
1.  Introduction
Over the last decades, many data-based geomagnetic field models for the last millennia have been developed (e.g., 
Arneitz et al., 2019; Constable et al., 2016; Hellio & Gillet, 2018; Nilsson & Suttie, 2021; Schanner et al., 2022). 
Based on different data collections and modeling methods, each model covers different areas and time periods 
with varying degrees of accuracy and uncertainty. One important data set for models of the geomagnetic field 
of the past millennia is provided by archeomagnetic data. Archeomagnetic data can deliver valuable and useful 
information about the geomagnetic field. However, the highly uneven data coverage, both in space and time poses 
a great challenge. An additional data source that covers larger time periods and improves the spatial coverage is 
provided by paleomagnetic sedimentary records.

The magnetization process in sediments differs from the magnetization of archeological materials. In archeolog-
ical materials, as well as in lava flows, the fairly well-understood thermoremanent magnetization (TRM) occurs 
when the material cools down from above the Curie temperature (e.g., Stacey, 2012). When the temperature is 
above the Curie temperature, the magnetic particles in the material lose their magnetic properties. When they cool 
down the magnetic moments align with the geomagnetic field, and further cooling causes them to be locked in.
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While the lock-in process in the TRM occurs on short time scales (hours to weeks), the lock-in time of magnetic 
moments in sediment records can be much longer (years to centuries). The magnetization in sediments is called 
detrital remanent magnetization (DRM), which was first measured by McNish and Johnson (1938). During the 
sedimentation process, magnetic particles are deposited in such a way that their magnetic moments tend to point 
in the direction of the geomagnetic field while interaction with other particles and the ongoing solidification 
increasingly impede the particles to fully align. Additional sediment particles lead to a consolidation of the 
underlying layers and thus to a mechanical lock-in of the magnetic particles. The magnetization in sediments 
is affected by the interaction of the magnetic particles with the substrate at the sediment-water interface and by 
dewatering of the sediment (Irving, 1957). The terminology and classification of these effects are not completely 
consistent in the literature. In the following, we will be using the terminology recommended in the review paper 
by Verosub (1977). According to Verosub (1977), the term DRM refers to the remanent magnetization found 
in sediments. By depositional DRM (dDRM) we describe the magnetization acquired by the interaction of the 
particles with the substrate at the sediment/water interface. The term post-depositional DRM (pDRM) refers to 
the longer timescale and describes any magnetization that is acquired after the particle settles on the sediment/
water interface.

There are various effects that are summarized in the term dDRM. One example is the inclination error, which 
occurs when non-spherical particles settle flat on the sediment/water interface. This leads to a distortion of the 
inclination to smaller values (R. King, 1955). Another distortion of the inclination can occur when aligned parti-
cles roll into the nearest depression of the sediment/water interface (Griffiths et al., 1960).

In this paper, we will focus on the investigation of the post-depositional DRM. The traditional pDRM model, 
based on decades of research (e.g., Hamano, 1980; Irving, 1957; Irving & Major, 1964; Kent, 1973; Otofuji & 
Sasajima, 1981), can be described as follows. In general, only coarse-grained fractions are mechanically fixed 
more or less immediately after deposition. Smaller particles which are embedded in water-filled voids or pore 
spaces of the sediment can move freely for a longer period of time. With progressive consolidation and dewa-
tering of the sediment, also these particles become locked in. However, alternative theories have challenged the 
classical pDRM acquisition concept, suggesting that sediment flocculation restricts significant post-depositional 
grain movement within pore spaces (Katari et al., 2000). Also, the effects and potential roles of bioturbation have 
been investigated and resulted in alternative sediment mixing models (e.g., Egli & Zhao, 2015).

To sum up, how exactly the pDRM process works and what effects are more or less important is still not fully 
understood. Nonetheless, decades of investigation, several experiments, and modeling approaches lead to the 
conclusion that the pDRM process results in a delayed and smoothed signal. In other words, the magnetic moment 
of an entire layer is given by the weighted sum of the geomagnetic field over the lock-in period. The weights are 
given by so called lock-in functions (Roberts & Winklhofer, 2004; Suganuma et al., 2011).

Figure 1 provides a practical illustration of this effect. We show declination and inclination data obtained from 
a real sediment record from Sweden, together with measurement errors. Additionally, we show the predictions 
from the ArchKalmag14k.r model (Schanner et  al.,  2022). Note that ArchKalmag14k.r exclusively relies on 
archeomagnetic data. The visual representation clearly demonstrates a noticeable delay and mild smoothing in 
the sediment data compared to the predictions from the ArchKalmag14k.r model. It's important to highlight that 

Figure 1.  Declination and inclination of a sediment record from Sweden together with measurement errors (blue dots with 
error bars) are compared to predictions of ArchKalmag14k.r (relying exclusively on archeomagnetic data). An offset and 
smoothing in the signal of the sediment data compared to the signal derived from ArchKalmag14k.r can be observed.
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the data presented here represents real-world observations, and thus, it is imperative to consider the potential 
influence of other factors that may contribute to these observed deviations.

Over the last decades, many lock-in functions have been suggested. Exponential lock-in functions (e.g., Kent 
& Schneider,  1995; Løvlie,  1976), constant (e.g., Bleil & Von Dobeneck,  1999), linear (e.g., Meynadier & 
Valet, 1996), cubic (e.g., Roberts & Winklhofer, 2004), Gaussian (e.g., Suganuma et al., 2011) and parameterized 
lock-in functions that can cover multiple classes (e.g., Nilsson et al., 2018).

In this study, we present a new class of parameterized lock-in functions designed for the comprehensive modeling 
of the offset and smoothing effects caused by the pDRM process. These lock-in functions are characterized by 
four parameters giving them the flexibility to approximate a wide range of previously suggested lock-in functions 
and therefore a wide range of possible lock-in behaviors.

The cornerstone of our methodology lies in the estimation of the lock-in function parameters for a given core 
sample. The aim is to identify the most suitable lock-in function for a given core sample, one that accomplishes 
the tasks of shifting the data adequately and removing the right degree of smoothing. The determination of this 
optimal lock-in function necessitates leveraging external geomagnetic field information that is not affected by 
distortions associated with the lock-in process. This is where archeomagnetic data plays a pivotal role. Archeom-
agnetic data acquire magnetization through TRM and are therefore independent of any lock-in distortion.

Our model uses maximum likelihood methods and global archeomagnetic data to estimate the lock-in function 
parameters. To illustrate this concept, Figure 1 provides a visual representation. It is essential to emphasize that 
our model does not rely on the pre-existing Archkalmag14k.r model or any similar models. Instead, it exclusively 
utilizes the original data used in the creation of the Archkalmag14k.r model (Schanner et al., 2022).

In Section 2, we first briefly outline the geomagnetic field modeling method and then introduce the new class of 
lock-in functions. Subsequently, we delve into two technical subsections (Sections 2.3 and 2.4). In Section 2.3, we 
describe the relationship between the sediment observations and the geomagnetic field resulting in a rigorously 
defined data model for the sediment observations. Within Section 2.4, we describe the adoption and adjustments 
of the Kalman Filter-based method employed in Schanner et  al.  (2022) to suit our context. While these two 
subsections are not essential for a basic grasp of the results, they are crucial for a deeper understanding of the 
methodology and for making it easier to replicate the research. The newly developed method undergoes extensive 
testing on multiple synthetic data sets in Section 3. We discuss the findings and give an outlook on future work, 
including the prospective application of this methodology to real sediment records in Section 4 before ending 
with a summary, conclusions, and outlook on future research.

2.  Modeling Concept
2.1.  Geomagnetic Field Model

We will model the geomagnetic field by using a Bayesian approach based on Gaussian Processes. Every Gaussian 
Process is uniquely defined by a mean and a covariance function (Rasmussen, 2004).

We describe the geomagnetic field as the realization of a Gaussian Process

𝐁𝐁 ∼ 
(

𝐁̄𝐁, 𝐾𝐾𝐁𝐁

)

� (1)

with constant (space, time) mean function 𝐴𝐴 𝐁̄𝐁 ∶ 𝕊𝕊
2

×ℝ → ℝ
3 and kernel function 𝐴𝐴 𝐴𝐴𝐁𝐁 ∶

(

𝕊𝕊
2

×ℝ
)

2

→ ℝ
3×3 , where 

𝐴𝐴 𝕊𝕊
2

=

{

𝑥𝑥 ∈ ℝ
3

|‖𝑥𝑥‖ = 1

}

 denotes the standard two-sphere associated to the space variable. Therefore, the knowl-
edge about the geomagnetic field and its uncertainty is a distribution of functions 𝐴𝐴 𝐁𝐁 ∶ 𝕊𝕊

2

×ℝ → ℝ
3 . In the 

following, we will model the lock-in process for a single sediment core sample and treat the space variable as a 
constant, that is, we will consider 𝐴𝐴 𝐁𝐁 as a Gaussian process of time only.

