
JOURNAL OF APPLIED PHYSICS VOLUME 85, NUMBER 9 1 MAY 1999
Characterizing interactions in fine magnetic particle systems
using first order reversal curves
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We demonstrate a powerful and practical method of characterizing interactions in fine magnetic
particle systems utilizing a class of hysteresis curves known as first order reversal curves. This
method is tested on samples of highly dispersed magnetic particles, where it leads to a more detailed
understanding of interactions than has previously been possible. In a quantitative comparison
between this method and thedM method, which is based on the Wohlfarth relation, our method
provides a more precise measure of the strength of the interactions. Our method also has the
advantage that it can be used to decouple the effects of the mean interaction field from the effects
of local interaction field variance. ©1999 American Institute of Physics.
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I. INTRODUCTION

Magnetic interactions between particles are a major
terminant of noise levels in magnetic recording media. T
conventional methods1–3 of characterizing magnetic interac
tions utilize isothermal remanent magnetization~IRM! and
dc demagnetization remanence~DCD! curves, and are base
on the Wohlfarth4 relation. The most important among the
methods is thedM method.5,6 In this paper, an alternative
approach is described which employs first order reve
curves~FORCs!.7 A typical set of FORCs is shown in Fig. 1
The structure present in this set of curves is not readily
parent, but it can be emphasized with a mixed second der
tive as described more formally below. In this fashion, t
FORCs of Fig. 1 can be transformed into the contour plo
Fig. 2, which we will refer to as a FORC diagram.~There are
obvious similarities between a FORC diagram and a Preis
diagram,8 but there are also important distinctions, which w
discuss in Appendix A.!

We have developed a practical technique for measu
and calculating accurate FORC diagrams. This technique
quires thousands of data points, and, until recently, wo
have been impractical. However, with the advent of a co
mercially available, automated alternating field gradie
magnetometer,9 the acquisition of a FORC diagram is
straightforward task, requiring only a couple of hours f
data collection and analysis.

II. EVALUATION OF A FORC DIAGRAM

The measurement of a FORC, as shown in Fig. 3, beg
with the saturation of the sample by a large positive app

a!Electronic mail: pike@geology.ucdavis.edu
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field. This field is ramped down to a reversal fieldHa . The
FORC consists of a measurement of the magnetization as
field is then increased fromHa back up to saturation. The
magnetization at applied fieldHb on the FORC with reversa
point Ha is denoted byM (Ha ,Hb), where Hb>Ha . A
FORC distribution is defined as the mixed second derivat

r~Ha ,Hb![2
]2M ~Ha ,Hb!

]Ha]Hb
, ~1!

where this is well defined only forHb.Ha .
When a FORC distribution is plotted, it is convenient

change coordinates from$Ha ,Hb% to $Hc[(Hb2Ha)/2,
Hu[(Ha1Hb)/2%. A FORC diagram is a contour plot of
FORC distribution withHc and Hu on the horizontal and
vertical axes, respectively. SinceHb.Ha , thenHc.0, and a
FORC diagram is confined to the right side half plane.
shown below, when the basic Preisach model is used,Hc is
equivalent to a particle coercivity andHu to a local interac-
tion field.

To evaluate a FORC diagram, first the boundaries of
desired diagram in theHc , Hu plane are selected. The reve
sal field of the first FORC,Ha1 , is calculated from the co-
ordinates of the upper left corner of the diagram@i.e., Ha

5(Hu2Hc)#; the reversal field of the last FORC,HaN , is
calculated from the bottom right corner; andN FORCs are
measured with evenly spaced reversal fields between an
cluding Ha1 and HaN . The data points on each individua
FORC are measured with this same field spacing. The s
averaging time is used in the measurement of every d
point. In choosingN, the number of FORCs to be measure
there is a tradeoff between the resolution of the FORC d
gram and data acquisition time. We have found thatN599
0 © 1999 American Institute of Physics
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6661J. Appl. Phys., Vol. 85, No. 9, 1 May 1999 Pike, Roberts, and Verosub
yields a reasonable resolution in an acquisition time betw
1 and 2 h.

