
Solid State Communications, Vol. 53, No. 4, pp. 359-362,  1985. 0038-1098/85 $3.00 + .00 
Printed in Great Britain. Pergamon Press Ltd. 

THE MAGNETIZATION OF A RANDOM ASSEMBLY OF INTERACTING MOMENTS 

D. Walton 

Department of Physics, McMaster University, Hamilton, Ontario, Canada 

and 

D.J. Dunlop 

Department of Physics, University of Toronto, Toronto, Ontario, Canada 

(Received 22 August 1984 by M.F. Collins) 

The magnetization in a field of 10e,  and subsequent demagnetization in 
zero field of a random assembly of single domain magnetite particles as a 
function of time has been measured. The effect of interparticle inter- 
actions is clearly evident. The results are in good agreement with a mean 
random field theory. 

A DESCRIPTION of the internal fields of a random 
assembly of interacting particles is important for an 
understanding of the properties of spin glasses, dilute 
solid solutions of polar molecules, and rocks. We pre- 
sent results of experiments on a sample consisting of 
artificial single domain magnetite particles which clearly 
show the effect of a fluctuating random internal field. 
Such fields are central to many theories of spin glasses 
[1 ,2] .  However direct experimental verification is 
difficult due to a lack of a complete description of the 
spin glass phase. 

The magnetic viscosity of assemblies of single- 
domain grains is a subject which is almost fifty years 
old. The central result of all the work is that 

M = S l n t ,  

where M is the magnetization, t the time and S the 
"viscosity coefficient". Here we wish to report on 
a study in which the relationship betweenM and 
In t is clearly non-linear. 

A study of the temperature dependence of the mag- 
netic viscosity of  assemblies of single and multi-domain 
grains has recently been published [3]. It was possible 
to account [4] for the data on single domain grains 
using N6el's theory [5] with the exception of a cur- 
vature in the plot of  M against In t. Neel's theory pre- 
dicts a straight line i.e. M proportional to In t. An 
extension of the theory [6] predicts that M should in 
fact be proportional to (In cO n where c is a rate constant 

108 Hz [5] and n is determined by the grain size dis- 
tribution. This will lead to curvature, but because c is so 
large in comparison to t the curvature is very small. How- 
ever in the case of  the samples of single domain grains 
the size distribution is known and could not account for 
the curvature. The possibility existed that this might be 
due to inter-particle interactions. The samples used in 
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Fig. 1. Particle size distribution as determined by 
electron microscopy. The solid line is a fit to a log- 
normal distribution. 

the study of [3] were produced by dispersing the 
magnetite powder in a non-magnetic matrix. It  is very 
difficult to avoid some "clumps" of magnetite in such a 
sample. I f  this is the case, then a sample of the pure mag- 
netite powder should show increased curvature. 

Our sample consisted of artificial magnetite grains 
whose size distribution, as determined by electron 
microscopy is shown as a histogram in Fig. 1 [7]. The 
solid line is the best-fitting log-normal distribution 
function. The sample consisted of approximately 
0.5 gms. of the material packed in a non-magnetic 
container. 

The magnetization as a function of time was 
measured at room temperature using a S.Q.U.I.D. 2d. 
order gradiometer. Unfortunately it was not possible to 
change the temperature without the appearance of 
irreversible changes in M due to mineral alteration of the 
sample. Therefore only data at room temperature were 
obtained. Results are only shown for a single field; the 
field dependence of the magnetization is identical to 
that which is commonly observed in low (< 10 Oe) fields, 
namely that OM/O In t is proportional to H, where H is 
the applied field. 
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Fig. 2. Experimental results for the magnetization (dots) 
in a field of  10e ,  and subsequent demagnetization (+) 
in zero field. The dashed line is the expected behaviour 
of  a non-interacting system. The solid lines are calculated 
using the mean field theory of  Klein [ 1 ]. 