We follow the a priori assumptions of Schanner et al. (2022) and use the estimated hyperparameters given in 
Table 2 of Schanner et al. (2022). Hence, we assume that all Gauss coefficients are a priori uncorrelated at a refer-
ence radius 𝐴𝐴 𝐴𝐴  = 2,800 km with zero mean except for the axial dipole. For the axial dipole, we assume a constant 
mean value of 𝐴𝐴 𝐴𝐴0

1
  = −38 μT (at the Earth's surface). Further, we assume an a priori variance 𝐴𝐴 𝐴𝐴DP = 39 μT for the 

dipole and an a priori variance 𝐴𝐴 𝐴𝐴ND = 118.22 μT for all higher degrees (at the reference radius). The temporal 
correlation of the Gauss coefficients is assumed to be
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𝜌𝜌𝑙𝑙(Δ𝑡𝑡) =

(

1 +

|Δ𝑡𝑡|

𝜏𝜏𝑙𝑙

)

e

−

|Δ𝑡𝑡|

𝜏𝜏𝑙𝑙�

where the correlation time is given by 𝐴𝐴 𝐴𝐴𝑙𝑙 =

⎧

⎪

⎨

⎪

⎩

171.34 yrs 𝑙𝑙 = 1 (dipole)

379.59

𝑙𝑙
yrs 𝑙𝑙 𝑙 1 (non-dipole)

 .

These parameters reflect the statistics of the archeomagnetic data and a physical interpretation is not obvious. 
For example, the value of −38 μT for 𝐴𝐴 𝐴𝐴0

1
 is the optimal value when fitting an axial dipole to the data directly. The 

correlation times may relate to physical processes, but are derived from the variability that is resolved in the data. 
Using other prior parameters is straightforward and an investigation on the influence of those parameters will be 
done in a future study.

2.2.  Lock-In Process

The pDRM or lock-in process is affected by several effects which are still not completely understood. However, 
it is widely accepted that the pDRM process leads to a delayed and smoothed signal in the magnetic moment 
of a layer. Roberts and Winklhofer (2004) describe this behavior by the following convolution or weighted 
average

𝐌𝐌(𝑧𝑧) =
∫

𝜆𝜆

0

𝐁𝐁
(

𝑧𝑧 − 𝑧𝑧
′

)

𝐹𝐹
(

𝑧𝑧
′

)

𝑑𝑑𝑑𝑑
′�

where 𝐴𝐴 𝐌𝐌(𝑧𝑧) describes the magnetic moment of the layer at depth 𝐴𝐴 𝐴𝐴 , 𝐴𝐴 𝐁𝐁 describes the geomagnetic field (see 
Section 2.1, note that we use the depth-series here derived from an age-depth model) and 𝐴𝐴 𝐴𝐴 gives the lock-in 
depth, that is, the depth where all particles are completely consolidated. The weights are given by the lock-in 
function 𝐴𝐴 𝐴𝐴  .

The lock-in function does not depend on the depth 𝐴𝐴 𝐴𝐴 of the layer. The underlying assumption here is that the sedi-
mentation material does not change significantly over the absolute depth of the sediment record. Alternatively, 
we could formulate our model in time instead of depth and assume a constant sedimentation rate, but this is a 
much stricter assumption.

For a given core sample, we are interested in the weights, given by the shape of the lock-in function 𝐴𝐴 𝐴𝐴  . We 
propose a new class of piecewise linear parameterized lock-in functions

𝐹𝐹𝑏𝑏
1
,𝑏𝑏
2
,𝑏𝑏
3
,𝑏𝑏
4

(𝑧𝑧) =
2

−𝑏𝑏1 − 𝑏𝑏2 + 𝑏𝑏3 + 𝑏𝑏4

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0 𝑧𝑧 ≤ 𝑏𝑏1

𝑧𝑧−𝑏𝑏
1

𝑏𝑏
2
−𝑏𝑏

1

𝑏𝑏1 < 𝑧𝑧 ≤ 𝑏𝑏2

1 𝑏𝑏2 < 𝑧𝑧 ≤ 𝑏𝑏3

𝑏𝑏
4
−𝑧𝑧

𝑏𝑏
4
−𝑏𝑏

3

𝑏𝑏3 < 𝑧𝑧 ≤ 𝑏𝑏4

0 𝑏𝑏4 ≤ 𝑧𝑧

� (2)

Depending on the four parameters 𝐴𝐴 𝐴𝐴1, 𝑏𝑏2, 𝑏𝑏3, 𝑏𝑏4 ∈ ℝ≥0 with 𝐴𝐴 𝐴𝐴1 ≤ 𝑏𝑏2 ≤ 𝑏𝑏3 ≤ 𝑏𝑏4 , the parameterized function 
𝐴𝐴 𝐴𝐴𝑏𝑏1 ,𝑏𝑏2 ,𝑏𝑏3 ,𝑏𝑏4

 can model the offset as well as the smoothing related to the lock-in process. The offset is given by 
the half lock-in depth and the smoothing by the width and height of the lock-in function (see Section 3 for a 
detailed discussion).

For a given core sample, we estimate the parameters 𝐴𝐴 𝐴𝐴1–𝑏𝑏4 using a Bayesian approach based on Gaussian Processes 
and involving archeomagnetic data as a reference. While leveraging all archeomagnetic data components (decli-
nation, inclination, and intensities) we exclusively utilize the directional components from sediment data. This 
choice comes from the recognition that the lock-in function governing directional data may substantially differ 
from that governing intensities. A discussion of this point can be found in Section 4. Importantly, our method has 
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the flexibility to be applied equally to intensities or even to all three components simultaneously. Also, largely 
unknown intensities in paleomagnetic records are challenging and motivated us to focus on directional compo-
nents (e.g., Roberts et al., 2013).

2.3.  Data Model

In this section, we will derive the data model which describes the relation between the measured signal in the 
sedimentary records and the geomagnetic field variations. While our primary focus here is on the sedimentary 
records, we need the information from archeomagnetic records at a later stage. The model of archeomagnetic data 
is outlined in Schanner et al. (2022).

The first functional 𝐴𝐴 𝔉𝔉𝑧𝑧 , used to describe the data model, is associated with the offset and smoothing caused by 
the lock-in process and given by

𝔉𝔉𝑧𝑧 ∶ 
(

ℝ,ℝ
3

)

→ ℝ
3

(𝑧𝑧↦𝐆𝐆(𝑧𝑧))↦
∫

𝜆𝜆

0

𝐆𝐆
(

𝑧𝑧 − 𝑧𝑧
′

)

𝐹𝐹
(

𝑧𝑧
′

)

𝑑𝑑𝑑𝑑
′�

where 𝐴𝐴 𝐴𝐴 ∶ ℝ → ℝ is the lock-in function defined in Section 2.2 and 𝐴𝐴 𝐴𝐴 𝐴 0 is the lock-in depth, that is, the rela-
tive depth where the last particle of the layer at depth 𝐴𝐴 𝐴𝐴 is fully locked in. Note that 𝐴𝐴 𝔉𝔉𝑧𝑧 is a functional that maps 
functions in 𝐴𝐴 

(

ℝ,ℝ3
)

 (set of all continuous functions from 𝐴𝐴 ℝ → ℝ
3 ) to a vector in 𝐴𝐴 ℝ

3 . In the notation above the 
function 𝐴𝐴 𝐆𝐆 is the argument of the functional 𝐴𝐴 𝔉𝔉𝑧𝑧 , that is, 𝐴𝐴 𝐆𝐆 ∈ 

(

ℝ,ℝ3

)

 . Later we will apply this function to the 
geomagnetic field which we model as such a function. The linearity of the functional 𝐴𝐴 𝔉𝔉 follows directly from 
the  linearity of the integral.

Besides the natural smoothing caused by the lock-in process, there is a smoothing effect caused by the way 
the magnetization in a sediment core sample is measured. When investigating sediment core samples, cubes or 
u-channels of different sizes are taken from the core. Afterward, the magnetization in the extracted cube (or points 
in the u-channel) is measured. The resulting measurement is then an average of the actual magnetization across 
the width of the cube (or determined by the response function of the magnetometer in the case of u-channels). 
We assume that the size of the extracted cubes (or the response function) does not change within a core sample. 
Therefore, we can define the size of the extracted cubes for one core sample as 𝐴𝐴 𝐴𝐴 ∈ ℝ>0 .

This results in a second smoothing and can be described by the following measurement smoothing functional

𝔐𝔐𝑧𝑧 ∶ 
(

ℝ,ℝ
3

)

→ ℝ
3

(𝑧𝑧↦𝐆𝐆(𝑧𝑧))↦
1

𝜅𝜅 ∫

𝑧𝑧+
𝜅𝜅

2

𝑧𝑧−
𝜅𝜅

2

𝐆𝐆
(

𝑧𝑧
′

)

𝑑𝑑𝑑𝑑
′

.�

The linearity of the functional 𝐴𝐴 𝔐𝔐 again follows from the linearity of the integral.