To calculater(Ha ,Hb) we use consecutive data poin
from consecutive reversal curves in an array such as
shown in Fig. 4. We fit the magnetization at these points w
a polynomial surface of the form:a11a2Ha1a3Ha

21a4Hb

1a5Hb
21a6HaHb ; then 2a6 is taken as the value o

r(Ha ,Hb) at the center of the array. The number of da
points contained in this array is (2* SF11)2, where SF is
referred to as the ‘‘smoothing factor’’ and can be set betw
3 for a well-behaved sample and 10 for a noisy samp
Numerical effects inevitably smooth out somewhat the f
tures of a FORC distribution; the degree of smoothing
creases with the value of SF. In practice, one tries to use
smallest value of SF possible, while keeping noise on
FORC diagram to acceptable levels. The FORC diagram
this paper were evaluated with SF53.

III. EXPERIMENTAL RESULTS

FORC distributions were measured for a sample of m
netic recording material from a typical floppy disk and f
samples of highly dispersed, single domain magnetic p
ticles prepared by Eastman Kodak Company Research L
ratories at four concentrations of: 1.5%, 3%, 6% and 9%
magnetic material by mass. As far as it was possible to c
trol, the concentration of particles and, hence, the proxim
of particles to each other, was the only parameter allowe
vary between samples.

FORC diagrams for the floppy disk material and for
1.5% Kodak sample are shown in Figs. 2 and 5, respectiv
The averaging time spend at each data point was 0.4 s

FIG. 1. A set of first order reversal curves~FORCs! for a piece of a typical
floppy magnetic recording disk.

FIG. 2. A FORC diagram for a floppy disk sample. Calculated from
FORCs of which the data in Fig. 1 are a subset.
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emphasize the differences between the Kodak samples
also acquired FORC diagrams for a smaller region of
FORC plane, as shown in Fig. 6 for a 1.5% and 9% sam
Each FORC diagram required a separate measurement o
FORCs. Since the diagrams in Fig. 6 have a smaller size,
99 FORCs used to evaluate them had a smaller field spa
~1 mT! than those used to calculate Fig. 5~2 mT!, which
provides for a greater resolution.

IV. THEORETICAL MODELS

A FORC diagram contains a large amount of inform
tion, but this information is of little use if it cannot be co
rectly interpreted. To facilitate our interpretation of the
diagrams, we can study the FORC diagrams associated
theoretical models. This will permit us to assign interpre
tions to the features we see on experimental diagrams. Th
fore, below we calculate FORC distributions for some sim
theoretical models.

A. Noninteracting single domain particles

Our first model consists of a collection of noninteracti
single domain, particles. The magnetic behavior of an in
vidual single domain particle can, to a good approximati
be represented as the sum of a reversible component a
square hysteresis loop. In the noninteracting case, the rev
ible component will vanish when the second derivative
Eq. ~1! is taken and can be ignored. The half width of t
square loop is termed a particle’s switching field. A colle
tion of particles can be represented by a distribution
switching fields f (Hsw;Hsw.0), where*0

`dx f(x)51. To

FIG. 3. Definition of a FORC. The measurement of a FORC begins with
saturation of the sample by a large positive field. This field is ramped do
to a reversal fieldHa . The FORC consists of a measurement of the mag
tization as the field is then increased fromHa back up to saturation. The
magnetization atHb on the FORC with reversal pointHa is denoted by
M (Ha ,Hb).

FIG. 4. A subset of seven consecutive FORCs from Fig. 1. The circ
points are a 737 array of data points evenly spaced inHa andHb .
 license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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6662 J. Appl. Phys., Vol. 85, No. 9, 1 May 1999 Pike, Roberts, and Verosub
calculate the magnetization on a FORC, we start with a s
rating positive applied field, so all the particles have a po
tive orientation. AtHa , particles with switching fields in the
range 0<Hsw<2Ha have switched to negative; when th
field is increased toHb , particles in the rangeHb,Hsw<
2Ha will remain negative. Thus,M (Ha ,Hb) can be written

M ~Ha ,Hb!5122E
Max@0,Hb ,2Ha#

Max@0,2Ha#

dHsw f ~Hsw!. ~2!

