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Abstract Discriminating magnetic minerals of different origins in natural samples is useful to reveal their
associated geological and environmental processes, which can be achieved by the analysis of remanent
magnetization curves. The analysis relies on the choice of the model distribution to unmix magnetic
components. Three model distributions were proposed in past studies, namely, the lognormal, skew normal,
and skewed generalized Gaussian distributions, which are related to the normal distribution. In this study,
the Burr type Xl distribution is tested and compared with existing model distributions. An automated
protocol is proposed to assign parameters necessary to initiate the component analysis, which improves the
efficiency and objectivity. Results show that the new model distribution exhibits similar flexibility to the

skew normal and skewed generalized Gaussian distributions in approximating skewed coercivity distributions and
can fit end-member components better than the commonly used lognormal distribution. We demonstrate that the
component analysis is sensitive to model distribution as well as measurement noise. As a consequence, the
decomposition is subject to bias that is hard to identify due to the lack of ground-truth data. It is therefore
recommended to compare results derived from various model distributions to identify spurious components.

1. Introduction

Environmental magnetism has successfully demonstrated that bulk magnetic properties of natural samples
are indicative of a wide range of geological and environmental processes (Evans & Heller, 2003; Liu et al.,
2012). However, as natural samples usually contain a mixture of magnetic minerals, it is necessary to identify
individual magnetic components in order to separate the mixed information. Several rock magnetic methods
are widely used to this end, including hysteresis loop (Heslop & Roberts, 2012; von Dobeneck, 1996), magnetic
susceptibility (Egli, 2009; Liu et al., 2004; Zhao & Liu, 2010), remanent magnetization curve (Egli, 2003; Heslop
et al., 2002; Heslop & Dillon, 2007; Kruiver et al.,, 2001), and first-order reversal curves (Egli et al., 2010; Roberts
et al, 2000). Among them, the analysis of remanent magnetization curves, including isothermal remanent mag-
netization (IRM) and anhysteretic remanent magnetization curves, is the most applied technique for quantita-
tive estimates of constituent components, known as the component analysis (see Maxbauer et al., 2016, for a
summary of applications). The method assumes that the magnetization of a sample is a linear combination
of contributions from constituent components, which is generally satisfied when there are negligible magnetic
interactions among components (Egli, 2003). The normalized magnetization curve, M*(B), can be expressed as

M(B)

(B == = é GiMi(B) + e, )

where B is the magnetizing or demagnetizing field; M(B) and M, are the magnetization and saturation rema-
nent magnetization, respectively, of a bulk sample; n is the number of components; M;(B) is the normalized
magnetization of the ith component with ¢; being its relative contribution to the total magnetization, respec-
tively; and ¢ is the residual. The component analysis can also be formulated using the first derivative of mag-
netization curves, that is,

dM*(B)
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As f(B) specifies the contribution of magnetic particles to the magnetization at each coercivity interval, it is
called the coercivity distribution (Egli, 2003). Note that the scale of the magnetic field (B) can be arbitrary.
The most common scale is linear or logarithmic. In practice, the coercivity distribution of each component,
f(B), is in general unknown. Therefore, the essence of component analysis is to find a proper function,
called the model distribution, to approximate the coercivity distribution or magnetization curve of mag-
netic components. Robertson and France (1994) proposed to use the lognormal distribution to model
IRM acquisition curves:

(x — #i)z
2DP?

n
M (B) = 151 CiFlogn (B; By 2i, D'Di) +e= ax + g, 3)

n Ci
> ex|
i=1+/27DP; Jexp

where Fiogn is the cumulative distribution function (CDF) of the lognormal distribution, B,,; is the med-
ian acquisition field for the ith component where its magnetization reaches half of its saturation value,
DP; (or ;) is a shape factor that describes the dispersion of the distribution around its peak value, and ¢
is the residual. With the transformation of x = log (B), the lognormal distribution becomes the normal
distribution on the logarithmic scale, where u; = log (By,2;). Each lognormal component is described by
three parameters and is symmetrical on the logarithmic scale.

The lognormal mixture model is comprehensively studied by Kruiver et al. (2001) and Heslop et al. (2002),
who also provided computer programs and hence popularized component analysis. However, it did not take
long to realize the limitation of the lognormal distribution in approximating some magnetic components.
For example, theoretical calculation shows that the coercivity distribution of a magnetic component can
be skewed due to the presence of magnetic interaction and/or thermal relaxation (Egli, 2004b; Heslop
et al., 2004), whereas the lognormal distribution is symmetrical around its mean on the logarithmic scale.
In such cases, an additional lognormal component is required to fit coercivity distributions that deviate from
normality. To better describe magnetic components of geological samples, generalized normal distributions
have been investigated as model distributions. Egli (2003) proposed to use the skewed generalized Gaussian
(SGQ) distribution. The probability distribution function (PDF) is

p
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withx" = (x — wlo,o>0,0<]|q|<1,and p > 0, xis the logarithmic magnetic field instead of the linear field (B),
that is, x = log;B. The shape of an SGG component is controlled by four parameters, which are the location
(1), dispersion (o) as in the normal distribution, and two additional parameters that modulate the skewness
(g) and kurtosis (p). The SGG distribution can cover a wide range of shapes including skewed (|g| # 1), peaked
(p < 1), and squared (p » 2) shapes due to these two additional parameters. The normal distribution is a spe-
cial case of the SGG distribution with g = 1 and p = 2 (Egli, 2003). A broad spectrum of geological samples was
analyzed comprehensively using the SGG distribution. Representative components are identified and classi-
fied as detrital, biogenic, pedogenic, urban pollution, dust components, and so on (Egli, 2004a, 2004c, 2004b).
Skewness plays a more important role than kurtosis in modeling geological samples as most components are
characterized with p close to 2 (Egli, 2004a). As a simplification, Maxbauer et al. (2016) applied the skew nor-
mal distribution and found that resulting components using the skew normal distribution are comparable to
those based on normal and SGG distributions.