The quantities that are measured in laboratory experiments are not provided in Cartesian field vector components 
(North [N], East [E], Down [Z]) but as two angles, declination (D) and inclination (I), and intensity (F). The 
nonlinear relationships between these components can be described by three observation functionals

ℌ𝐷𝐷
𝑧𝑧 ∶ 

(

ℝ,ℝ
3

)

→ ℝ (𝑧𝑧↦𝐆𝐆(𝑧𝑧))↦ arctan

(

G𝐸𝐸(𝑧𝑧)

G𝑁𝑁 (𝑧𝑧)

)

ℌ𝐼𝐼
𝑧𝑧 ∶ 

(

ℝ,ℝ
3

)

→ ℝ (𝑧𝑧↦𝐆𝐆(𝑧𝑧))↦ arctan

⎛

⎜

⎜

⎜

⎝

G𝑍𝑍 (𝑧𝑧)
√

G
2

𝑁𝑁
(𝑧𝑧) + G

2

𝐸𝐸
(𝑧𝑧)

⎞

⎟

⎟

⎟

⎠

ℌ𝐹𝐹
𝑧𝑧 ∶ 

(

ℝ,ℝ
3

)

→ ℝ (𝑧𝑧↦𝐆𝐆(𝑧𝑧))↦

√

G
2

𝐸𝐸
(𝑧𝑧) + G

2

𝑁𝑁
(𝑧𝑧) + G

2

𝑍𝑍
(𝑧𝑧)

�

where the three components of 𝐴𝐴 𝐆𝐆(𝑧𝑧) are given by 𝐴𝐴 𝐆𝐆(𝑧𝑧) =

(

G𝑁𝑁 (𝑧𝑧) G𝐸𝐸(𝑧𝑧) G𝑍𝑍 (𝑧𝑧)

)⊤

∈ ℝ
3 for each 𝐴𝐴 𝐴𝐴 ∈ ℝ .

In the following, we will apply these functionals to the Gaussian Process associated with the geomagnetic field. 
Note that the lock-in function is defined in depth. Therefore, we can not directly use the time-dependent Gaussian 
Process given in Equation 1. By switching from time to depth we end up with a new Gaussian Process
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𝐁̃𝐁 ∼ 
(

𝐁̄𝐁, 𝐾𝐾𝐁̃𝐁

)

�

where the mean function coincides with the mean function of the Gaussian Process given in Equation 1. This 
is because the mean function is assumed to be constant. The kernel function follows directly by applying the 
age-depth model (a function that maps time to depth) to the kernel function of the Gaussian Process given in 
Equation 1.

By applying the functional 𝐴𝐴 𝔉𝔉𝑧𝑧 to the Gaussian process 𝐴𝐴 𝐁̃𝐁 , we get, for all 𝐴𝐴 𝐴𝐴 ∈ ℝ , the first part of our data model

𝐨𝐨1(𝑧𝑧) = 𝔉𝔉𝑧𝑧

[

𝐁̃𝐁
]

=

∫

𝜆𝜆

0

𝐁̃𝐁
(

𝑧𝑧 − 𝑧𝑧
′

)

𝐹𝐹
(

𝑧𝑧
′

)

𝑑𝑑𝑑𝑑
′

.�

Since 𝐴𝐴 𝐁̃𝐁 is a Gaussian Process and by the linearity of the functional 𝐴𝐴 𝔉𝔉𝑧𝑧 it follows that also 𝐴𝐴 𝐨𝐨1 is a Gaussian Process.

Applying the measurement functional 𝐴𝐴 𝔐𝔐𝑧𝑧 to the data model 𝐴𝐴 𝐨𝐨1 , leads, for all 𝐴𝐴 𝐴𝐴 ∈ ℝ , to a new data model

𝐨𝐨2(𝑧𝑧) = 𝔐𝔐𝑧𝑧[𝐨𝐨1] =
1

𝜅𝜅 ∫

𝑧𝑧+
𝜅𝜅

2

𝑧𝑧−
𝜅𝜅

2

𝐨𝐨1

(

𝑧𝑧
′′

)

𝑑𝑑𝑑𝑑
′′

.�

Note that 𝐴𝐴 𝐨𝐨2 is also a Gaussian Process.

Since both functionals lead to a smoothing we absorb the smoothing associated with the measurement functional 
into the lock-in function and approximate 𝐴𝐴 𝐨𝐨2 by 𝐴𝐴 𝐨𝐨1 , that is, 𝐴𝐴 𝐨𝐨2(𝑧𝑧) ≈ 𝐨𝐨1(𝑧𝑧) . As a heuristic explanation consider two 
extreme cases. If the lock-in depth 𝐴𝐴 𝐴𝐴 is significantly larger than the size of the sample cube 𝐴𝐴 𝐴𝐴 , the measurement 
smoothing is negligible. If 𝐴𝐴 𝐴𝐴 is close to zero we can approximate the measurement functional 𝐴𝐴 𝔐𝔐𝑧𝑧 by the lock-in 
functional 𝐴𝐴 𝔉𝔉𝑧𝑧 by choosing the lock-in function with a tableau of width 𝐴𝐴 𝐴𝐴 and setting 𝐴𝐴 𝐴𝐴 = 𝜅𝜅 . In conclusion, our 
lock-in function models not only the offset and smoothing associated with the pDRM process but also the meas-
urement associated smoothing.

By applying the three nonlinear functionals 𝐴𝐴 ℌ𝐷𝐷 , 𝐴𝐴 ℌ𝐼𝐼 and 𝐴𝐴 ℌ𝐹𝐹 to the data model 𝐴𝐴 𝐨𝐨2 , we get a new data model consist-
ing, for all 𝐴𝐴 𝐴𝐴 ∈ ℝ , of the following three components

𝐨𝐨
𝐷𝐷

3
(𝑧𝑧) = ℌ𝐷𝐷

𝑧𝑧 [𝐨𝐨2], 𝐨𝐨
𝐼𝐼

3
(𝑧𝑧) = ℌ𝐼𝐼

𝑧𝑧 [𝐨𝐨2], 𝐨𝐨
𝑍𝑍

3
(𝑧𝑧) = ℌ𝐹𝐹

𝑧𝑧 [𝐨𝐨2]�

The nonlinearity results in a data model that is not Gaussian anymore. However, as described in Schanner 
et al. (2022), these functionals can be linearized by a first-order Taylor expansion. Following Hellio et al. (2014) 
the linearization results in three functionals 𝐴𝐴 ℌlin

𝐷𝐷

𝑧𝑧 ,ℌlin
𝐼𝐼

𝑧𝑧 ,ℌlin
𝐹𝐹

𝑧𝑧 ∶ 
(

ℝ,ℝ3

)

→ ℝ such that for 𝐴𝐴 𝐆𝐆 ∈ 
(

ℝ,ℝ3

)

ℌlin
𝐷𝐷

𝑧𝑧 [𝐆𝐆] = B̄𝐷𝐷 +

1

𝐹𝐹
2

𝐻𝐻

⎛

⎜

⎜

⎜

⎜

⎝

−B̄𝐸𝐸

B̄𝑁𝑁

0

⎞

⎟

⎟

⎟

⎟

⎠

⊤

𝐆𝐆(𝑧𝑧)

ℌlin
𝐼𝐼

𝑧𝑧 [𝐆𝐆] = B̄𝐼𝐼 +
1

𝐹𝐹𝐻𝐻

⎛

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎜

⎝

0

0

1

⎞

⎟

⎟

⎟

⎟

⎠

−

B̄𝑍𝑍

𝐹𝐹

𝐁̄𝐁

𝐹𝐹

⎞

⎟

⎟

⎟

⎟

⎠

⊤

𝐆𝐆(𝑧𝑧)

ℌlin
𝐹𝐹

𝑧𝑧 [𝐆𝐆] =

𝐁̄𝐁
⊤

𝐹𝐹
𝐆𝐆(𝑧𝑧)

�

where 𝐴𝐴 𝐹𝐹 =

√

B̄
2

𝑁𝑁
+ B̄

2

𝐸𝐸
+ B̄

2

𝑍𝑍
 , 𝐴𝐴 𝐹𝐹𝐻𝐻 =

√

B̄
2

𝑁𝑁
+ B̄

2

𝐸𝐸
 .

By using these linearized functionals we approximate the data model 𝐴𝐴 𝐨𝐨3 by a Gaussian Process.

In conclusion, the components of our final data model are given by
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𝐨𝐨
𝐷𝐷
(𝑧𝑧) = 𝐨𝐨

𝐷𝐷

3

(𝑧𝑧) + E
𝐷𝐷
(𝑧𝑧)

= ℌ𝐷𝐷
𝑧𝑧 [𝐨𝐨2] + E

𝐷𝐷
(𝑧𝑧)

= ℌ𝐷𝐷
𝑧𝑧

[

1

𝜅𝜅 ∫

𝑧𝑧+
𝜅𝜅

2

𝑧𝑧−
𝜅𝜅

2

𝐨𝐨1

(

𝑧𝑧
′′

)

𝑑𝑑𝑑𝑑
′′

]

+ E
𝐷𝐷
(𝑧𝑧)

= ℌ𝐷𝐷
𝑧𝑧

[

1

𝜅𝜅 ∫

𝑧𝑧+
𝜅𝜅

2

𝑧𝑧−
𝜅𝜅

2

∫

𝜆𝜆

0

𝐁̃𝐁
(

𝑧𝑧
′′

− 𝑧𝑧
′

)

𝐹𝐹
(

𝑧𝑧
′

)

𝑑𝑑𝑑𝑑
′

𝑑𝑑𝑑𝑑
′′

]

+ E
𝐷𝐷
(𝑧𝑧)

≈ ℌ𝐷𝐷
𝑧𝑧

[

∫

𝜆𝜆

0

𝐁̃𝐁
(

𝑧𝑧 − 𝑧𝑧
′

)

𝐹𝐹
(

𝑧𝑧
′

)