The first derivative ofM (Ha ,Hb) with respect toHb is:

dM~Ha ,Hb!/dHb52 f ~Hb! for 0,Hb<2Ha ,

50 for 2Ha,Hb ,

which can be written as

dM~Ha ,Hb!/dHb52 f ~Hb!u~2Ha2Hb!u~Hb!, ~3!

whereu(x) is the step function which equals 0 forx,0 and
1 for x>0. The derivative ofu(x) is d(x), whered(x) is a
delta function. The derivative of Eq.~3! with respect toHa is

r~Ha ,Hb![2
]2M ~Ha ,Hb!

]Ha]Hb
52 f ~Hb!d~Ha1Hb!u~Hb!.

~4!

FIG. 5. FORC diagram for a 1.5% Kodak sample. Field spacing: 3 m

FIG. 6. FORC diagram for:~a! 1.5% and~b! 9% Kodak samples. Field
spacing: 1 mT.
Downloaded 24 Dec 2002 to 152.78.0.29. Redistribution subject to AIP
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Changing coordinates, we get r(Hc ,Hu)
52 f (Hc)d(Hu)u(Hc). Hence, this theoreticalr(Hc ,Hu) is
a positive-valued delta function located on theHu50 axis,
for Hc.0.

To illustrate the properties of this model, we used Eq.~2!
to calculate points on 99 FORCs, and from this set of th
retical FORC data we calculated the FORC diagram sho
in Fig. 7~a!. A lognormal function was used forf (Hsw) with
a logarithmic mean10 msw5120 and a logarithmic variance10

ssw50.4. The distribution in Fig. 7~a! is highly peaked on
the Hu50 axis, which is characteristic of a noninteractin
system. The small vertical spread that is present can be
tributed to numerical smoothing effects. In an experimen
measurement of a FORC distribution, some vertical spr
will always be present due to numerical effects, even in
absence of interactions. However, as we will show,
FORC distribution of a real sample with interactions~e.g.,
Fig. 2! will have a greater spread than can be attributed
numerical smoothing alone.

B. Single domain particles with interactions: The
basic Preisach model

There does not exist an accurate physical model of
teracting magnetic particles that is practical for calculatio
However, as a simplification, the above-described model
be combined with a local interaction field which is assum
to be constant at a given particle site but which varies r
domly from site to site. This interaction field is also assum
to be aligned with the applied field. The distribution of in
teraction field values is denoted byg(H int), whereg is sym-
metric aboutH int50 and*2`

` dHint g(H int)51. It is also as-

FIG. 7. FORC diagrams for a system of single domain particles in th
models:~a! noninteracting model;~b! mean interaction field model withk
516, and ~c! mean interaction field model withk526 ~msw5120 and
ssw50.4!.
 license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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6663J. Appl. Phys., Vol. 85, No. 9, 1 May 1999 Pike, Roberts, and Verosub
sumed that there is no correlation between the switching fi
and the interaction field: This model has been referred to
the basic Preisach model.

Again, all particles begin in a positive orientation. A
Ha , particles for whichHa1H int,2Hsw have switched to
negative@this can be written:H int,2(Hsw1Ha)#. At Hb ,
particles for which (Hb1H int),Hsw will remain switched
@giving H int,(Hsw2Hb)#. In summary, a particle will have a
negative orientation atHb if H int satisfies both of these in
equalities, that is: H int,Min@2(Hsw1Ha),(Hsw2Hb)#.
Thus,

M ~Ha ,Hb!5122E
0

`

dHsw f ~Hsw!

3E
2`

Min@2~Hsw1Ha!,~Hsw2Hb!#

dHint g~H int!. ~5!

