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Abstract Titanomagnetite (Fe3-xTixO4, 0� x� 1) is a common, naturally occurring magnetic mineral
critical to many paleomagnetic studies. Underlying most interpretations is the assumption that, lacking
chemical alteration, Curie temperature (Tc) remains constant. However, recent work has demonstrated that
Tc of many natural titanomagnetites varies strongly as a function of thermal history, independent of
chemical alteration. This is inferred to arise from reordering of cations and/or vacancies in the crystal
structure, and changes occur at temperatures and times relevant to standard paleomagnetic thermal
treatments. Because changes take place at T< Tc, they have the potential to dramatically affect thermal
remanence acquisition or demagnetization, impacting interpretation of paleomagnetic results. Here we
have modeled the effects of reordering on standard thermal demagnetization and paleointensity
experiments. Results suggest that Tc changes during laboratory heating make it impossible to accurately
measure the unblocking temperature spectrum without modifying it. Samples with a starting Tc0 less than
the closure temperature (Tclose) for the reordering process will develop a high-temperature ‘‘tail’’ that did
not exist prior to heating. Samples with a starting Tc0> Tclose will have their original Tb spectrum truncated
at T � Tclose. Predicted behavior during Thellier-type paleointensity experiments results in only modest
deviations in NRM-lost or pTRM*-gained from the nonreordering case. Much larger deviations are predicted
for pTRM checks. Compared to paleointensity results from titanomagnetite-bearing pyroclastic deposits,
modeled nonideal behavior occurs in the same temperature intervals, but is much more systematic.
Reordering is likely one contributing factor to failure of paleointensity experiments.

1. Introduction

Recent work has demonstrated that the Curie temperature (Tc) of many natural titanomagnetites (Fe3-xTixO4,
0� x� 1) of intermediate composition (x between approximately 0.2 – 0.5) is a strong function of prior ther-
mal history. These Tc variations seemingly arise from a reversible ordering or disordering of cations and/or
vacancies in the cubic lattice structure, and Tc may vary by up to 1508C with no attendant change in mineral
composition [Bowles et al., 2013]. Significant changes in ordering occur at moderate temperatures (300–
5008C) and on relatively short timescales (hours to months) relevant to both geological processes and stan-
dard paleomagnetic laboratory treatments.

This phenomenon has now been documented in historical pyroclastic deposits from Mt. St. Helens (Wash-
ington State), Novarupta (Alaska), Lascar (Chile), and Soufrière Hills (Montserrat); historical extrusive basaltic
lava flows from Fogo; �15 Ma Columbia River basalt feeder dikes; the 1100 Ma Duluth intrusive complex;
and synthetic titanomagnetites [Jackson and Bowles, 2013, 2014; Lappe et al., 2014]. All these samples con-
tain titanomagnetite with moderate amounts of titanium substitution (x approximately 0.2 – 0.5) and fre-
quently with small amounts of additional Mg and Al substitution.

If changes in Tc can occur over laboratory time scales of hours, we might expect this to influence results of
laboratory thermal demagnetization or paleointensity experiments. For example, it is conceivable that the
unblocking temperature spectrum of a natural remanence can be significantly altered by the very act of
measuring it. To assess potential complications arising from this reordering behavior in remanence acquisi-
tion and demagnetization, we have modeled thermal demagnetization and paleointensity experiments, tak-
ing observed variations in Tc with thermal history into account. We utilize experimental data documenting
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the time-temperature evolution of Tc and
apply it to remanence behavior using both
single-domain N�eel theory [N�eel, 1949], as
well as phenomenological models of mul-
tidomain behavior [Fabian, 2000].