𝑑𝑑𝑑𝑑
′

]

+ E
𝐷𝐷
(𝑧𝑧)

≈ ℌlin
𝐷𝐷

𝑧𝑧

[

∫

𝜆𝜆

0

𝐁̃𝐁
(

𝑧𝑧 − 𝑧𝑧
′

)

𝐹𝐹
(

𝑧𝑧
′

)

𝑑𝑑𝑑𝑑
′

]

+ E
𝐷𝐷
(𝑧𝑧)

= B̄𝐷𝐷 +

1

𝐹𝐹
2

𝐻𝐻

⎛

⎜

⎜

⎜

⎜

⎝

−B̄𝐸𝐸

B̄𝑁𝑁

0

⎞

⎟

⎟

⎟

⎟

⎠

⊤

∫

𝜆𝜆

0

𝐁̃𝐁
(

𝑧𝑧 − 𝑧𝑧
′

)

𝐹𝐹
(

𝑧𝑧
′

)

𝑑𝑑𝑑𝑑
′

+ E
𝐷𝐷
(𝑧𝑧)

𝐨𝐨
𝐼𝐼
(𝑧𝑧) ≈ B̄𝐼𝐼 +

1

𝐹𝐹𝐻𝐻

⎛

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎜

⎝

0

0

1

⎞

⎟

⎟

⎟

⎟

⎠

−

B̄𝑍𝑍

𝐹𝐹

𝐁̄𝐁

𝐹𝐹

⎞

⎟

⎟

⎟

⎟

⎠

⊤

∫

𝜆𝜆

0

𝐁̃𝐁
(

𝑧𝑧 − 𝑧𝑧
′

)

𝐹𝐹
(

𝑧𝑧
′

)

𝑑𝑑𝑑𝑑
′

+ E
𝐼𝐼
(𝑧𝑧)

𝐨𝐨
𝐹𝐹
(𝑧𝑧) ≈

1

B̄𝐹𝐹

𝐁̄𝐁
⊤

∫

𝜆𝜆

0

𝐁̃𝐁
(

𝑧𝑧 − 𝑧𝑧
′

)

𝐹𝐹
(

𝑧𝑧
′

)

𝑑𝑑𝑑𝑑
′

+ E
𝐹𝐹
(𝑧𝑧)

�

where 𝐴𝐴 𝐄𝐄 =

(

E𝑁𝑁 E𝐸𝐸 E𝑍𝑍

)⊤

∈ ℝ
3 indicates the vector of measurement errors.

2.4.  Parameter Estimation

In order to estimate the four lock-in function parameters 𝐴𝐴 𝐴𝐴1–𝑏𝑏4 , we perform a maximum likelihood estimation 
(type-II MLE, Rasmussen, 2004). For a Gaussian process, the marginal likelihood is available in closed form (see 
e.g., Chapter 2.2, Equation 2.30 in Rasmussen, 2004). However, due to the amount of archeomagnetic data used 
as a reference in our approach, calculating the marginal likelihood is numerically costly (a single function call 
may take minutes) and hampers numerical optimization. The number of required function calls for global func-
tion optimization with four parameters is in the order of thousands. This makes estimation via the closed form 
unfeasible. Instead, we perform a sequentialization of the marginal likelihood evaluation, similar to Baerenzung 
et al. (2020) and Schanner et al. (2022).

The idea is to replace the closed form Gaussian process regression by a Kalman filter (Kalman, 1960). The 
closed form marginal likelihood is approximated by a sum over the marginal likelihood values calculated for the 
individual Kalman filter steps (see Equation 24 in Baerenzung et al., 2020). The resulting expression provides a 
measure of how well a set of lock-in function parameters describes the pDRM process in a single sediment core, 
given the global set of archeomagnetic data and the respective sediment data. In other words, we use the archeo-
magnetic data to estimate the shape of the lock-in function for a single core. Due to the temporal distribution of 
the archeomagnetic data, we limit the estimation to the last eight thousand years.

A crucial difference between the existing implementations in Baerenzung et al. (2020) and Schanner et al. (2022) 
is the modified observation function discussed in Section 2.3. The convolution integral can be interpreted as 
a delay (and smoothing) in the measurements, resulting in cross-correlations between the Kalman filter steps. 
To respect these cross-correlations, the Kalman filter state vector is modified to contain recent time steps. The 
number of time steps 𝐴𝐴 𝐴𝐴  has to be big enough, so that the corresponding time period covers the assumed maximal 
lock-in depth 𝐴𝐴 𝐴𝐴 (Choi et al., 2009). The augmentation of the state vector leads, for each 𝐴𝐴 𝐴𝐴 ∈ [0, 𝑇𝑇 ] , to a modified 
forward operator given as

 21699356, 2023, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JB

027373 by C
ochrane R

ussian Federation, W
iley O

nline L
ibrary on [11/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Solid Earth

BOHSUNG ET AL.

10.1029/2023JB027373

8 of 17

𝐅𝐅𝑘𝑘 = 𝐅𝐅𝑘𝑘(𝑙𝑙max,Δ𝑡𝑡) =

⎛

⎜

⎜

⎝

F𝑘𝑘 𝟎𝟎1,𝑛𝑛−1

𝟏𝟏𝑛𝑛−1,𝑛𝑛−1 𝟎𝟎𝑛𝑛−1,𝑛𝑛

⎞

⎟

⎟

⎠

�

where 𝐴𝐴 𝐴𝐴𝑘𝑘 = 𝐹𝐹𝑘𝑘(𝑙𝑙max,Δ𝑡𝑡) is the forward operator defined in Baerenzung et al. (2020), 𝐴𝐴 𝐴𝐴max is the spherical harmonics  
cutoff degree, and 𝐴𝐴 Δ𝑡𝑡 is the step size. Due to the constant step size 𝐴𝐴 Δ𝑡𝑡 , the forward operator does not depend on 
the Kalman filter step, that is, 𝐴𝐴 𝐅𝐅𝑘𝑘 = 𝐅𝐅 for all 𝐴𝐴 𝐴𝐴 .

The notations 𝐴𝐴 𝟎𝟎𝑎𝑎𝑎𝑎𝑎 and 𝐴𝐴 𝟏𝟏𝑎𝑎𝑎𝑎𝑎 , for 𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴 ∈ ℕ , denote the 𝐴𝐴 𝐴𝐴 × 𝑏𝑏 dimensional zero and identity matrix, respectively. Note that 
𝐴𝐴 𝐴𝐴𝑘𝑘 is an 𝐴𝐴 2𝑙𝑙max(𝑙𝑙max + 2) × 2𝑙𝑙max(𝑙𝑙max + 2) matrix itself. Therefore, 𝐴𝐴 𝐅𝐅𝑘𝑘 is an 𝐴𝐴 𝐴𝐴 × 𝑛𝑛 matrix with 𝐴𝐴 2𝑙𝑙max(𝑙𝑙max + 2) × 2𝑙𝑙max  

(𝐴𝐴 𝐴𝐴max + 2 ) matrices as entries.

Let 𝐴𝐴 𝐳𝐳0 ∼ 
(

𝝁𝝁
0
,𝚺𝚺0

)

 be the prior, where 𝐴𝐴 𝝁𝝁
0
 and 𝐴𝐴 𝚺𝚺0 are the prior mean and covariance matrices, respectively. For 

𝐴𝐴 𝐴𝐴 ∈ [1, 𝑇𝑇 ] , the Bayesian filtering equations are recursively defined as

𝐳𝐳𝑘𝑘 = 𝐅𝐅𝐅𝐅𝑘𝑘−1 + 𝝈𝝈

𝐨𝐨𝑘𝑘 = 𝐇𝐇𝑘𝑘𝐳𝐳𝑘𝑘 + 𝐞𝐞𝑘𝑘

�

where 𝐴𝐴 𝐨𝐨𝑘𝑘 is the measurement, 𝐴𝐴 𝝈𝝈 ∼  (𝟎𝟎,𝚺𝚺) the process noise and 𝐴𝐴 𝐞𝐞𝑘𝑘 ∼  (𝟎𝟎,𝐄𝐄𝑘𝑘) the measurement noise. The 

matrix 𝐴𝐴 𝐇𝐇𝑘𝑘 is the operator that projects the model to the data. The matrix 𝐴𝐴 𝚺̃𝚺 = 𝚺𝚺0 − 𝐅𝐅𝐅𝐅0𝐅𝐅 =

⎛

⎜

⎜

⎝

Σ̃ 𝟎𝟎1,𝑛𝑛−1

𝟎𝟎𝑛𝑛−1,𝑛𝑛−1 𝟎𝟎𝑛𝑛−1,𝑛𝑛

⎞

⎟

⎟

⎠

 

characterizes the white noise of the evolution model. It is independent of the Kalman filter step because of 
stationarity.

For natural numbers 𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴 ∈ ℕ with 𝐴𝐴 1 ≤ 𝑎𝑎 𝑎 𝑎𝑎 ≤ 𝑛𝑛 and 𝐴𝐴 1 ≤ 𝑐𝑐 𝑐 𝑐𝑐 ≤ 𝑚𝑚 and an 𝐴𝐴 𝐴𝐴 × 𝑚𝑚 matrix 𝐴𝐴 𝐀𝐀 we denote by 
𝐴𝐴 𝐀𝐀

𝑎𝑎∶𝑏𝑏𝑏𝑏𝑏∶𝑑𝑑 the matrix entries with row indices between 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 and column indices between 𝐴𝐴 𝐴𝐴  and 𝐴𝐴 𝐴𝐴 (matrix slices).