Using the same approach described in Sec. IV A, a
using Eq. ~5! for M (Ha ,Hb), it can be show that
r(Hc ,Hu)52 f (Hc)g(Hu). Hence, in the basic Preisac
model, a FORC distributionr(Hc ,Hu) is equivalent to the
distribution of particles f (Hsw)g(H int) through a simple
mapping ofHc to Hsw, andHu to H int . The vertical spread
on the FORC diagram is a manifestation of the variance
the distribution of interaction fields@i.e., g(Hu)#.

Ninety-nine FORCs were calculated using Eq.~5! to ob-
tain Fig. 8. We used the same lognormal distributionf (Hsw)
as above, and a normal distribution forg(H int), with stan-
dard deviations int59.0. The large vertical spread in Fig.
as compared with Fig. 7~a!, is due to the presence of a ra
domly varying local interaction field.

C. Single domain particles with interactions: The
mean field model

To examine a different type of complexity, a mean i
teraction fieldkM was added to the noninteracting model.
the magnetization on the upper~descending! half of the ma-
jor hysteresis loop is denoted byM (Ha), then M (Ha) is
given by the implicit integral

M ~Ha!5122E
0

Max$0,2@Ha1kM~Ha!#%
dHswf ~Hsw!, ~6!

andM (Ha ,Hb) on a FORC is given by

FIG. 8. FORC diagram for a system of interacting single domain partic
modeled with the basic Preisach model~msw5120,ssw50.4, ands int59!.
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M ~Ha ,Hb!

5122E
Max$0,@Hb1kM~Ha ,Hb!,2~Ha1kM~Ha!#%

Max$0,2@Ha1kM~Ha!#%
dHswf ~Hsw!.

~7!

Using the samef (Hsw), FORC diagrams were calculated fo
k516 and 26 @Figs. 7~b! and 7~c!#. Addition of a mean
field has two effects. First, the peak of the distribution
displaced off theHu50 axis: the displacement is down fo
positive k and up for negativek. Second, the direction o
contour elongation now has a positive slope for positive v
ues ofk, and a negative slope for negative values ofk. How-
ever, the mean field does not increase the vertical sprea
the distribution. It is therefore possible to distinguish t
effect of a mean interaction field from that of local intera
tion field variance, which was modeled by the basic Preis
model.

In a mean field model, the reversible component of
magnetization can no longer be ignored. Ifq(H) denotes the
reversible magnetization in the absence of interactions, t
the termq(H1kM) should be added to the right hand sid
of Eqs. ~6! and ~7!. We repeated our calculations using
realistic reversible component:q(H)5ArcTan(H/1200)/
~p/2!. It appears that the effect of a reversible componen
to shift the peak location slightly to the left on a FOR
diagram. The statements made above regarding the mo
results remain valid with this shift.

D. Single domain particles with interactions: The
moving Preisach model

We next combine the basic Preisach model with a m
interaction field; this has been referred to as the moving P
sach model.11 M (Ha) is given by the implicit integral:

M ~Ha!5122E
0

`

dHsw f ~Hsw!

3E
2`

2@Hsw1Ha1kM~Ha!#

dHint f ~H int!, ~8!

andM (Ha ,Hb) is given by

M ~Ha ,Hb!5122E
0

`

dHsw f ~Hsw!

3E
2`

Min$2@Hsw1Ha1kM~Ha!#,Hsw2Hb2kM~Ha ,Hb!%

3dHint g~H int!. ~9!

Using the same distribution functions as above, a FORC
gram was evaluated fork516 ~Fig. 9!. The introduction of
a mean field has moved the peak of the distribution in Fig
below theHu50 axis and has given the direction of conto
elongation a positive slope, in agreement with the results
the above-described mean field model@see Fig. 7~b!#. Note
that a dark region, which represents negative values, oc
at the bottom of Fig. 9. The presence of negative values
r(Hc ,Hu) may be surprising, but there is no mathematic
reason why they are prohibited. In the basic Preisach mo

s
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the distribution of particles r(Hc ,Hu) is related to
f (Hsw)g(H int) through a one-to-one mapping ofHc to Hsw,
and Hu to H int . In this case, negative values ofr(Hc ,Hu)
cannot occur. However, in the moving Preisach model,
relationship is no longer a one-to-one mapping; rath
r(Hc ,Hu) is a nonlocal function off (Hsw)g(H int) that can
take negative values even thoughf (Hsw)g(H int) is always
positive. Detailed measurements have, in fact, shown
negative values occur in the FORC distribution of the flop
disk below and to the left of the region shown in Fig. 2.