SGG(x, #,0,9,P) =

In principle, model distributions should closely represent the coercivity distribution of end-member magnetic
components in order to get reliable results. However, data of end-member magnetic components are rare as it
is often impossible to physically extract individual components from natural samples. Moreover, it remains
challenging to faithfully model coercivity distributions of natural components given the complex nature of
coercivity. Hence, the choice of model distributions is empirical. As the SGG distribution can cover an extremely
wide range of skewness and kurtosis, it is a versatile model distribution when a priori information about the
constituent components is unknown, and is considered as the gold standard for magnetic component analysis
(Heslop, 2015). Nevertheless, since ground-truth data are unavailable, it remains problematic to verify how
faithful the reconstructed components are. For this matter, it would be helpful to have other flexible model dis-
tributions for comparison in order to judge the sensitivity of results to the choice of model distributions, but
there is few option since distributions other than generalized normal distributions have been overlooked.
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Regardless of model distributions utilized, component analysis is known to be sensitive to measurement
noise (Egli, 2003). It is not guaranteed that correct estimates of parameters can be obtained in the presence
of noise. Moreover, it is practice to convert raw data to the first derivative for component analysis, which
amplifies the measurement noise (Heslop, 2015). Though methods such as spline interpolation (Heslop
etal, 2002; Maxbauer et al., 2016), low-pass filtering, and linearization of measurement (Egli, 2003) have been
proposed to reduce the noise in the original data, it is unclear how well the signal can be separated from
noise. If component analysis can be based on the cumulative form of the mixture model as in equation (1),
the analysis should be less affected by noise as it avoids the amplification of noise. However, only the
component analysis tool (IRM-CLG) published by Kruiver et al. (2001) is based on the cumulative lognormal
distribution. The cumulative form is less popular since probability distributions usually do not have closed-
form mathematical expressions for CDFs. For example, the computation of the CDF of the SGG distribution
requires customized code for numerical integration, which will significantly slow down the analysis and thus
hinder the application using its CDF form. As a result, the performance of the CDF form of the mixture model
on the one hand and the performance of the PDF form on the other hand are little compared.

The Burr type XIl distribution is a generalized log-logistic function, and one of its limiting case is the Weibull
distribution (Rodriguez, 1977). It covers a rich range of skewness and kurtosis that overlaps with many other
distributions (Rodriguez, 1977). Furthermore, the CDF of the Burr type Xl distribution has a closed-form math-
ematical expression. In this paper, we will examine the suitability of the Burr type Xl distribution as a model
distribution. Both CDF and PDF forms of the mixture model using the Burr type XIl distribution are applied to
noisy data in order to compare their sensitivity to noise. We also perform component analysis on synthetic
and natural samples to compare performances of the lognormal, SGG, and Burr type XlI distributions, fol-
lowed by the discussion of the roles of model distributions and measurement noise in component analysis.

2. The Burr Type XII Distribution and Methods

Burr (1942) introduced a system of distributions with the purpose of fitting a CDF to data rather than fitting a
PDF to the derivative of data. The type Xl distribution is one of the 12 distributions in the system and is the
one that was extensively studied by Burr (1942). For component analysis, we adopt a three-parameter form
for the CDF and PDF (Tadikamalla, 1980):

B\ ¢
Feurr(B;a,p,4) =1 — (H'(}) ) ,o>0,9y>0,4>0, (5)
and
B y—1 B 7\ —a—1
foun (B; 01, 7, 1) :%(Z) (1 + (I) ) ,a>0,7>0,1>0, (6)

respectively, where B is the linear magnetic field, 4 is the scale parameter that adjusts the width of distribu-
tion, and the shape is modulated by a and . The distribution is unimodal when y > 1, and narrows down as «
and/or A increase. Detailed information of the variability in shape can be found in Burr (1942), who provided a
table and a graph of skewness as a function of shape parameters. In order to compare with the SGG distribu-
tion, the Burr type Xl distribution is transformed to a logarithmic scale, which also changes the skewness and
kurtosis accordingly, but the flexibility in shape is not compromised. For example, the Burr type XII distribu-
tion becomes the logistic distribution (which is the log-logistic distribution on the linear scale) when a = 1,
which is symmetrical and similar to the normal distribution except that it has slightly heavier tails as shown
in Figure 1a. Note that only in this case is A equal to the median acquisition field as Fg (B =4 a = 1) = 0.5.
Examples of asymmetric Burr type XIl distributions are shown in Figure 1b.

The Burr type XIl distribution can approximate the individual magnetic components that are identified and
modeled using the SGG distribution (Egli, 2004a). Figure 2a shows examples of magnetic components mod-
eled by the SGG distribution (gray curves; Egli, 2004a) in comparison with their best fits using the Burr type XII
distribution (colored curves). The corresponding residuals have sinusoidal shape (Figure 2b). Similarly, the
Burr type Xl distributions can also be closely fitted by the SGG distribution (Figure 2c) with even smaller
residuals (Figure 2d).
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Figure 1. Examples of the Burr type XlI distribution on the logarithmic scale. (a) A symmetric Burr type XIl distribution
(a = 1), that is, a logistic distribution, is similar to the normal distribution except for heavier tails. (b) Skewed Burr type Xl
distributions versus a normal distribution. All distributions have the same median value (indicated by the dashed vertical
line). The vertical bars indicate the 5th and 95th percentiles of corresponding distributions.