For 𝐴𝐴 𝐴𝐴 ∈ [1, 𝑇𝑇 ] and with the modified forward operator, the recursive equations of the prediction step are given by

𝝁𝝁
−

𝑘𝑘
= 𝐅𝐅𝝁𝝁𝑘𝑘−1 =

⎛

⎜

⎜

⎝

F𝝁𝝁
1

𝑘𝑘−1

𝝁𝝁
1∶𝑛𝑛−1

𝑘𝑘−1

⎞

⎟

⎟

⎠

𝚺𝚺
−

𝑘𝑘 = 𝐅𝐅𝐅𝐅𝑘𝑘−1𝐅𝐅
⊤
+ 𝚺̃𝚺 =

⎛

⎜

⎜

⎝

F𝚺𝚺
1,1

𝑘𝑘−1
F
⊤
+ Σ̃ F𝚺𝚺

1,1∶𝑛𝑛−1

𝑘𝑘−1

𝚺𝚺
1∶𝑛𝑛−1,1

𝑘𝑘−1
F
⊤

𝚺𝚺
1∶𝑛𝑛−1,1∶𝑛𝑛−1

𝑘𝑘−1

⎞

⎟

⎟

⎠

.

�

The recursive equations for the update step are given by

𝐒𝐒𝑘𝑘 = 𝐇𝐇𝑘𝑘𝚺𝚺
−

𝑘𝑘𝐇𝐇
⊤

𝑘𝑘
+ 𝐄𝐄𝑘𝑘

𝐊𝐊𝑘𝑘 = 𝚺𝚺
−

𝑘𝑘𝐇𝐇
⊤

𝑘𝑘
𝐒𝐒
−1

𝑘𝑘

𝝁𝝁𝑘𝑘 = 𝝁𝝁
−

𝑘𝑘
+𝐊𝐊𝑘𝑘

(

𝐨𝐨𝑘𝑘 −𝐇𝐇𝑘𝑘𝝁𝝁
−

𝑘𝑘

)

𝚺𝚺𝑘𝑘 = 𝚺𝚺
−

𝑘𝑘 −𝐊𝐊𝑘𝑘𝐒𝐒𝑘𝑘𝐊𝐊
⊤

𝑘𝑘
.

�

To formulate the backward recursion equations assume that the recursion starts from the last time step 𝐴𝐴 𝐴𝐴  . We set 
𝐴𝐴 𝝁𝝁

𝑠𝑠

𝑇𝑇
= 𝝁𝝁𝑇𝑇  and 𝐴𝐴 𝚺𝚺

𝑠𝑠

𝑇𝑇
= 𝚺𝚺𝑇𝑇 .

The backward recursion equations are given as
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𝝁𝝁
−

𝑘𝑘+1
= 𝐅𝐅𝝁𝝁𝑘𝑘 =

⎛

⎜

⎜

⎝

F𝝁𝝁
1

𝑘𝑘

𝝁𝝁
1∶𝑛𝑛−1

𝑘𝑘

⎞

⎟

⎟

⎠

𝚺𝚺
−

𝑘𝑘+1
= 𝐅𝐅𝐅𝐅𝑘𝑘𝐅𝐅

⊤
+ 𝚺̃𝚺 =

⎛

⎜

⎜

⎝

F𝚺𝚺
1,1

𝑘𝑘
F
⊤
+ Σ̃ F𝚺𝚺

1,1∶𝑛𝑛−1

𝑘𝑘

𝚺𝚺
1∶𝑛𝑛−1,1

𝑘𝑘
F
⊤

𝚺𝚺
1∶𝑛𝑛−1,1∶𝑛𝑛−1

𝑘𝑘

⎞

⎟

⎟

⎠

𝐆𝐆𝑘𝑘 = 𝚺𝚺𝑘𝑘𝐅𝐅
⊤
(

𝚺𝚺
−

𝑘𝑘+1

)

−1

=

⎛

⎜

⎜

⎜

⎜

⎝

𝟎𝟎𝑛𝑛−1,1 𝟏𝟏𝑛𝑛−1,𝑛𝑛−1

𝟎𝟎1,1 𝚺𝚺
𝑛𝑛𝑛1∶𝑛𝑛−1

𝑘𝑘

(

𝚺𝚺
1∶𝑛𝑛−1,1∶𝑛𝑛−1

𝑘𝑘

)
−1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=𝐀𝐀𝑘𝑘∈ℝ
1×𝑛𝑛−1

⎞

⎟

⎟

⎟

⎟

⎠

𝝁𝝁
𝑠𝑠

𝑘𝑘
= 𝝁𝝁𝑘𝑘 +𝐆𝐆𝑘𝑘

(

𝝁𝝁
𝑠𝑠

𝑘𝑘+1
− 𝝁𝝁

−

𝑘𝑘+1

)

=

⎛

⎜

⎜

⎝

𝝁𝝁
𝑠𝑠𝑠2∶𝑛𝑛−1

𝑘𝑘+1

𝝁𝝁
𝑛𝑛

𝑘𝑘
+ 𝐀𝐀𝑘𝑘

(

𝝁𝝁
𝑠𝑠𝑠2∶𝑛𝑛

𝑘𝑘+1
− 𝝁𝝁

1∶𝑛𝑛−1

𝑘𝑘

)

⎞

⎟

⎟

⎠

𝚺𝚺
𝑠𝑠

𝑘𝑘
= 𝚺𝚺𝑘𝑘 +𝐆𝐆𝑘𝑘

(

𝚺𝚺
𝑠𝑠

𝑘𝑘+1
− 𝚺𝚺

−

𝑘𝑘+1

)

𝐆𝐆
⊤

𝑘𝑘

=

⎛

⎜

⎜

⎝

𝚺𝚺
𝑠𝑠𝑠2∶𝑛𝑛𝑛2∶𝑛𝑛

𝑘𝑘+1
𝚺𝚺

𝑠𝑠𝑠2∶𝑛𝑛𝑛2∶𝑛𝑛

𝑘𝑘+1
𝐀𝐀

⊤

𝑘𝑘

𝐀𝐀𝑘𝑘𝚺𝚺
𝑠𝑠𝑠2∶𝑛𝑛𝑛2∶𝑛𝑛

𝑘𝑘+1
𝚺𝚺

𝑛𝑛𝑛𝑛𝑛

𝑘𝑘
+ 𝐀𝐀𝑘𝑘

(

𝚺𝚺
𝑠𝑠𝑠2∶𝑛𝑛𝑛2∶𝑛𝑛

𝑘𝑘+1
− 𝚺𝚺

1∶𝑛𝑛−1,1∶𝑛𝑛−1

𝑘𝑘

)

𝐀𝐀
⊤

𝑘𝑘

⎞

⎟

⎟

⎠

.

�

A detailed derivation of these formulas can be found in Appendix A.

Expanding the Kalman filter state vector by previous time steps leads to an increased memory demand and higher 
computational cost. Choosing a spherical harmonics cutoff degree of 𝐴𝐴 𝐴𝐴max = 8 and a Kalman filter step size of 

𝐴𝐴 Δ𝑡𝑡 = 40 yrs gives a sweet-spot in the trade-off between estimation accuracy and computation time. Several tests 
showed that lower time steps and higher cutoff degrees have no significant influence on the estimation, while 
increasing the computational time dramatically.

2.5.  Log-Marginal Likelihood Optimization

The optimization of the log-marginal likelihood was conducted using dlib's LIPO-TR function optimization algo-
rithm (D. E. King, 2009; Malherbe & Vayatis, 2017). From a mathematical point of view, this algorithm does not 
guarantee convergence. To prevent the algorithm from running indefinitely, two approaches have been employed.

The first method is to limit the maximum number of function calls and using the best result. We started using this 
method with a maximum number of function calls of 3,500. However, after finding an optimum several times, the 
optimization algorithm switches to a random search. This random search continues until the maximum number 
of function calls is exhausted. In the cases, we investigated the random search found the optima after five hundred 
to one thousand steps and the following random search did not yield any new optima. Therefore, we decided 
to use the second method where we consider the algorithm as converged when the obtained optimum remains 
unchanged for several iterations.

The second method significantly reduces the computation time enabling us to perform 50 optimizations for each 
of the synthetic test cases. We consider two optima 𝐴𝐴 o1, o2 to be the same when

|𝑜𝑜1 − 𝑜𝑜2| < 𝑟𝑟 ∗ |𝑜𝑜2| + 𝑎𝑎�

where 𝐴𝐴 𝐴𝐴 = 10
−7 denotes the relative tolerance and 𝐴𝐴 𝐴𝐴 = 10

−14 denotes the absolute tolerance. We set the upper 
bounds for the parameter estimation to 100 cm.

Note that the optimization of such a problem is not straightforward. Other optimization algorithms might lead to 
better results or better performance. In the future, we will optimize the procedure by including derivatives.