Finally, we have repeated our moving Preisach mo
calculation with the addition of the same reversible com
nent described earlier. Again, the primary effect is a sli
shift of the distribution peak to the left. The statements ma
above remain valid in the presence of this shift.

V. COMPARISON OF THEORY AND EXPERIMENT

These simplified models provide us with a framewo
which can be used to interpret the FORC diagrams of
samples. As we have shown, a vertical spread of the cont

FIG. 9. FORC diagram for a system of interacting single domain partic
modeled by the moving Preisach model withk516 ~msw5120, ssw50.4,
ands int59!.

TABLE I. Measurements obtained with FORC distributions anddM p .

Sample
PeakHc

a

~mT!
PeakHu

b

~mT! dHm /dHc
c r1/2 ~mT!d DHu

e DM p
f

floppy 87.5 24.0 0.061 20.2 ¯ 0.295
1.5 I 100.0 0.687 0.00692 ¯ 0.7187 0.216
1.5 II 99.3 0.636 0.00767 10.6 0.7133 0.21
1.5 III 99.2 0.636 0.00711 ¯ 0.7178 0.215
3.0 I 103.2 0.648 0.00894 ¯ 0.738 0.220
3.0 II 103.7 0.638 0.00890 ¯ 0.7359 0.222
3.0 III 102.1 0.641 0.00869 ¯ 0.7385 0.216
6.0 I 102.5 0.609 0.0119 ¯ 0.7751 0.228
6.0 II 102.4 0.609 0.0110 ¯ 0.7692 0.228
6.0 III 100.7 0.571 0.0126 ¯ 0.7741 0.227
9.0 II 101.0 0.579 0.0120 13.7 0.7827 0.23
9.0 III 101.5 0.501 0.0154 ¯ 0.7811 0.231

aPeakHc is theHc coordinate of the distribution peak.
bPeakHu is theHu coordinate of the distribution peak.
cdHm /dHc is the slope ofHm(Hc) at the distribution peak, whereHm(Hc)
is a curve passing through the maximum value of the distribution at e
Hc coordinate.

dr1/2 is the half width of the distribution in a cross section throughHc

5PeakHc .
eDHu calculated with Eq.~10!.
fdM p is the magnitude of the negativedM (H) peak.
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indicates the presence of a randomly varying local inter
tion field. The displacement of the distribution peak belo
the Hu50 axis and a positive slope of the line of conto
elongation are both indicative of a positive mean interact
field. Based on these criteria, we can infer that in the flop
disk sample a substantial random local field and posit
mean field are present~Fig. 2!.

To test these interpretations, we define the followi
quantitative characterizations of FORC distributions: Pe
Hc and PeakHu denote the coordinates of the distributio
peak.Hm(Hc) denotes a curve passing through the distrib
tion maximum at eachHc coordinate;dHm /dHc denotes the
slope of this curve at the distribution peak.r1/2 denotes the
half width of the distribution peak on a vertical cross secti
passing throughHc5PeakHc .

Values for the floppy and Kodak samples are compa
in Table I. The half width of the FORC distributions wa
smallest for the 1.5% Kodak sample, as would be expec
for a highly dispersed particle system. The half width is 29
greater for the 9% Kodak sample and 91% larger for
floppy disk. To enable a more accurate comparison betw
the Kodak samples, we have used higher resolution FO
diagrams of the type shown in Fig. 6 to define an additio
measure of vertical spread:

DHu[

**
R

dHcdHu

2Abs@Hu#

hgt
r@Hc ,Hu2Hm~Hc!#

**
R

dHcdHu r@Hc ,Hu2Hm~Hc!#
, ~10!