2. The Reordering Process

The underlying physical process responsi-
ble for the Tc variations is inferred to be a
reversible ordering or disordering of cati-
ons and/or vacancies in the cubic lattice
structure [Bowles et al., 2013; Jackson and
Bowles, 2014]. Although the precise reor-
dering mechanism remains elusive, sever-
al lines of evidence suggest intra-site, as
opposed to inter-site, reordering. This evi-
dence includes lack of variations in Ms and
lack of evidence for inter-site Fe21/Fe31

exchange as measured by X-ray magnetic
circular dichroism and M€ossbauer spec-
troscopy [Bowles et al., 2013; Lappe et al.,
2015]. This distinguishes the process from
that documented for magnesioferrite
(MgFe2O4) or the magnetite (Fe3O4)-spinel
(MgAl2O4) solid solution, where inter-site
reordering of magnetic cations results in
variations in saturation magnetization (Ms),
as well as a linear relationship between
order degree and Tc [Harrison and Putnis,

1999]. In these latter cases, a spinel-structured oxide with only two cations can be written as A1-yBy[AyB2-y]O4,
where the inversion parameter y ranges from 0 (normal spinel) through 2/3 (disordered) to 1 (inverse spinel).
The degree of order is parameterized in terms of the fraction of B cations in tetrahedral and octahedral coordi-
nation and is represented by an order parameter Q51-3y/2. Q varies from 0 (disordered) to 1 (fully ordered
normal spinel) or 20.5 (fully ordered inverse spinel).

In the observed natural titanomagnetite system, the presence of multiple impurities (Mg, Al, Ti) as well as a
process dominated by intra-site reordering means that order degree is not so simply defined. Without spec-
ifying the exact nature of the order, and assuming a linear relationship between order degree and Tc, we
define an order parameter, 0< q< 1, in terms of the observed Tc variations such that q (Tc) 5 (Tc-Tc,min)/
(Tc,max-Tc,min), where Tc,min is the minimum Tc associated with the least ordered state (q 5 0) and Tc,max is
the maximum Tc associated with the most ordered state (q 5 1).

The measured Tc or order degree results from an interplay of two effects: an equilibrium degree of order
qeq(T) that varies inversely with temperature (Figure 1), and reordering rates which vary directly with T. A
low degree of order may be preserved at room temperature by rapid quenching, and a closure temperature
(Tclose) can be defined as the temperature at which a given cation distribution was last in equilibrium. Clo-
sure temperature is rate-dependent, and throughout this paper we define it with respect to rapid cooling
over a few tens of minutes. By annealing an unequilibrated disordered sample at T< Tclose, it moves toward
the equilibrium state of higher q, and Tc increases accordingly (Figure 1).

Our modeling approach uses the results of such isothermal annealing experiments designed to document
the time-temperature evolution of Tc in the titanomagnetite system. Results are presented in Bowles et al.
[2013] and Jackson and Bowles [2014] but can be summarized as follows. Starting with a rapidly cooled, dis-
ordered sample (small q), there is a linear relationship between the logarithm of anneal time and Tc (sup-
porting information Figure S1a), and the slope of this line is at a maximum for temperatures near �3758C

Figure 1. Schematic representation of a reordering process. The equilibrium
order degree (and Curie temperature) increases with decreasing temperature
(green dashed line). A rapidly cooled sample departs from the equilibrium
path at a higher closure temperature (Tclose-fast), quenching in a relatively low
degree of order (and low Tc). Such a quenched sample may be driven toward
equilibrium by annealing at elevated temperature, represented here by the
light black dashed and solid arrows. Figure after Bowles et al. [2013].
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(supporting information Figure S1b). Annealing at higher temperatures results in a decrease in activation time
for the process, shifting the line to the left on a plot of Tc versus log (anneal time). The exact time-
temperature relationship is composition-dependent, and for this work we use data from the May 18, 1980 Mt.
St. Helens eruption (supporting information Figure S1), which has a composition of Fe.2.55Ti0.26Mg0.10

Al0.08Mn0.01O4. A cooling-rate-dependent closure temperature for the process is between 450 and 5008C,
meaning that for samples cooled rapidly from above this temperature, the relatively disordered equilibrium
cation distribution at Tclose � 4758C will be quenched in. This corresponds to a Curie temperature of �3758C.