2.6.  Synthetic Data

All synthetic data points are based on the same reference geomagnetic field time series drawn from the prior 
described in Section  2.1. Three synthetic data sets were generated from this reference time series. The first 
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data set represents the archeomagnetic data with input locations and times being the same as in the archeomag-
netic data used in Schanner et al. (2022). In addition, two synthetic sediment data sets were generated. The first 
synthetic data set corresponds to a core sample located in Sweden (60°9′3.6″ N, 13°3′18″ E) and the other one, 
to one located on Rapa Iti (27°36′57.6″ S, 144°16′58.8″ W). Both have the same temporal distribution shown in 
the lower panel on the left side of Figure 2. The age-depth model used for both synthetic sediment data sets was 
derived from the age-depth model of the lake sediment core KLK used in Nilsson et al. (2022).

We then applied six different lock-in functions (orange functions in the first column of Figures 4 and 5) to each 
of the two sediment data sets. The synthetic data from Sweden distorted with the orange lock-in function in (A) 
of Figure 4 is shown in Figure 3. The reference process is shown in green. Declination and inclination of the 
synthetic data with measurement uncertainties are shown as blue dots with error bars. Note that we added noise to 
the data after the distortion associated with the lock-in process. We see an obvious offset as well as a smoothing 
of the sediment data compared to the reference process. Visualizations of all other synthetic sediment data used in 
this study as well as notebooks to generate additional synthetic data can be found on our website at https://sec23.
git-pages.gfz-potsdam.de/korte/pdrm/.

Figure 2.  Spatial and temporal distribution of synthetic data. The upper panel on the left side shows the temporal distribution 
of the synthetic archeomagnetic data while the temporal distribution for the synthetic sediment data is shown in the lower 
panel. Spatial distributions for synthetic archeomagnetic data (blue dots) and the two synthetic sediment locations (red stars) 
are shown on the right side.

Figure 3.  The figure shows the declination and inclination of the noise synthetic sediment data (orange dots) distorted using 
the orange lock-in function in row (A) of Figure 4. Measurement errors are shown as orange error bars. The reference process 
for these data is shown in green.
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In conclusion, we ended up with six synthetic tests in Sweden and six in Rapa Iti. The reason why we chose these 
two locations is that Sweden is an area with many paleomagnetic sediment records and a decent coverage of 
archeomagnetic data while the coverage of archeomagnetic data around Rapa Iti is sparse.

3.  Results
In this section, we will assess the proposed method by conducting synthetic tests. The data utilized in this section, 
along with the method's implementation, can be found on our website under https://sec23.git-pages.gfz-potsdam.
de/korte/pdrm/ and in the corresponding GitLab repository (Bohsung & Schanner, 2023). Moreover, we provide 
scripts for generating synthetic data, enabling further testing.

Initially, we compared the estimated parameters 𝐴𝐴 𝐴𝐴1, . . . , 𝑏𝑏4 with their counterparts in the true lock-in function. 
The results are visualized in Figure 4 for the synthetic test located in Sweden and in Figure 5 for the synthetic 
test located in Rapa Iti. The rows (A–F) correspond to the six synthetic test cases. The lock-in function used for 
the distortion (orange) and the lock-in functions of the 50 optimization runs are plotted in the first column. The 
colors of the 50 estimated lock-in function correspond to the associated log-marginal-likelihood (log-ml) value. 
The color ranges from blue for lock-in functions with a high log-ml value (better estimations) to red for lock-in 

Figure 4.  The figure shows the results of the 50 parameter estimations for the six synthetic tests located in Sweden. Rows (A–F) correspond to the six cases. The first 
column shows the true lock-in function (orange) and 50 estimations. The color of the estimated lock-in functions depends on the associated log-ml values ranging from 
red (low log-ml) to blue (high log-ml). Columns two to three show the distributions of the half lock-in depth, lock-in function height, and lock-in function width. The 
values of the true parameters are visualized in orange. All parameters are weighted with the log-ml values. The distributions of the log-ml values are visualized in the 
last column.
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functions with a low log-ml value (worse estimations). The distributions of the log-ml values are shown in the 
last column.

The visualization of the estimated lock-in functions reveals that the parameters 𝐴𝐴 𝐴𝐴1, . . . , 𝑏𝑏4 exhibit some variability 
in their determination. This variability could potentially be attributed to the optimizer used. Consequently, we 
proceeded to explore further aspects of the estimated lock-in functions. First, we focused on the half lock-in 
depth denoted as 𝐴𝐴 𝐴𝐴0.5 and given as the depth where half of the lock-in process is completed, that is, 𝐴𝐴 𝐴𝐴0.5 fulfills the 
equation

∫

𝜌𝜌
0.5

−∞

𝐹𝐹𝑏𝑏
1
,𝑏𝑏
2
,𝑏𝑏
3
,𝑏𝑏
4

(

𝑧𝑧
′

)

𝑑𝑑𝑑𝑑
′

= 0.5�

The second column of Figures 4 and 5 illustrates the distributions of this parameter across the six cases. Subse-
quently, the remaining two columns present the distributions of the lock-in function heights and widths given as

𝜌𝜌ℎ = max

𝑧𝑧

(

𝐹𝐹𝑏𝑏
1
,𝑏𝑏
2
,𝑏𝑏
3
,𝑏𝑏
4

(𝑧𝑧)
)

𝜌𝜌𝑤𝑤 = 𝑏𝑏4 − 𝑏𝑏1�

Note that the parameters are weighted with the associated log-ml values. The results from Sweden (see Figure 4) 
and Rapa Iti (see Figure 5) show similar variance in the estimated parameters, implying that our method is robust 
enough for solid parameter estimation even for locations where archeomagnetic data is sparse.

As one can see especially the half lock-in depth, 𝐴𝐴 𝐴𝐴0.5 , is well determined. Its significance lies in its interpretation 
as the horizontal offset within the observed data. Furthermore, the height and width parameters correspond to the 
smoothing in the observed sediment records. While not as precisely determined as the half lock-in depth, these 
parameters remain reliable indicators.

Figure 5.  The figure shows the results of the 50 parameter estimations for the six synthetic tests located on Rapa Iti. See Figure 4 for details.
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In the first moment, the variance in the estimated lock-in functions might seem problematic (see first row of 
Figures 4 and 5). However, in Figure 6, we compare the data points generated using the real lock-in function 
(orange), the estimated lock-in function with the best log-ml value (blue), and the estimated lock-in function with 
the worst log-ml value (red). Obviously, there is not a big difference Note that the differences between the data 
points are also influenced by the artificially added noise. We compared the distorted sediment observations since 
the deconvolution of the distorted sediment observations is not straightforward. In a future study, we will work 
on this challenge.

4.  Discussion
The presented class of parameterized lock-in functions is capable of modeling the offset as well as the smoothing 
effects associated with the pDRM process. The parametrization with four parameters delivers high flexibility to 
approximate a wide variety of lock-in behaviors. Functions of higher degree or with more interpolation points 
could possibly yield better approximations, but would also increase the number of hyperparameters. Decreasing 
the number of hyperparameters, for example, to one parameter handling the offset and one for the smoothing 
would lead to less flexibility. We think the presented class of lock-in functions with four parameters gives a good 
sweet-spot.

In our study, we focus on the directional components (declination and inclination) of sediment records. As 
mentioned above, this choice comes from the recognition that the lock-in function for the directional components 
may substantially differ from that for the intensities.

To illustrate this point, consider a scenario where the intensity of the geomagnetic field is constant, while the 
direction varies. After completion of the lock-in process, the direction recorded in the sediment layer emerges as a 
weighted average of geomagnetic field directions. Conversely, the sediment layer's intensity appears to decreased 
in comparison to the beginning of the lock-in process. This is because in the beginning all particles align with 
the field, but during the lock-in an increasing proportion of particles deviates from this direction, so that their 
magnetic moments can partly cancel out. The resulting intensity of the whole layer is the sum of the parti-
cle magnetic moments and consequently might be decreased. In such cases, the lock-in function for directional 
components must be distinguished from that of intensity. In fact, the intensity signal captured in the sediment 
depends not only on the lock-in process, but also on the directional dynamics of the geomagnetic field. This 
becomes even more complicated if we consider a realistic scenario, where both the field's direction and intensity 

Figure 6.  The figure shows the comparison of synthetic data generated using three different lock-in functions. The orange 
data points were generated using the real lock-in function in row (A) from (see Figure 4). For the blue data points, we used 
the estimated lock-in function with the best log-ml value. And for the red data points the estimated lock-in function with the 
worst log-ml value.
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change over time. Consequently, considering relative paleointensities from sediments is much more complicated 
than incorporating directions only.

Additionally to the described effect, assuming one lock-in function with identical parameters throughout the sedi-
mentary record remains a reasonable assumption for directional data (at least for the Holocene). It might however 
be too strict for intensities. Investigation of these challenges will be done in future research.

The synthetic tests presented in Section  3 emphasize the importance of correctly interpreting the estimated 
lock-in functions. The four estimated parameters 𝐴𝐴 𝐴𝐴1–𝑏𝑏4 can show strong variations. Our investigations reveal 
certain features of the estimated lock-in function that are reliably determined. Particularly significant among these 
features is the half lock-in depth, 𝐴𝐴 𝐴𝐴0.5 , which directly corresponds to the offset induced by the pDRM process. The 
smoothing effects caused by the pDRM process are associated with the height and width of the estimated lock-in 
function. Although these two parameters are less precisely determined compared to the half lock-in depth, they 
still yield valuable insights. Especially the comparison of data points distorted with best, worst, and real lock-in 
function (see Figure 6) shows the accuracy of our estimation even if the parameters 𝐴𝐴 𝐴𝐴1 to 𝐴𝐴 𝐴𝐴4 show high variance.