where R is the rectangular region encompassed by Fig
~i.e., 71.6 mT<Hc<144.5 mT,212.15<Hu<12.15 mT! and
where hgt is the vertical height of the regionR @i.e., hgt
524.3 mT#. Defined in this fashion,DHu will equal 0 for a
delta function and 1 for a function that is uniformly distrib
uted on theHu axis. A highly consistent progression of in
creasingDHu with increasing particle concentration is ob
served~Table I!, in agreement with our theoretical models

The slope of the line of contour elongationdHm /dHc is
greatest for the floppy disk, which indicates a stronger m
interaction field in this sample.dHm /dHc values for the
Kodak samples increased consistently, for the most p
with increasing concentration. These findings confirm the
lidity of the above-described theoretical framework in inte
preting experimental FORC data.

The PeakHu values for the Kodak samples~Table I! are
more difficult to understand. The mean interaction fie
model indicates that a positive mean field should result i
displacement of the distribution peak below theHu50 axis
giving a negative PeakHu, as was true for the floppy disk
~Fig. 2!. However, the peaks of the Kodak samples are d
placed slightly above theHu50 axis~Fig. 6!, giving a posi-
tive PeakHu. This may occur because during a FORC me
surement, more time is spent at the reversal point~Ha in Fig.
3! than at any of the subsequent points on a FORC. Du
magnetic viscosity effects, the additional time spent here
equivalent to a slight negative shift in the effective value
Ha , which leads to a small upward offset of the FORC d
tribution. This effect is quite small, but because the me
interaction field in the Kodak samples is also small, it b
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comes observable. This hypothesis has been verified by
tentionally adding a 9 s pause at the reversal point. Th
pause produces a further upward shift in the FORC distri
tion. It appears, therefore, that our experimental FORC
tributions have a small, but systematic upward offset. Ho
ever, increasing particle concentration should still push
Hu coordinate of the distribution peak downward, and this
observed experimentally~Table I!. The fact that the distribu-
tion peak for the floppy disk~Fig. 2! is displaced below the
Hu50 axis indicates that interactions in this material ha
completely overcome the small upward displacement du
viscosity effects.

Closer analysis of FORC diagrams makes possibl
more detailed characterization of interactions in the hig
dispersed Kodak samples. The inner contour loops of
Kodak FORC diagrams, in particular the 1.5% sample@Fig.
6~a!#, are highly elongated in the horizontal direction. Co
parison with the noninteracting model@Fig. 7~a!# suggests
that these samples contain a large fraction of isolated, ne
noninteracting particles. In Fig. 10, a vertical cross sect
through the peak of 1.5% Kodak sample FORC distribut
is plotted. The cross section is strongly peaked near theHu

50 axis. The narrow width of this peak and its proximity
the Hu50 axis indicate that a large fraction of the particl
are unaffected by interactions, as would be expected fo
highly dispersed sample. The small positive offset of
peak in Fig. 10 is probably due to the above-described
cosity effects.

Examination of the overall FORC distribution of th
1.5% Kodak sample indicates that while the inner conto
@Fig. 6~a!# are extremely narrow, the outer contour loo
~Fig. 5! are more spread out vertically. This contrasts w
the basic Preisach model~Fig. 8! where the inner and oute
contours have the same shape, and the floppy disk sa
~Fig. 2! where all the contours have roughly the same p
portions. The cross section in Fig. 10 enables a better un
standing of why the outer contours in Fig. 5 have this
creased vertical spread. The basic Preisach model assum
Gaussian distribution of interaction fields, however, t
cross-sectional distribution shown in Fig. 10 is not consist
with a Gaussian distribution. The distribution in Fig. 10 c
be better described as the sum of a narrow and a wide Ga
ian distribution. This observation suggests that these hig
dispersed samples consist of two somewhat distinct pop
tions of particles: a population of well-isolated particle

FIG. 10. Cross section of the FORC distribution of a 1.5% Kodak sam
evaluated atHc5106.6 mT.
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which produce the narrow Gaussian distribution, and a po
lation of small particle clusters~perhaps couplets or triplets!.
Within these clusters, there is a strong, but localized, in
action which produces the wider Gaussian distribution.