When using the Burr type Xll distribution as the model distribution, the mixture model in the CDF form can be
expressed as

n
M(B) = _;1 CiFBurr(B;ah)’,‘,ii) +e. 7)

Or it can be expressed in the PDF form on the logarithmic scale

dM(x)
dx

n d
= In10 > C,'fBurr(‘IOX,'O{,',}’i,/li) 10X =+
i=1

e
g (8)

where x = log,oB. Each component is described by four parameters, that is, contribution (c;), the scale para-

n
meter (4), and shape factors (o; and /,). If the magnetization curve reaches the saturation, thereis 3 ¢; = 1for

i=1

n—=1
the normalized curve. In this case, ¢, can be simply set equalto 1 — ¥ ¢; and the number of free parameters
i=1

i=

for n components is 4n — 1. The parameters are estimated using nonlinear least squares regression.

For component analysis, it is necessary to choose the number of components and their initial parameters to
initiate the nonlinear regression. They are usually provided by users in a trial-and-error manner. This manual

@ 300 @
150 SGG components (cp.) 25 1L Burr model cp.
Burr fit (urban pollution cp.) — SGG fit (a=8.5,y=1.8)
Burr fit (biogenic cp.) 20 [ 5GG fit (a=0.8,y=3.)
1.0 — Burr fit (detrital cp.) 150 SGG fit (a=1.5,y=4.5)
1.0 ¢
0.5}
0.5
B B
0.0 0.0 ——
5 10 50 100 500 1000 (mT) 5 10 50 100 500 1000 (MT)
(b) residual (d) residual
0.05 0.05
B ) ~_ B
(mT) - B (mT)
-0.05 -0.05
urban pollution biogenic — detrital — (a=8.5,y=1.8) (a=0.8,y=3.) (a=1.5,y=4.5)

Figure 2. Comparison between the Burr type Xll distribution and the skewed generalized Gaussian (SGG) distribution. (a)
The SGG components (gray lines, from Egli (2004a)) and best fits of the Burr type XIl distributions (colored lines) with
the following shape parameters (a, y): detrital cp (a=1.517,y = 1.806), biogenic cp (o = 1.446, y = 4.568), and urban pollution
cp (o = 2.055, vy = 2.657). (b) Corresponding residuals. (c) Best fits of the SGG distribution (colored lines) to the modeled
Burr components (gray lines). Shape parameters for modeled components are shown in legends. (d) Corresponding
residuals. Note that cp means component.
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step makes component analysis not only inefficient but also sensitive to users’ choices. As an improvement,
we make these procedures automatic by using the following two protocols for choosing initial parameters
and the optimal number of components.

2.1. Choice of Initial Guesses for Parameters

In general, nonlinear least squares regression cannot guarantee that the global minimum is reached since it is
likely to reach to local minima depending on initial guesses. Except for the IRM UnMix program (Heslop et al.,
2002), all programs require users to manually provide initial guesses to start an analysis. However, as it is not
intuitive to come up with initial guesses that lead to global minimum, users have to adjust all parameters in a
trial-and-error manner (Heslop, 2015). In fact, this procedure can be done automatically. For this purpose, the
range of each parameter needs to be constrained. For the Burr type XlI distribution, the contribution para-
meter varies between 0 and 1. The bounds for shape parameters (« and y) can be predefined based on gen-
eral observation. For example, extreme values of a and y will result in unrealistically wide (as o, y — 0) or
narrow (as a, y — o) coercivity distributions. Therefore, a and y can be constrained to [0.4, 16] and [0.5,
16], respectively, in the program. Note that though the distribution is unimodal on a linear scale when y > 1,
it can be unimodal on a logarithmic scale with y <1, depending on the value of a. Though 1 = B, , in general,
the ratio, r = /By 5, is a function of « and y, which increases with increasing a and decreasing y. Since By, for
most natural magnetic minerals is well below 2 Tesla, we have 4 < 2 r Tesla. Within the above ranges of @ and
y, r reaches maximum (510.16) with a = 16 and y = 0.5, but this value is too large to be a useful constraint. In
fact, r decreases sharply as y increases, for example, r ~ 22.6 with (e = 16, y = 1.0) and r = 8 with (a = 16, y = 1.5).
Therefore, from the practical standpoint, 1 can be set to range between (0, 16] Tesla. Given the number of
components, initial values can then be randomly drawn from within the given bounds. With each set of
sampled parameters, the program fits the data and records the residual sum of squares (RSS). This procedure
will repeat for a given number of times (e.g., n = 20), and the result with the smallest RSS will be chosen. Note
that the analysis may result in components with negative c;. Such results will be discarded automatically. This
protocol exempts users from the effort of providing initial guesses, improving the efficiency as well as the
objectivity of the analysis.

2.2. Model Selection

Excessive number of components provides better fitting yet misleading results. It is therefore critical to
determine the appropriate number of components. The Akaike information criterion (AIC) provides a
means of model selection by quantifying the trade-off between the goodness of fit of the model
and the number of the parameters of the model (Akaike, 1998). The AIC is defined as the difference
between the number of parameters and the maximum value of the likelihood function for the model.
As we use a least squares method, the maximum value of the likelihood function is equivalent to the
RSS of the fitting given the assumption that the noise is normally distributed (Burnham & Anderson,
2002), and the AIC is expressed as follows:

N ~ 2
AIC =2k + Nln 3 <y,—f(x,-;6)> +C=2k+NInRSS +C, )
i=1

where k is the number of parameters (G)ﬁis the best fit estimates of 4, N is the number of data points, and Cis
a constant. As a smaller AIC score is favored, the term of 2k, which is positive, penalizes the increase in the
number of components. AIC scores as a function of N can be calculated, and the number of components that
gives the minimum AIC score will be used as the optimal value for further analyses.