The comparison of outcomes for the geographical regions of Sweden and Rapa Iti demonstrates the robustness of 
our methodology, even in locations with limited coverage by archeomagnetic data.

5.  Conclusion
We present a new class of parameterized lock-in functions. These functions are capable of modeling the offset and 
smoothing effects associated with the pDRM process. The four parameters deliver high flexibility to approximate 
a wide variety of lock-in behaviors. Extensive testing on synthetic data sets has demonstrated that our method is 
highly effective in estimating the parameters associated with the lock-in process, even in areas where archeom-
agnetic data is sparse.

Transitioning from theoretical developments and synthetic testing to the practical world of real sediment data 
presents a crucial next step. There are many challenges to this endeavor, including not only the complex pDRM 
process, but also ancillary effects such as inclination shallowing. Furthermore, real data often provides declina-
tion values in relative terms, necessitating the estimation of the declination offset parameter.

Currently, our methodology focuses on the estimation of lock-function parameters. However, the goal is the 
deconvolution of sedimentary records using the estimated lock-in functions. This endeavor is poised to yield 
a dedicated sediment preprocessing software, enhancing the reliability of sediment data for geomagnetic field 
modeling.

Another approach we will work on is the expanding our modeling technique to accommodate multiple sediment 
cores and potentially incorporating field parameters like correlation length as additional hyperparameters. The 
advantage of this method is that we can potentially learn from the cross-correlations between different sediment 
cores.

A comparative analysis of these two methods, simultaneous estimation of the parameters versus parameter esti-
mation as a part of the preprocessing procedure will be the final step.

Appendix A
In this section, we present the derivations of the formulas used in Section 2.4.

𝚺𝚺
−

𝑘𝑘 = 𝐅𝐅𝐅𝐅𝑘𝑘−1𝐅𝐅
⊤
+ 𝚺̃𝚺

=

⎛

⎜

⎜

⎝

F 𝟎𝟎1,𝑛𝑛−1

𝟏𝟏𝑛𝑛−1,𝑛𝑛−1 𝟎𝟎𝑛𝑛−1,1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝚺𝚺
1∶𝑛𝑛−1,1∶𝑛𝑛−1

𝑘𝑘−1
𝚺𝚺

1∶𝑛𝑛−1,𝑛𝑛

𝑘𝑘−1

𝚺𝚺
𝑛𝑛𝑛1∶𝑛𝑛−1

𝑘𝑘−1
𝚺𝚺

𝑛𝑛𝑛𝑛𝑛

𝑘𝑘−1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

F
⊤

𝟏𝟏𝑛𝑛−1,𝑛𝑛−1

𝟎𝟎𝑛𝑛−1,1 𝟎𝟎1,𝑛𝑛−1

⎞

⎟

⎟

⎠

+ 𝚺̃𝚺

=

⎛

⎜

⎜

⎝

F 𝟎𝟎1,𝑛𝑛−1

𝟏𝟏𝑛𝑛−1,𝑛𝑛−1 𝟎𝟎𝑛𝑛−1,1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝚺𝚺
1∶𝑛𝑛−1,1

𝑘𝑘−1
F
⊤

𝚺𝚺
1∶𝑛𝑛−1,1∶𝑛𝑛−1

𝑘𝑘−1

𝚺𝚺
𝑛𝑛𝑛1

𝑘𝑘−1
F
⊤

𝚺𝚺
𝑛𝑛𝑛1∶𝑛𝑛−1

𝑘𝑘−1

⎞

⎟

⎟

⎠

+

⎛

⎜

⎜

⎝

Σ̃ 𝟎𝟎1,𝑛𝑛−1

𝟎𝟎𝑛𝑛−1,1 𝟎𝟎𝑛𝑛−1,𝑛𝑛−1

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

F𝚺𝚺
1,1

𝑘𝑘−1
F
⊤
+ Σ̃ F𝚺𝚺

1,1∶𝑛𝑛−1

𝑘𝑘−1

𝚺𝚺
1∶𝑛𝑛−1,1

𝑘𝑘−1
F
⊤

𝚺𝚺
1∶𝑛𝑛−1,1∶𝑛𝑛−1

𝑘𝑘−1

⎞

⎟

⎟

⎠

�
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The backward recursion equations are derived as follows

𝚺𝚺
−

𝑘𝑘+1
= 𝐅𝐅𝐅𝐅𝑘𝑘𝐅𝐅

⊤
+ 𝚺̃𝚺 =

⎛

⎜

⎜

⎝

F𝚺𝚺
1,1

𝑘𝑘
F
⊤
+ Σ̃ F𝚺𝚺

1,1∶𝑛𝑛−1

𝑘𝑘

𝚺𝚺
1∶𝑛𝑛−1,1

𝑘𝑘
F
⊤

𝚺𝚺
1∶𝑛𝑛−1,1∶𝑛𝑛−1

𝑘𝑘

⎞

⎟

⎟

⎠

𝐆𝐆𝑘𝑘 = 𝚺𝚺𝑘𝑘𝐅𝐅
⊤
(

𝚺𝚺
−

𝑘𝑘+1

)

−1

= 𝚺𝚺𝑘𝑘

⎛

⎜

⎜

⎝

F
⊤

𝟏𝟏𝑛𝑛−1,𝑛𝑛−1

𝟎𝟎𝑛𝑛−1,1 𝟎𝟎1,𝑛𝑛−1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

Σ̃

−1

(

−Σ̃

−1

F 𝟎𝟎1,𝑛𝑛−2

)

⎛

⎜

⎜

⎝

−F
⊤
Σ̃

−1

𝟎𝟎𝑛𝑛−2,1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝐃𝐃
−1

+ F
⊤
Σ̃

−1

F 𝟎𝟎1,𝑛𝑛−2

𝟎𝟎𝑛𝑛−2,1 𝟎𝟎𝑛𝑛−2,𝑛𝑛−2

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

𝟎𝟎𝑛𝑛−1,1 𝟏𝟏𝑛𝑛−1,𝑛𝑛−1

𝟎𝟎1,1 𝚺𝚺
𝑛𝑛𝑛1∶𝑛𝑛−1

𝑘𝑘

(

𝚺𝚺
1∶𝑛𝑛−1,1∶𝑛𝑛−1

𝑘𝑘

)
−1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=𝐀𝐀𝑘𝑘∈ℝ
1×𝑛𝑛−1

⎞

⎟

⎟

⎟

⎟

⎠

𝝁𝝁
𝑠𝑠

𝑘𝑘
= 𝝁𝝁𝑘𝑘 +𝐆𝐆𝑘𝑘

(

𝝁𝝁
𝑠𝑠

𝑘𝑘+1
− 𝝁𝝁

−

𝑘𝑘+1

)

= 𝝁𝝁𝑘𝑘 +

⎛

⎜

⎜

⎝

𝟎𝟎𝑛𝑛−1,1 𝟏𝟏𝑛𝑛−1,𝑛𝑛−1

𝟎𝟎1,1 𝐀𝐀𝑘𝑘

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

m

𝑠𝑠𝑠1

𝑘𝑘+1
− Fm

1

𝑘𝑘

𝝁𝝁
𝑠𝑠𝑠2

𝑘𝑘+1
− 𝝁𝝁

1

𝑘𝑘

⋮

𝝁𝝁
𝑠𝑠𝑠𝑠𝑠

𝑘𝑘+1
− 𝝁𝝁

𝑛𝑛−1

𝑘𝑘

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= 𝝁𝝁𝑘𝑘 +

⎛

⎜

⎜

⎝

𝝁𝝁
𝑠𝑠𝑠2∶𝑛𝑛−1

𝑘𝑘+1
− 𝝁𝝁

1∶𝑛𝑛−2

𝑘𝑘

𝐀𝐀𝑘𝑘

(

𝝁𝝁
𝑠𝑠𝑠2∶𝑛𝑛

𝑘𝑘+1
− 𝝁𝝁

1∶𝑛𝑛−1

𝑘𝑘

)

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

𝝁𝝁
𝑠𝑠𝑠2∶𝑛𝑛−1

𝑘𝑘+1

𝝁𝝁
𝑛𝑛

𝑘𝑘
+ 𝐀𝐀𝑘𝑘

(

𝝁𝝁
𝑠𝑠𝑠2∶𝑛𝑛

𝑘𝑘+1
− 𝝁𝝁

1∶𝑛𝑛−1

𝑘𝑘

)

⎞

⎟

⎟

⎠

𝚺𝚺
𝑠𝑠

𝑘𝑘
= 𝚺𝚺𝑘𝑘 +𝐆𝐆𝑘𝑘

(

𝚺𝚺
𝑠𝑠

𝑘𝑘+1
− 𝚺𝚺

−

𝑘𝑘+1

)