Another feature of the Kodak sample FORC diagra
demonstrates a weakness of the Preisach model. Let us
fine the median point of a contour loop as the intersection
a vertical line that crosses the loop where its vertical spr
is greatest, and a horizontal line that crosses the loop wh
its horizontal spread is greatest. For the Preisach model~Fig.
8!, the median points coincide; we can say the contours
concentric. This is a consequence of the fact that, in
Preisach model, the interaction field and switching fields
uncorrelated. However, in Figs. 5 and 6 the median po
shifts to the left as one moves from the inner to the ou
contours. This implies that the switching field and interacti
field are correlated: a strong interaction is correlated with
effective decrease in the switching field. We suggest the
dian coercivity associated with the inner contours in Fig
corresponds to the switching field of isolated particles, a
that the median of the outer contours corresponds to an
fective switching field of particles that occur in small clu
ters.

In most work on Preisach-type models, it is assumed t
there is a Gaussian distribution of interaction fields, and t
the switching field and interaction field distributions are u
correlated. The above results indicate that these assump
are invalid, at least in highly dispersed samples.

VI. COMPARISON WITH THE dM METHOD

Magnetic interactions can also be characterized using
dM method. ThedM curve is calculated by comparing IRM
and DCD curves, where the later starts at negative satura
For a single domain, noninteracting system, the Wohlfa
equality4 predicts that:

2* IRM~H !/M rs5@11DCD~H !/M rs#. ~11!

where M rs is the saturation remanence. For a system
single domain particles, any deviation from equality can
attributed to interactions.dM is defined as the differenc
between the two sides of Eq.~11!:

dM ~H !52* IRM~H !/M rs212DCD~H !/M rs,

where H>0. ~12!

Hence, in the absence of interactions,dM will equal zero.
When thedM curve falls entirely below the horizontal axis
a system is said to have negative interactions~i.e., the inter-
actions destabilize the saturation remanence!. When thedM
curve lies above the horizontal axis, this indicates posit
interactions. In cases where the curve crosses the horizo
axis, interpretation is more difficult. In practice, a small r
sidual magnetizationM re can remain after demagnetizatio
which can distort the results. Eq.~12! can be improved to
account for the residual magnetization:

dM ~H !5212DCD~H !/M rs12*
@ IRM~H !2M re#/M rs

~12M re/M rs!
.

~13!

,
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All of our samples produced negative interactions~Fig.
11!. We letdM p denote the magnitude of the negative pe
of a dM (H) curve, and used this as a measure of interac
strength.dM p values for the Kodak samples~Table I! indi-
cate increasing interactions with increasing concentration
magnetic particles, consistent with ourDHu measurements
However,DHu gives a more precise measure of interactio
thandM p : the difference betweendM p values for the 9% II
and 1.5% II Kodak samples is roughly (0.23120.214)
50.017, whereas the separation betweenDHu values is
(0.78320.713)50.070. The standard deviations in the tw
types of measurement were determined by repeating e
several times on a single sample, giving roughly 0.0012
dM and 0.002 forDHu . Dividing the above separations b
the corresponding deviation gives (0.017/0.0012)514 for
thedM method, and (0.07/0.002)535 for DHu . The FORC
method is therefore at least twice as sensitive in measu
interactions.

Precision is not the only advantage of the FORC meth
On a FORC diagram, the effects of the interaction field me
and the interaction field variance are, at least to some
proximation, decoupled. That is, the vertical displacemen
the peak off theHu50 axis and the slope of the direction o
contour elongation characterize the mean interaction fi
while the vertical spread of the peak is a measure of
variance of the local interaction field. By contrast, it is n
possible with adM plot to decouple the effects of the mea
interaction field from that of the local field variance. A sy
tem with a positive mean field and no local variance w
have a positivedM curve; a system with a negative mea
field will have a negativedM curve. But as Bertotti and
Basso12 and Bassoet al.13 have shown, variance in the loca
interaction field can also lead to a negativedM curve. They
found that even when the mean interaction field is positive
large enough variance can make thedM curve negative. This
appears to be the case with our floppy disk sample: a FO
diagram ~Fig. 2! indicates that this sample has a positi
mean field and a large degree of local field variance. But
a dM curve, the variance dominates, and the curve is enti
negative~Fig. 11!.