The results are shown in Fig. 2, plotted against the 
logarithm of the time. The dots are measured values of  
magnetization in an applied field of  10e  The crosses are 
the decaying moment in zero field. The expected 
behaviour of  a dispersed assembly is indicated by the 
dashed line. This line shows a small amount of  curvature 
which is predicted by theory [6]. This is due to the par- 
ticle size distribution. For a detailed analysis the reader 
is referred to [6].  Our sample behaves quite differently, 
showing a pronounced curvature. The difference must 
be due to interparticle interactions. The solid lines in 
Fig. 2 are the result o f  the following calculation: 

Our sample consists of  a large number of  particles of  
varying size with random orientations. The magnetic 
moment of  a particle of  volume V is JV where J is the 
saturation magnetization. It is assumed that there are 
two possible antiparallel orientations for the moment. 
The interparticle interaction is due to the magnetic 
dipole field produced by the neighbours of  a particle. 
This problem is exactly the one considered by Klein in 
a number of  publications [8].  Klein has solved both the 
Heisenberg and the Ising model in the random field 
approximation. Since our particles are fixed in space, 
and only one component of  the field is of  interest, it 
is the Ising solution which is appropriate [9].  We closely 
follow Klein's treatment. 

The probability distribution of  the internal field h 
is given by 

P(h) = exp (-- h2/D2)2/X/TrD. (1) 

h, in other words, is treated as a Gaussian random vari- 
able. Klein [1] finds that P(h) is a Lorentzian for 
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small h, but for computational convenience we will 
preserve the Gaussian form for all h. 

D = (27r/3) 1/2 g(m), 

where g is the field at a particle due to its neighbour 
multiplied by the number of  nearest neighbours. In the 
present case the particle size is variable, as is the nearest 
neighbour distance, so these quantities are to be replaced 
by suitable averages. (m) is the average of  the absolute 
value of  the magnetization per particle divided by the 
particle moment. The magnetization of  the sample, M 
is zero in zero field, but m is not: 

(m) = J N(V)dVJP(h)In(V,h + B)I dh, (2) 

where B is the external field, N(V)d  V is the number of  
grains whose volume lies between V and V + dV and n is 
the distribution function. 

Because we are dealing with nearly superparamagnetic 
systems the evaluation of  2 is complicated by the fact 
that n is time dependent. This is also the case for the 
magnetization 

(M) = f JVN(V)dVf  P(h) n(V, h + B)dh. (3) 

n is obtained from 

dn/dt = tanh (x + b) -- n)/r (4) 

where x = JVh/kT, and b = JVB/kT 
tanh (x + b) is the equilibrium distribution func- 

tion towards which n is relaxing. Actually this is only an 
approximation to the true distribution which lies some- 
where between a Langevin function and the tanh 
function. 

The solution to 4 is 

n = n(0) exp (-- t/r) + tanh (x + b) [1 -- exp -- (t/z)] 

(5) 
and r -1 is r -1 = c exp (--KV/kT) where K is the ani- 
sotropy constant; in this case it is due to the shape of  
the particles. KV is the energy barrier which must be 
overcome when the particle moment flips from one 
orientation to the other, c is an attempt frequency on 
the order of  10 8 Hz. n(0) is the initial distribution, in 
this case n(O) = 0. 

As shown in Fig, 1 the size distribution N(V) is well 
fit by a log normal distribution, 

N(V) = (A/V) exp [--(3 ln(V/Vo)) 2 ] (6) 

where Vo is 4.3 x 10 -iv cm 3, and A a constant propor- 
tional to the concentration. 

The double exponential in 5 restricts the values of  
V so the logarithm in 6 does not change very much over 
the region of  interest. We approximate N(V) by C[V 
where 

C = A exp - - (3  In V/Vo) 2 -- 0.2A. 
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Equation 5 is essentially a step function, and integration 
over V need only be taken to a maximum value 

V m = (kT /K)  In ct (7) 

At room temperature J V D / k T  turns out to be less 
than 1, P(h) is small for h > D, and tanh (x + b) may 
be replaced by its argument. Equation 2 then becomes 

( k T I K )  In  c t  

(m) = | (C/V)  d V(2JV/kT)  
0 

B ? 