3. Results

In this section, we demonstrate the results of component analysis using the Burr type XlI distribution as
well as the lognormal and SGG distributions. Since all results are shown on the logarithmic scale for com-
parison, the lognormal distribution is indicated as the normal distribution. The components in the follow-
ing examples are widely overlapping, which are difficult to recover (Egli, 2003). The first two parts test
noise-free and noisy data, respectively. The third part compares the model distributions by applying them
to experimental data.
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Table 1

3.1. Noise-Free Modeled Data of the Burr Type Xl Distribution

Parameters for the Modeled Components and the Best Fits Shown in Figure 3

Model parameters

Cases A and B are composed of two and three components, respectively.

Best fits The model parameters and their estimates are listed in Table 1. In each

a

C 2 (mT) o y case, there are 60 data points that are evenly distributed on the logarith-

Case c¢p C A(mT)  « y
A #1032 50 1.0 20
#2 0.68 25 20 1.2
B #1015 100 20 33
#2 040 40 1.0 3.0
#3 045 25 15 15 0450 24991 1498 1.500

0320 49991 1.000 1.999 mic scale. The fitting uses the CDF form of the mixture model, and the
0680 25.014 2003 1.500 results are shown as coercivity distributions as it is more informative. In
0.150 99.963 1.999 3.299 Case A, the two constituent components have largely overlapping coerciv-
0400 40010 1.001 3.000 ity spectra with distinct median coercivity. In the case of two components,
itis easy to obtain close estimates even with default initial guesses for each

a
cp: component.

parameter (Figure 3a). For a unimodal distribution with three components

(case B), default initial guesses may lead to wrong estimates even though
noise is absent (not shown). In such cases, the automatic approach for choosing initial guesses (see
section 2.1) becomes helpful to get better estimates (Figure 3b).

3.2. Noisy Modeled Data of the Burr Type Xl Distribution

As noise is always present in real data, it is important to test the effect of noise on component analysis. The
noise is modeled as a Gaussian white noise, n(B) = a * w(B; 6> = 1), where Bis the magnetic field, a is the ampli-
tude, and 62 is the variance of the noise. Noise is added to the modeled data shown in Figure 3a. To test the
sensitivity of component analysis to noise, the analyses are performed on the same data using both the CDF
and PDF forms of the mixture model. To avoid the potential effect of initial guesses, identical initial guesses
are used in both cases. Figure 4a shows the result based on the CDF mixture model (but the gradient curve is
shown instead). With a minor noise (a = 0.0002), the estimated components are slightly different from the
modeled components. The sum of estimated components is close to the data though (Figure 4a), which
can also be seen in Figure 4b where the residual of the best fit (black) approximates the noise (gray) with
a small difference (blue) that has a low-frequency feature. Note that in Figure 4b it is the noise in the original
data (M) that is shown not that in the gradient curve (dM/dlogB). On the other hand, the result based on the
PDF mixture model is biased to a greater extent (Figure 4c). There are two reasons. First, the fitting is per-
formed on the gradient curve where the noise level is enhanced by a factor of 10 by differentiation
(Figure 4d). If we increase the noise added to the original signal by a factor of 10, the result using the CDF
mixture model will be similarly biased (not shown). It suggests that the CDF form of mixture model should
be preferred over the PDF form in order to avoid amplifying measurement noise. Second, the shape of noise
profile is changed by differentiation. As an example, Figure 4e shows the result of component analysis on the
data of the same components with a different noise profile (Figure 4f). Though the noise profiles shown in
Figures 4b and 4f have the same amplitude (a = 0.0002), their impact on the result is different.

It is more difficult to get close estimates from noisy data as the number of components increase. Figure 4g
shows the result for a case with three components. The noise profile in this example is the same as that
shown in Figure 4b. The contribution of the first modeled component (orange) is set to 15% and the estimate
is 20.0%, which is 33% off the true value. The estimated contribution of the second component (green) is
~18% off. If the noise is doubled in amplitude, the bias becomes even worse with the estimated concentra-
tion of the first component being almost 2 times its true value (not shown).

Table 2
Parameters for the Modeled Components and the Best Fits Shown in Figure 4
Model parameters Best fits
Case cp C A (mT) o y C A (mT) o y
A (Figure 4a) #1 0.32 50 1.0 2.0 0.361 50.032 1.023 1.956
#2 0.68 25 2.0 1.2 0.639 28.054 2419 1.197
A (Figure 4c) #1 0.32 50 1.0 2.0 0.453 49.133 1.110 1.871
#2 0.68 25 2.0 1.2 0.548 39.681 4153 1.189
B (Figure 4q) #1 0.15 100 2.0 3.3 0.200 93.753 1.752 3.238
#2 0.40 40 1.0 3.0 0.326 44.460 1.513 2.972
#3 0.45 25 1.5 1.5 0.475 24.785 1392 1.497
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Figure 3. Component analysis of noise-free modeled data. (a) The modeled data (dots) consist of 2 Burr type XIl compo-
nents whose coercivity distributions are indicated by the colored areas. The estimated components are shown in blue
lines, and the total distribution is in black. (b) The case with three modeled components. Parameters are shown in Table 1.

