки разных дуг. То есть, в конце мела на сороковых-пятидесятых широтах Тихого океана существовала система островных дуг, в разное время претерпевших коллизию с материком.

2. Среднеэоценовые породы свиты мыса Тоне формировались на широте $62\pm8^{\circ}$ с.ш. и не испы тали значимых вращений в горизонтальной плос кости. В это время они могли входить как в состав континентальной окраины Евразии, так и Север ной Америки.

Приведенные данные подтверждают выводы, основанные на геологических материалах, о том, что в эоцене террейны Восточной Камчатки были включены в структуру континентальной окрачны. На шестидесятых широтах формировалась аккреционная призма о. Карагинского, и формировался прогиб пролива Литке, где накапливались осадочные толщи, исследованные нами.

3. Исследованные толщи во всех трех районах в разной степени перемагничены. Перемагничивание происходило после главных этапов дефор маций толщ, в разное время, в периоды разной полярности геомагнитного поля, и, по-видимому, связано с разными процессами.

Работа выполнена при финансовой поддержке РФФИ, проекты № 00-05-64004 и 00-05-64005.

СПИСОК ЛИТЕРАТУРЫ

Баженов МЛ., Шипунов С.В. Метод складки в палеомагнетизме // Изв. АН СССР. Сер. Физика Земли. 1988. № 7. С. 89-101.

Басилян А.Э., Витухин Д.И., Орешкина Т.В. Верхний кайнозой Восточной Камчатки // Бюл. Моск. о-ва испытателей природы. Отд. геол. 1993. Т. 68. Вып. 5. С. 79-94.

Богданов Н.А., Чехович В Д., Коваленко Д.В., Соловьев А.В., Сухов А.Н., Леднева Г.В., Чернов Е.Е. Коллизионная тектоника Западно-Камчатской и Охотоморской микроплит // Материалы 34 Тектонического совещания "Тектоника Неогея": общие и региональные аспекты. 2001.

Гладенков Ю.Б. Неоген Камчатки // Тр. ГИН АН СССР. 1972. Вып. 214. 251 с.

Гладенков Ю.Б., Гречин В.И. Особенности формирования вулканогенно-осадочных толщ неогена Восточной Камчатки (о. Карагинский) // Бюл. Моск. о-ва испытателей природы. Отд. геол. 1969. Т. 44. Вып. 5. С. 72-81.

Демидов Н.Т., Сулима Г.С. Государственная геологическая карта СССР масштаба 1 : 200000, лист О-50-X,X1. Объяснительная записка. М. 1988, 99 с.

Коваленко Д.В. Палеомагнетизм и тектоническая эвоюция северо-западного обрамления Командорской котловины (Берингово море) // Геотектоника. 1999. № 5. С. 58-77.

Коваленко Д.В., Ярославцева Я.Ю., Злобин В Л. Палеомагнетизм и тектоника о. Карагинский (юг Корякского нагорья) // Геотектоника. 1999. № 2. С. 54-72.

Коваленко Д.В. Палеомагнетизм геологических комплексов Камчатки и юга Корякин. Автореф. дис. ... докт. геол.-мин. наук. М. 2000.48 c.

Кузьмичев А.Б., Сухов А.Н. Островодужный мел окрестностей Усть-Паланы (Западная Камчатка): строение разреза и геодинамические спекуляции // Исследования литосферы. М.: ИЛРАН. 2000. С. 33-36.

Левашова Н.М. Кинематика позднемеловых и мел-палеогеновых энсиматических островных дуг Камчатки. Автреф. дис. ... канд. геол.-мин. наук. 1999. 22 с.

Нижний палеоген Западной Камчатки (стратиграфия, палеогеография, геологические события) // Гладенков Ю.Б., Шанцер А.Е., Челебаева А.И. и др. М.: ГЕОС. 1997. 367 с. (Тр. ГИН РАН; вып. 488).

Палечек Т.Н., Соловьев А.В., Шапиро М.Н. Возраст докайнозойских комплексов района поселка Палана (Западная Камчатки) // Исследования литосферы. М.: ИЛРАН. 2000. С. 42-45.

Чехович В.Д. Тектоника и геодинамика складчатого обрамления малых океанических бассейнов. М.: Наука. 1993. 272 с.

Чехович ВД., Богданов Н.А. Кайнозойская история северо-западного обрамления глубоководных котловин Берингова моря // Изв. ВУЗов. Геология и развед-ка. 1999.№3. С. 3-12.

Храмов А.Н.. Гончаров Г.И., Комиссарова Р.А. и др. Палеомагнитология. Л.: Недра. 1982. 312 с.

Шапиро М.Н. Позднемеловая Ачайваям-Валагинская вулканическая дуга (Камчатка) и кинематика плит северной Пацифики // Геотектоника. 1995. № 1. С. 58-70.

Шипунов С.В. Новый тест складки в палеомагнетизме (реабилитация теста выравнивания // Физика Земли. 1995. №4. С. 67-74.

Beck M.E.. *Jr.* Paleomagnetic record of plate-margin tectonic processes along the western edge of North America // J. Geophys. Res. 1980. V. 85. P. 7115-7131.

Besse J., Courtillot V. Revised and synthetic apparent polar wander path of the African, Eurasian, North American and Indian Plates, and True polar wander since 200 Ma // J. Geophys. Res. 1991. V. 96. P. 4029-4050.

Demarest H.H., Jr. Error analysis for the determination of tectonic rotation from paleomagnetic data // J. Geophys. Res. 1983. V. 88. P. 4121^328.

Kirschvink J.L. The least-squares line and plane and the analysis of paleomagnetic data // Geophys. J.R. Astron. Soc. 1980. V. 62. P. 699-718.

ZijderveldJ.D.A. A.C. Demagnetization of rocks: analysis of results // Methods in palaeomagnetism / Ed. Collinson D.W., Creer K.M. Amsterdam, a. o. Elsevier Publ. Co. 1967. P. 254-286.