+ :(B/Dx/zr) exp -- (h 2/D 2) dh[. (8) 
0 l 

Approximating the resulting error functions by their 
leading terms, and letting K = 1/2 JH c 

(m) = 2C (B/Hc) In ct  (9) 

Klein [10] obtains an analogous result for high 
temperatures. 

To calculate M we again expand tanh (x + b), this 
time retaining terms in Bh 2 and Bh 4 ; we neglect terms 
in powers of  B greater than one because B is small: 

( k T / K )  In e t  o o  

M = f JCd V f 2 /x / .D e -h/D 2B 
0 0 

x {(JV/kT) + (JV/kT)3h 2 + (JV/kT)Sh4)dh.  

On integrating 

M = 2kTC(ln ct) 2 B{1 + (d In ct) 2 + 2(d In c04 } (10) 

where d = D/H e. 
Since D is proportional to in ct from equation 9, in 

this approximation the corrections are proportional to 
the fourth and eighth power of  In ct respectively. 

After the sample was held in field for a time t r the 
field was turned off. At the moment the field was turned 
off the distribution function was (from 5) 

no = tanh (x + B) {1 -- exp [-- ct t exp ( - -KV/kT)]  } 

(11) 

lhe  field is now zero so the equilibrium distribution is 
zero; therefore equation 5 becomes 

n = no exp [--ct  exp ( - -KV/kT) ]  

with no given by equation 11. 
Following the same procedures used in deriving 10 

Mdemag = 2kTC(ln t f / t)2B 

x {1 + (d In tr/t) 2 + 2(d In t t / t )  4 }. 

Without the terms in the square brackets the 
expressions are those for non interacting grains, which 

agrees well with experiment. The terms in d therefore, 
contain the effect of the random field. 

In order to compare equation 11 with experiment 
values for H e and g are required. For this material H e 
is equal to 175 Oe [7]. It is difficult to obtain a pre- 
cise value for g, but it should be approximately equal to 
the field at the average nearest neighbour distance. If 
this distance is set equal to twice the diameter of the 
average grain, g is about 50 Oe. The fit in Fig. 2 was 
obtained by allowing g to vary; the value in that case 
is 20 Oe. The discrepancy could possibly be due to oxi- 
dation of the magnetite grains [7]. 

In general spin-glasses, at least at low concen- 
trations of the magnetic species, show the standard M = 
S In t behaviour [ 11 ]. No clear evidence of curvature 
exists in the data of reference [ 11 ]. On the other hand it 
is interesting to note that Chamberlin, Mozurkewich and 
Orbach [12] have recently observed the time decay of 
thermal remanent magnetization in spin glasses that is 
similar to the demagnetization data shown in Fig. 2. 
Namely, both sets of data show an accelerating rate of 
decay with increase in In t. In their data the curvature 
increased as the temperature was lowered below the 
spin-glass transition. The following is a completely spec- 
ulative application of the random field model used here 
to that case. Assume that the spin glass phase consists of 
a large number of spin clusters. The size of a cluster 
would be determined by the number of spins whose 
interaction energy exceeded kT. The size of the clusters 
would be expected to increase as the temperature 
decreased since this would allow the more weakly 
coupled spins to be bound. Thus close to the transition 
the clusters would be few and small, because only the 
strongly interacting spins could order. The behaviour 
would then be the same as that of a non-interacting 
system, and a plot of M against In t would show only a 
slight curvature. Well below the transition temperature 
the clusters would be larger and more numerous, and 
these moments would be effective in providing signifi- 
cant local fields, leading to curvature in the plot of k T  
against in t. 

We have observed the effect of interparticle inter- 
actions on the magnetization of a random assembly of 
single domain magnetite grains. The experimental results 
are in good agreement with a mean random field theory. 
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