3.3. Modeled Data of Other Distributions

As shown above, noise has a significant effect on component analysis using the mixture model of the
Burr type Xll distribution. In this part, we examine mixture models using the normal and SGG distribu-
tions for comparison. As the normal distribution is a special case of the SGG distribution, the same noisy
modeled data, consisting of two normal components, is used for test. The noise level is the same as

07F (a) unmixing based on CDF 0.7F (c) unmixing based on PDF
06F data 06[ data
cp1 cp 1
05} 2 051 cp2
% 04f — bestfit(cp) % 04l — bestfit (cp)
% — best fit (sum) §‘ — best fit (sum)
= =
S 0.3 S 0.3
< S|
02 02
0.1F 0.1F
1 1 B L B
1 10 100 1000 (mT) 1 10 100 1000 (mT)
<\‘T\ 1 (@ noise — residual — noise-residual
IS )
< X
2 B o B
X (mT) e (mT)
s <
I
noise — residual — noise-residual §3
0.7  (e) unmixing based on CDF (g) unmixing based on CDF
10+
06 data data
cp1
o5k o8l cp 1
_ cp2 _ p2
) _ i Q
S o4l best fit (cp) % 06 —ocp3
= — i ) N
3 oab best fit (sum) 3 — best fit (cp)
% % 04  — pestfit (sum)
0.2}
0.2
011
B
00 . B 00 .
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(f) (h)
Ea 5 A L 5 ~
AP . s b LA aa 5
5 VAW \/ S (mT) % A (mT)
= -5 = -5
noise — residual — noise-residual noise — residual — noise-residual

Figure 4. The component analysis of noisy data. (a) The modeled data (dots) consist of two Burr type Xl components
(cp1 and cp2, shown as green and orange curves) and noise. The estimated components and the sum are shown in
blue and black lines, respectively. Note that the analysis is based on the cumulative form of the mixture model. (b) The
residual of the analysis (black) versus the modeled noise (dots). The blue line indicates the difference between the
residual and modeled noise. (c and d) Same as (a) and (b) except that the analysis is performed on the coercivity
distribution using the probability distribution function (PDF) form of the mixture model. (e and f) Same as (a) and
(b) except that the modeled noise is different. (g and h) The case with 3 modeled components. The modeled noise is
the same as that used in (a). Parameters of best fits are listed in Table 2.

ZHAO ET AL.

8304



~1
AGU

100

ADVANCING EARTH
'AND SPACE SCiENCE

Journal of Geophysical Research: Solid Earth 10.1029/2018JB016082

(a) unmixing based on PDF (c)
0.8 08

data data

o1 cp i
06 2 06 cp2
g S :
%o — best fit (cp) %0 — best fit (cp)
S 04 — bestfit(sum) S 04 . pestiit (close op)
3 =

— best fit (sum)
02 02
. B . B
1 10 100 1000 (mT) 1 10 100 1000 (mT)

& a
1 )
= =
X %
o B x B
\ga (mT) E’a (mT)
= 5
= - noise — residual — noise-residual 5 - noise — residual — noise-residual
< 1 S| 1

Figure 5. Component analysis using the normal and skewed generalized Gaussian distributions. (a) The modeled data
(dots) consist of two normal components (cp1 and cp2, shown as green and orange curves) and noise. The best fit com-
ponents and the sum are shown in blue and black lines, respectively. (b) The residual (black) versus the modeled noise
(dots). The blue line indicates the difference between the residual and the noise. (c) Results based on the SGG distribution.
The data are the same as that shown in (a). The solid blue lines and dashed lines indicate results with two different sets of
initial guesses. (d) The residual (black) corresponds to the results shown in solid blue lines in (c).

above cases (a = 0.0002). Similar to previous cases, the results are affected by noise (Figure 5). The nor-
mal mixture model is relatively stable in the sense that the results based on PDF and CDF mixture models
are similar to each other and both are close to the true values (Figure 5a, using the PDF mixture model).
One reason is that the normal distribution involves fewer parameters. In contrast, when using the SGG
mixture model with the same initial guesses where contribution parameters for the two components
are set to 0.5, the estimate is apparently wrong (estimated components are shown in solid blue lines in
Figure 5¢, and the corresponding residual is shown in Figure 5d together with the modeled noise).
However, if the initial guesses of the contribution are tuned to be closer to the true values, the SGG
model can result in a very good estimate (dashed lines in Figure 5c) in this case. However, the fitting that
gives a correct estimate in fact has a larger RSS (5.45E-4) than that of the wrong estimate (4.88E-4). This
example suggests that the global minimum of the object function that the nonlinear regression method
optimizes is shifted by the noise away from its true position, which is the main reason that the compo-
nent analysis is sensitive to noise.
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data data
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Figure 6. Component analysis of synthetic magnetite. (a) Results of component analysis using a single component. The raw
data are shown as dots. The best fits of the normal, Burr type XlI, and SGG distributions are shown in orange, green,

and blue curves, respectively. The Burr component is characterized with o = 1.085, y = 3.407 and A = 62.293 mT. (b)
Residuals. (c) Results of component analysis using two components. Color codes are the same as in (a). Individual
components are shown as dashed lines. Sums are shown as solid lines. (d) Residuals.
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Figure 7. Component analysis of serpentinized peridotite. (a) Results of component analysis using a single component. The
raw data are shown as dots. The best fits of the normal, Burr type Xll and SGG distributions are shown in orange, green,
and blue curves, respectively. The parameters for the Burr component are a = 1.244, y = 2.721, 2 = 72.872 mT. (b) Residuals.
(c) Results of component analysis using two components. Color codes are the same as in (a). individual components are
shown as dashed lines. The sums are shown as solid lines. (d) Residuals.