𝐆𝐆
⊤

𝑘𝑘

= 𝚺𝚺𝑘𝑘 +

⎛

⎜

⎜

⎝

𝟎𝟎𝑛𝑛−1,1 𝟏𝟏𝑛𝑛−1,𝑛𝑛−1

𝟎𝟎1,1 𝐀𝐀𝑘𝑘

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝚺𝚺
𝑠𝑠𝑠1,1

𝑘𝑘+1
− F𝚺𝚺

1,1

𝑘𝑘
F
⊤
− Σ̃ 𝚺𝚺

𝑠𝑠𝑠1,2∶𝑛𝑛

𝑘𝑘+1
− F𝚺𝚺

1,1∶𝑛𝑛−1

𝑘𝑘

𝚺𝚺
𝑠𝑠𝑠2∶𝑛𝑛𝑛1

𝑘𝑘+1
− 𝚺𝚺

1∶𝑛𝑛−1,1

𝑘𝑘
F
⊤

𝚺𝚺
𝑠𝑠𝑠2∶𝑛𝑛𝑛2∶𝑛𝑛

𝑘𝑘+1
− 𝚺𝚺

1∶𝑛𝑛−1,1∶𝑛𝑛−1

𝑘𝑘

⎞

⎟

⎟

⎠

𝐆𝐆
⊤

𝑘𝑘

= 𝚺𝚺𝑘𝑘 +

⎛

⎜

⎜

⎝

𝚺𝚺
𝑠𝑠𝑠2∶𝑛𝑛𝑛1

𝑘𝑘+1
− 𝚺𝚺

1∶𝑛𝑛−1,1

𝑘𝑘
F
⊤

𝚺𝚺
𝑠𝑠𝑠2∶𝑛𝑛𝑛2∶𝑛𝑛

𝑘𝑘+1
− 𝚺𝚺

1∶𝑛𝑛−1,1∶𝑛𝑛−1

𝑘𝑘

𝐀𝐀𝑘𝑘

(

𝚺𝚺
𝑠𝑠𝑠2∶𝑛𝑛𝑛1

𝑘𝑘+1
− 𝚺𝚺

1∶𝑛𝑛−1,1

𝑘𝑘
F
⊤
)

𝐀𝐀𝑘𝑘

(

𝚺𝚺
𝑠𝑠𝑠2∶𝑛𝑛𝑛2∶𝑛𝑛

𝑘𝑘+1
− 𝚺𝚺

1∶𝑛𝑛−1,1∶𝑛𝑛−1

𝑘𝑘

)

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝟎𝟎1,𝑛𝑛−1 𝟎𝟎1,1

𝟏𝟏𝑛𝑛−1,𝑛𝑛−1 𝐀𝐀
⊤

𝑘𝑘

⎞

⎟

⎟

⎠

= 𝚺𝚺𝑘𝑘 +

⎛

⎜

⎜

⎝

𝚺𝚺
𝑠𝑠𝑠2∶𝑛𝑛𝑛2∶𝑛𝑛

𝑘𝑘+1
− 𝚺𝚺

1∶𝑛𝑛−1,1∶𝑛𝑛−1

𝑘𝑘

(

𝚺𝚺
𝑠𝑠𝑠2∶𝑛𝑛𝑛2∶𝑛𝑛

𝑘𝑘+1
− 𝚺𝚺

1∶𝑛𝑛−1,1∶𝑛𝑛−1

𝑘𝑘

)

𝐀𝐀
⊤

𝑘𝑘

𝐀𝐀𝑘𝑘

(

𝚺𝚺
𝑠𝑠𝑠2∶𝑛𝑛𝑛2∶𝑛𝑛

𝑘𝑘+1
− 𝚺𝚺

1∶𝑛𝑛−1,1∶𝑛𝑛−1

𝑘𝑘

)

𝐀𝐀𝑘𝑘

(

𝚺𝚺
𝑠𝑠𝑠2∶𝑛𝑛𝑛2∶𝑛𝑛

𝑘𝑘+1
− 𝚺𝚺

1∶𝑛𝑛−1,1∶𝑛𝑛−1

𝑘𝑘

)

𝐀𝐀
⊤

𝑘𝑘

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

𝚺𝚺
𝑠𝑠𝑠2∶𝑛𝑛𝑛2∶𝑛𝑛

𝑘𝑘+1
𝚺𝚺

1∶𝑛𝑛−1,𝑛𝑛

𝑘𝑘
+

(

𝚺𝚺
𝑠𝑠𝑠2∶𝑛𝑛𝑛2∶𝑛𝑛

𝑘𝑘+1
− 𝚺𝚺

1∶𝑛𝑛−1,1∶𝑛𝑛−1

𝑘𝑘

)

𝐀𝐀
⊤

𝑘𝑘

𝚺𝚺
𝑛𝑛𝑛1∶𝑛𝑛−1

𝑘𝑘
+ 𝐀𝐀𝑘𝑘

(

𝚺𝚺
𝑠𝑠𝑠2∶𝑛𝑛𝑛2∶𝑛𝑛

𝑘𝑘+1
− 𝚺𝚺

1∶𝑛𝑛−1,1∶𝑛𝑛−1

𝑘𝑘

)

𝚺𝚺
𝑛𝑛𝑛𝑛𝑛

𝑘𝑘
+ 𝐀𝐀𝑘𝑘

(

𝚺𝚺
𝑠𝑠𝑠2∶𝑛𝑛𝑛2∶𝑛𝑛

𝑘𝑘+1
− 𝚺𝚺

1∶𝑛𝑛−1,1∶𝑛𝑛−1

𝑘𝑘

)

𝐀𝐀
⊤

𝑘𝑘

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

𝚺𝚺
𝑠𝑠𝑠2∶𝑛𝑛𝑛2∶𝑛𝑛

𝑘𝑘+1
𝚺𝚺

1∶𝑛𝑛−1,𝑛𝑛

𝑘𝑘
+ 𝚺𝚺

𝑠𝑠𝑠2∶𝑛𝑛𝑛2∶𝑛𝑛

𝑘𝑘+1
𝐀𝐀

⊤

𝑘𝑘
− 𝚺𝚺

1∶𝑛𝑛−1,𝑛𝑛

𝑘𝑘

𝚺𝚺
𝑛𝑛𝑛1∶𝑛𝑛−1

𝑘𝑘
+ 𝐀𝐀𝑘𝑘𝚺𝚺

𝑠𝑠𝑠2∶𝑛𝑛𝑛2∶𝑛𝑛

𝑘𝑘+1
− 𝚺𝚺

𝑛𝑛𝑛1∶𝑛𝑛−1

𝑘𝑘
𝚺𝚺

𝑛𝑛𝑛𝑛𝑛

𝑘𝑘
+ 𝐀𝐀𝑘𝑘

(

𝚺𝚺
𝑠𝑠𝑠2∶𝑛𝑛𝑛2∶𝑛𝑛

𝑘𝑘+1
− 𝚺𝚺

1∶𝑛𝑛−1,1∶𝑛𝑛−1

𝑘𝑘

)

𝐀𝐀
⊤

𝑘𝑘

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

𝚺𝚺
𝑠𝑠𝑠2∶𝑛𝑛𝑛2∶𝑛𝑛

𝑘𝑘+1
𝚺𝚺

𝑠𝑠𝑠2∶𝑛𝑛𝑛2∶𝑛𝑛

𝑘𝑘+1
𝐀𝐀

⊤

𝑘𝑘

𝐀𝐀𝑘𝑘𝚺𝚺
𝑠𝑠𝑠2∶𝑛𝑛𝑛2∶𝑛𝑛

𝑘𝑘+1
𝚺𝚺

𝑛𝑛𝑛𝑛𝑛

𝑘𝑘
+ 𝐀𝐀𝑘𝑘

(

𝚺𝚺
𝑠𝑠𝑠2∶𝑛𝑛𝑛2∶𝑛𝑛

𝑘𝑘+1
− 𝚺𝚺

1∶𝑛𝑛−1,1∶𝑛𝑛−1

𝑘𝑘

)

𝐀𝐀
⊤

𝑘𝑘

⎞

⎟

⎟

⎠

�

where the inverse of the matrix 𝐴𝐴 𝚺𝚺
−

𝑘𝑘+1
 is derived as follows. We define
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𝚺𝚺
−

𝑘𝑘+1
=

⎛

⎜

⎜

⎝

F𝚺𝚺
1,1

𝑘𝑘−1
F
⊤
+ Σ̃ F𝚺𝚺

1,1∶𝑛𝑛−1

𝑘𝑘−1

𝚺𝚺
1∶𝑛𝑛−1,1

𝑘𝑘−1
F
⊤

𝚺𝚺
1∶𝑛𝑛−1,1∶𝑛𝑛−1

𝑘𝑘−1

⎞
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Data Availability Statement
All data used in this study is synthetic data generated by us. The data sets together with python scripts used to 
generate the data can be found in the GitLab repository (Bohsung & Schanner, 2023) under https://git.gfz-pots-
dam.de/sec23/korte/pdrm/tree/main/1_Estimating_pDRM_effects/dat. Additionally, the python implementation 
of the method can be found in the GitLab repository (Bohsung & Schanner, 2023) under https://git.gfz-potsdam.
de/sec23/korte/pdrm/tree/main/pdrm. On our website, https://sec23.git-pages.gfz-potsdam.de/korte/pdrm/ jupy-
ter notebooks have been published that can be used to generate more synthetic data or investigate cases which 
were not discussed in this paper.
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