FIG. 11. dM curves for a typical floppy disk sample and the 1.5% and
Kodak samples, calculated with Eq.~13!.
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VII. CONCLUSIONS

We have demonstrated a practical technique for cha
terizing interacting single domain magnetic particle syste
using FORC diagrams. The method has been tested
samples of highly dispersed particles and the results indi
that it provides a more precise measure of interact
strength than the more commonly useddM method. Further-
more, this method decouples the effects of the mean inte
tion field and local interaction field variance, which thedM
method does not. For example, it was shown that a samp
typical floppy disk magnetic recording material, which has
negativedM curve, actually has a positive mean interacti
field.

In addition, FORC diagrams can be used to obtain
more detailed understanding of magnetic interactions
highly dispersed particle systems than was previously p
sible. In particular, for the Kodak 1.5% sample, we find th
there are two distinct populations of particles: a populat
of well-isolated particles and a population of small partic
clusters. The switching field in the particle clusters was
fectively reduced by interactions. FORC distributions the
fore provide more detailed qualitative and quantitative inf
mation concerning magnetic particle assemblages tha
available with other techniques.
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APPENDIX A: DISTINCTIONS BETWEEN FORC AND
PREISACH DISTRIBUTIONS AND DIAGRAMS

A Preisach diagram is a contour plot of a Preisach d
tribution, which is used in a Preisach model of hystere
There are actually several variations of the Preisach mo
In the basic Preisach model of an interacting single dom
particle system, each particle is represented by a switch
field and a local interaction field, where the local interacti
field at each particle is assumed to be constant. A system
interacting particles is represented by a distribution
switching fields and interaction fieldsP(Hsw,H int), which is
referred to as a Preisach distribution. The main objective
modeling a real particle system is to find the Preisach dis
bution such that the model gives the best possible agreem
with that particular system’s behavior.

Given a particular particle system, it might seem
though there should be a unique, precisely defined Preis
distribution to represent that system. This, however, is
the case. The fundamental problem is that the basic Prei
model does not have a rigorous physical basis. The assu
tion that there exists a constant, well-defined local interact
d at the site of each moment is not physically valid. T
assumption that each particle has a well-defined switch
field is also dubious, because the switching field of a part
will be effectively coupled to its interactions with surroun
 license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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ing particles, as discussed earlier.~These shortcomings ar
also shared by the more sophisticated versions of the P
sach model.! Because the basic Preisach model is not a
orously valid physical model, the Preisach distribution us
to describe a particular physical system will always be,
some degree, arbitrary. In fact, a number of different al
rithms have been proposed in the literature for calculat
Preisach distributions. In summary, a Preisach distributio
an ambiguously defined theoretical construction.

A FORC distribution, by contrast, is not based on a
assumptions. It is not part of a theoretical model. It is sim
a well-defined transform@i.e., Eq.~1!# of the set of first order
reversal curves that is useful in making the structure of th
data apparent to the human eye.

Furthermore, on physical grounds a symmetry condit
is imposed upon any Preisach distribution: if an applied fi
history H(t) gives a magnetizationM (t), then the opposite
applied field history2H(t) must give the opposite magne
tization 2M (t). This requires that a Preisach distributio
P(Hsw,H int) be symmetric about theH int50 axis, which
corresponds to theHu50 axis on a FORC diagram. How
ever, experimental FORC distributions are not, in gene
symmetric about theHu50 axis~e.g., Fig. 2!. This asymme-
Downloaded 24 Dec 2002 to 152.78.0.29. Redistribution subject to AIP
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try can be corrected to some extent by incorporating a m
ing parameter into the calculations, as is done in the mov
Preisach model.11 But even with a moving parameter, som
degree of asymmetry will almost always be present in
experimentally acquired FORC distribution. Hence, FOR
distributions obtained from experimental data will not,
general, be valid Preisach distributions.
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