3.4. Component Analysis of Experimental Data

In previous examples, the modeled data are based on the same distribution as the mixture model. In practice,
however, the coercivity distribution of constituent components is in general unknown. Analysis may have dif-
ferent results depending on the choice of model distributions. Therefore, it is useful to compare different
model distributions in order to judge if the estimated components are reliable, as illustrated by the following
examples. First, we chose a sample of synthetic magnetite, which is produced by reducing hematite at 395 °C
in a mixed gas (80% CO, and 20% CO) for 72 hr. The detail of the sample is given by Jiang et al. (2016) (the
sample ID therein is I-4.). The IRM acquisition curve was measured up to a maximum field of 1 T on a vibrating
sample magnetometer (MicroMag™ VSM 3900). As the magnetite is made in a single process, it is expected to
have one single component. The normal distribution can approximate the data with one component
(Figure 6a) but with noticeable residuals especially in the left tail (Figure 6b). On the other hand, the Burr type
Xl and the SGG distributions can better fit the data with a single component (Figures 6a and 6b). Using two
components, the overall fits are improved for all model distributions (Figures 6c and 6d). The estimated com-
ponents, however, are not consistent at all (Figure 6c). The comparison suggests that the results with two
components are spurious though they are associated with better AIC scores and smaller residuals. In fact,
the sine-wave like residuals in Figure 6b are similar to the pattern shown in Figures 2b and 2d. Therefore,
it suggests that the residual is due to the fact that the model distributions are different from the actual coer-
civity distribution of the sample, rather than under-fitting.

The second example is a serpentinized peridotite sampled from the Yokoniwa Rise, Central Indian Ridge (Fujii
et al., 2016). The peridotites investigated by Fuijii et al. (2016) had experienced different degrees of serpenti-
nization due to hydrothermal reaction. Here we chose the sample (ID: 6k#1170R12) with a 96% serpentiniza-
tion as an end-member. Its detailed rock magnetic properties are listed in Fujii et al. (2016). The IRM
acquisition curve was measured on an alternative gradient magnetometer (MicroMag™ AGM 2900) hosted
in the National Institute of Polar Research, Japan. The coercivity distribution of the rock sample is similar to
that of the synthetic magnetite shown in Figure 6. With a single component, all the three model distributions
can fit the data closely except that the normal distribution results in larger residuals in the left tail (Figures 7a
and 7b). With two components, the fits are all improved and the residuals for all distributions become almost
identical as shown in Figure 7d. AIC scores also suggest that the optimal number of components is 2.
Moreover, the components based on the SGG and Burr type Xl distributions are very similar for this sample
(blue and green dashed lines in Figure 7c). Unlike the case shown in Figure 6b, the consistency between dif-
ferent mixture models is excellent, which implies that the interpretation of two components is also plausible.
In fact, the microscopic observation shows that the texture of the rock sample and the morphology of mag-
netic particles therein are highly heterogeneous. For example, the rock contains porous micron-sized magne-
tite in the matrix as well as submicron magnetite grown in developed veins (Figures 2 and 5 in Fujii et al.,
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2016). Therefore, magnetite particles in the sample could be formed by different processes and thus have
different coercivity distributions. It requires further information or knowledge to verify the interpretations
for this sample.

4. Discussion

In this part, we first compare the model distributions against coercivity distributions of end-member mag-
netic components. Then, critical problems associated with unmixing components are addressed in order
to better understand component analysis, followed by discussion of precautions and possible solutions.

4.1. Comparing Model Distributions as End-Member Coercivity Distributions

The lognormal distribution was the first and most commonly used model distribution for magnetic compo-
nent analysis. It has fewer parameters than other distributions and is more resistant to noise. However, it may
not closely represent the coercivity distribution of magnetic components of geological samples due to its
fixed symmetry. Theoretical calculation shows that a single magnetic component tends to have a left-skewed
coercivity distribution (i.e., negative skewness) due to factors such as physical properties (e.g., grain size, elon-
gation of particles, and defects of the crystal structure) and thermal activation (Egli, 2004b). In order to fit a
skewed coercivity distribution using the lognormal distribution, additional components will be required in
order to fit the low and/or high ends of the coercivity distribution. In contrast, the skew normal and SGG dis-
tributions, which have flexible skewness (Egli, 2003; Maxbauer et al., 2016), can better handle such situations
(see Figures 6a and 7a for example). Though the SGG distribution covers an extremely wide range of skew-
ness and kurtosis, when applied to natural and synthetic samples (Egli, 2004a, 2004b, 2004c), most magnetic
components are characterized with a moderate negative skewness (Egli, 2003; Egli, 2004a). As the default
parameter space of the SGG distribution is excessive for natural samples, it makes the analysis more subject
to nonuniqueness (see section 4.2). Furthermore, a SGG component may effectively approximate a combina-
tion of two lognormal components, as shown in Figure 10 in Egli (2003). In such situations where coercivity
distributions of two components overlap considerably, using the SGG distribution might underestimate the
number of underlying components, which is a general problem when using complicated model distributions
(Egli, 2003). While narrowing the parameter space is helpful for this problem, it is also important to have other
model distributions for comparison in order to identify spurious results. Compared to the SGG distribution,
the Burr type XIl distribution has a moderate shape variability. It can approximate end-members of the nat-
ural components reconstructed using the SGG distribution (Figure 2a). When applied to experimental data of
end-members, the SGG and Burr type XIl distributions can fit data similarly well with a single component as
shown in Figures 6a and 7a. These examples suggest that the Burr type XlI distribution is a promising alter-
native model distribution for natural end-member components. For future work, it is worth investigating
more natural end-members using different model distributions to justify if they are qualified.

4.2. Nonuniqueness of Component Analysis

When analyzing samples consisting of several magnetic components, there can be multiple solutions, corre-
sponding to local minima of the object function. With different initial guesses, the nonlinear regression will
tend to end up in different minima, causing the well-known nonuniqueness problem. This problem is more
prominent for the Burr type Xl and SGG distributions than for the normal distribution. For example, the mix-
ture model of SGG distributions is more sensitive to initial guesses than that of normal distributions, as shown
in Figure 5¢, because of its highly flexible nature. In fact, a part of SGG distributions, such as peaked and
squared curves, is unrealistic for natural or synthetic samples. It means the parameter space is much wider
than necessary for component analysis. For this reason, narrowing the parameter space would be helpful
to reduce the nonuniqueness of component analysis in general (Maxbauer et al., 2016). For this purpose,
Egli (2003) suggested that the natural components can be modeled with |g| > 0.5 and 1.6 < p < 2.5.
Furthermore, Egli (2004b) related the kurtosis parameter (p) with skewness parameter (g) by p(g) =2 + (1 — g)°
based on information theory and a wide collection of experimental data. In this case, p is close to 2 and
dependent on g. Hence, the number of independent parameter is reduced to 3 for a SGG magnetic compo-
nent. We applied the original and the simplified SGG distribution to fit the data of sample I-4. The original SGG
component in Figure 6a shows a pronounced and unnatural peak that is not featured by the measured data.
This peak is possibly an artifact due to the relative high noise level in the right tail. With the simplified SGG
model, we can get a solution that better fits the peak. However, due to the restriction on the parameter
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space, the overall fitting is not as good as the original one and the resulting RSS is similar to that of the single
lognormal component. If p(q) ~ 1.75 + (1 — g)° is applied, the result is improved compared to that with p ~ 2. It
suggests that the optimal relationship of p and g may be subject to change.

Due to the nonuniqueness problem, the choice of initial guesses becomes nontrivial in many cases. Most of
the published component analysis tools (Egli, 2003; Kruiver et al., 2001; Maxbauer et al., 2016) require users to
test several sets of initial guesses for individual samples to obtain the best fit. The interactive user interface
designed by Maxbauer et al. (2016) is helpful for users to come up with meaningful guesses, but it is still inef-
ficient especially for multiple components. Also, users tend to use default initial guesses that they have been
familiar with to save time, which is an important source of subjectivity that could bias estimates. Egli (2003)
and Maxbauer et al. (2016) run further optimizations with random distribution parameters that are resampled
based on user-provided initial guesses. However, it is still subject to users’ choice to some degree. The auto-
mated procedure for the choice of initial guesses (see section 2.1) could further improve the efficiency and
objectivity of the analysis. The simplest strategy for automatic sampling is to randomly choose initial guesses
from the parameter space, whereby the chance of getting to different minima of the object function
becomes similar. Since the automated procedure is effortless for users, more combinations of initial guesses
can be easily tested and therefore helpful to increase the chance of reaching the global minimum. It is pos-
sible to optimize the strategy for automatically choosing initial guesses in order to further increase the
chance of reaching the global minimum. Unfortunately, in the presence of noise, the global minimum does
not necessarily correspond to the correct solution even if the model distribution is identical to the coercivity
distribution of the underlying magnetic component (see section 3.3 and Figure 5c as an example). Noise
reduction will be discussed in section 4.4.

As mentioned above, noise further complicates the problem of nonuniqueness. Noise may change the posi-
tion of local and global minima, and therefore, the result of component analysis may vary with noise, as
demonstrated in Figure 4. It is therefore important to verify if results based on a given model distribution
are consistent. One practical way to assess the consistency is to perform the analysis on independent mea-
surements or on subsets of data generated by resampling (Egli, 2003; Maxbauer et al., 2016). The original data
should have a sufficient number of data points (n > 30 is recommended) in the interval where the slope of
acquisition curves is nonzero so that resampling can generate more effective subsets where the fraction of
repeated data points between any two subsets is minor while including enough data points in subsets.
Comparing results derived by the CDF and PDF forms of mixture models provides an additional check on
the consistency of results. This is because, as shown in Figures 4b and 4d, raw data and gradient curves have
different noise levels; therefore, they can be treated as independent measurements in terms of noise.

4.3. Residuals Due to Model Difference

Apart from noise, residual can arise from the fact that the model distribution is different from coercivity dis-
tributions of actual components. As shown in Figure 2, the residual is comparable to the magnitude of noise
in real measurements (Figure 6d). Unlike measurement noise, residuals of this kind are sinusoidal. Though
such residuals can be effectively reduced by using more components, resulting analyses would not have
proper physical meanings. Statistics such as the AIC score may also overestimate the optimal number of com-
ponents. For example, as in the case shown in Figure 2, the AIC score would suggest that two or three com-
ponents are optimal, while there is only one actual component. Therefore, it is important to be aware that
better statistics and smaller residuals do not necessarily imply that the corresponding results are physically
justified. Alternatively, the AIC score should be considered as an upper limit of the actual number of compo-
nents of the sample. In order to tell if data are over-fitted, it is insightful to compare the results derived from
different model distributions, as shown in Figures 6 and 7. If the results are inconsistent, they are likely spur-
ious, implying fewer components should be considered. This consideration is recommended especially when
minor components (i.e., those with concentration of a few percent) are present. It is also helpful to compare
results derived from similar samples to examine if identified components are consistent.

4.4, Noise Reduction

As illustrated above, the component analysis is in general sensitive to noise for all model distributions.
Unfortunately, the signal-to-noise ratio of ordinary measurements is unlikely to guarantee unambiguous ana-
lyses especially for sediments and other weakly magnetized samples. The level of measurement noise shown
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in Figure 6 would be considered as common in practice. However, it is high enough to bias component ana-
lysis as suggested by modeled data (Figures 4 and 5). Therefore, noise reduction is often desired before the
analysis. The common ways of reducing noise are to smooth data using the cubic spline (Heslop et al., 2002;
Maxbauer et al., 2016) or filtering (Egli, 2003). Cubic spline smoothing is a universal method; however, it is
often arbitrary to choose the smoothing factor which affects how well the noise is separated from the signal.
With small smoothing factors, the data will remain too noisy for component analysis. On the other hand, too
much smoothing would remove more signal from data. Another choice is to filter the data. Simple low-pass
filtering does not work as the frequency domain of white noise overlaps with that of the signal. Instead of
filtering raw data, Egli (2003) applies filtering to residuals that are derived from a tailored linearization
approach. This specialized method depends on the goodness of linearization and the choice of cutoff fre-
quency, which is not always clear for users to determine. For example, based on our numerical experiments,
the residuals between the modeled noise and estimated noise have a dominant low-frequency component
(e.g., blue lines in Figures 4b, 4d, 4e, and 4h and 5b and 5d). If this residual could be removed from data, com-
ponent analysis would land on the correct estimate more likely. However, as the frequency of these minor
residuals varies case by case and it overlaps with the low-frequency component of signals, it is difficult to
achieve this goal by choosing an optimal cutoff frequency for filtering. Therefore, even the tailored filtering
process could not separate the noise efficiently. In fact, it is ambitious to expect the noise can be removed
precisely especially given the fact that noise is not the only source of residuals (see section 4.3).

The practical purpose of noise reduction should be smoothing sharp variations due to noise, which are of
high frequency. We suggest that overfitting can be used as a straightforward and efficient method to smooth
data. In general, the residual becomes smaller as the number of components (n,) increases. When n is insuf-
ficient, a significant fraction of signal cannot be approximated by the fit. In contrast, overfitting can approx-
imate the signal and even some small features due to noise, whereby more information of noise is kept
compared to the fitting with the optimal number of components suggested by the AIC score.
Furthermore, as the shape of the overfitted curve is restricted by the mixture model, it is impossible to trace
the random variations of noise. Therefore, the high-frequency noise is lost after overfitting. For the purpose of
data smoothing, the constraints on the parameters of components mentioned in 2.1 should be relaxed. For
example, the contribution can be negative and the shape can be arbitrary. In addition, as the overfitted curve
is essentially a combination of components of the model distribution used for smoothing, subsequent com-
ponent analysis should use different model distributions in order to minimize the dependence of component
analysis on data smoothing. In this sense, the SGG and Burr type XlI distributions are complementary.

In addition to data processing, the users should strive to obtain high-quality data. Paterson et al. (2018) sum-
marized a series of strategies that can optimize hysteresis measurements, which also applies to the measure-
ment of remanent magnetization. For example, increasing the averaging time at each measurement point is
an effective way to improve the signal-to-noise ratio. When necessary, multiple (n > 3) measurements of a
single sample should be measured and stacked to effectively suppress noise.

5. Conclusions

The component analysis of remanent magnetization curves is an important rock magnetic method to sepa-
rate magnetic mixtures in natural samples. The model distribution that approximates the coercivity distribu-
tion of the magnetic component plays a fundamental role. However, the choice of model distributions is
limited and remains empirical due to the lack of experimental and theoretical constraints on coercivity distri-
butions of end-member components. In this study, the Burr type Xl distribution is tested as a model distribu-
tion and compared with existing model distributions. Characteristic samples are used as end-member
components to test different model distributions. It is found that the Burr type XIl and SGG distributions
can closely fit the experimental data with a single component while the lognormal component is associated
with larger residuals especially in the lower end of the coercivity distribution. As the number of components
increases, component analysis often has nonunique solutions, causing uncertainty in results. With modeled
data, it is illustrated using the Burr type Xll and SGG distributions that results are affected by the choice of
initial guesses for parameters of individual components and measurement noise. To optimize the procedure
for choosing initial guesses, an automatic protocol is designed to run multiple analyses with different sets of
initial values that are randomly sampled from the parameter space. The solution with the smallest RSS among
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the results is determined as the optimal solution. This procedure improves the efficiency and objectivity of
component analysis. Measurement noise plays a detrimental role in component analysis; however, it is chal-
lenging to remove noise from data. Therefore, it is critical to obtain high-quality data, and it is recommended
to use the cumulative form of the mixture model to fit raw data in order to avoid the amplification of noise by
taking the derivative of raw data. Nevertheless, comparison between the analyses of raw data and derivatives
is helpful to assess the uncertainty associated with the results. Despite the nonuniqueness of results, esti-
mated components may be irrelevant with the actual physical components in analyzed samples.
Therefore, further efforts are necessary to verify the reliability of results. We demonstrated using experimen-
tal data that it is useful to compare the results derived from different model distributions. Consistency among
results is considered as a supportive evidence for a reliable interpretation of constituent components. In con-
trast, if the results are highly sensitive to the choice of model distributions, it would indicate either that key
parameters (such as the number of components) involved in the analysis are questionable or that at least
some of the selected model distributions are inappropriate. In order to better understand the suitability of
each model distribution, it is recommended to investigate more end-member magnetic components in
future studies.
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