3. Modeling

We take two approaches to the modeling, both of which allow blocking temperatures to vary proportionately
with Tc. To simulate single-domain samples we use N�eel theory, and for multidomain samples, we use a phe-
nomenological approach [Fabian, 2000, 2001; Leonhardt et al., 2004]. In both cases, starting Tc is allowed to
vary between 3758C (representing a rapidly cooled sample) and 5258C (representing a slowly cooled or
annealed sample). Tc evolves during the laboratory thermal treatments as described above, and we approach
this numerically in the following way. At the start of each thermal treatment of temperature Ti and duration ti,
the sample has the Curie temperature from the previous treatment, Tci-1. The rate of change in Tc varies as it
approaches equilibrium, but the information we have is simply the length of time required to produce a given
Curie temperature from the disordered or quenched state (supporting information Figure S1a). Therefore, we
first find how long it would take to achieve Tci-1 at Ti if the sample had started in the quenched or disordered
state. This time is added to the treatment duration and the total time is then used to find the new Tci. The clo-
sure temperature is 4758C, so anytime the sample is cooled from T > Tclose, Tc reverts to 3758C.

We use the saturation magnetization formulation of Dunlop and €Ozdemir [1997], modified to account for
the dependence on q:

MS T ; qð Þ5MS0 12T=TC qð Þ½ �c

Although Dunlop and €Ozdemir [1997] suggest a value of g 5 0.43 for magnetite, we use g 5 0.39, which
Tauxe [2010] shows is a better fit to the available experimental data. Our data show that Ms at 10 K is inde-
pendent of q [Bowles et al., 2013]. Because Tc varies with q, Ms also must be a function of q, but in our mod-
els the saturation magnetization scales in the same way for all q as a function of reduced temperature,
Ms(T/Tc(q)) (supporting information Figure S2). We recognize that the shape of the characteristic function
v(Tb,Tub) (defined below) may change with q if exchange coupling, anisotropy or magnetostriction con-
stants also vary with q. These parameters may also affect remanence acquisition or demagnetization via
effects on domain state or coercivity, but in the absence of any information on how they might vary with q,
we assume the dependence is negligible.

In the SD case, we assume that (un)blocking temperature variations arise from a volume distribution, and
blocking temperatures vary linearly between some Tb-min (allowed to vary between simulations) and 3758C
(Tc achieved on quenching from above Tclose). We use the following relationship between blocking temper-
ature and volume [Dunlop and €Ozdemir, 1997, equation (8.19)]:

Tb

#2 Tbð Þ
5

l0 V MS0HK0

2 k ln t
s0

� �
2
4

3
5 12

jH0j
HK0# TBð Þ

� �2

(1)

where Tb is blocking temperature, l0 is the permeability of free space, V is volume, MS0 is saturation magne-
tization at room temperature, H0 is applied field, HK0 is microcoercivity at room temperature, t is time, s0 is

the atomic reorganization time, and # Tð Þ¼def MS Tð Þ
MS0

: The second term in brackets reduces to 1 for small H0.

The first term in brackets reduces to a set of constant CiMS0 for predetermined volumes, Vi. The equation
then simplifies to

TBi

#2 TBið Þ
5CiMS0: (2)

For each temperature step, Ti, a new Tc is found, and blocking temperatures are recalculated using equation
(2). Any grains that have a new Tb< Ti are assumed to be unblocked, and grains with Tb> Ti remain blocked.
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To simulate multidomain behavior where Tb 6¼ Tub, we use the phenomenological model of Fabian [2000]
which was applied to paleointensity experiments in Fabian [2001] and modified by Leonhardt et al. [2004]
to include the effects of partial thermal remanent magnetization (pTRM) tails. A complete description can
be found in these papers, and we briefly summarize it here.

Remanent magnetization at room temperature (T0) acquired in a weak field, H, can be described by:

M T0ð Þ5MS T0ð Þ
ð ðTC

T0

Heff Tb; Tubð Þv Tb; Tubð ÞdTubdTb (3)

where

Heff Tb; Tubð Þ5H Tb; Tubð Þ1aM Tb; Tubð Þ: (4)

a is a magnetostatic interaction coefficient which Fabian [2001] determines to have a negligible effect on
paleointensity experiments and we therefore set to zero. The field function, H(Tb,Tub), describes the field his-
tory (supporting information Figure S3). In the most straightforward case of thermal demagnetization by
cooling from Ti in zero-field, H(Tb,Tub) is zero for all Tub< Ti (supporting information Figure S3b). During
acquisition of a pTRM acquired by cooling from Ti< Tc to T0 in field H, H(Tb,Tub) 5 H in the region where
both Tb< Ti and Tub< Ti (supporting information Figure S3c). This type of pTRM is referred to as pTRM*
[Fabian, 2001; Leonhardt et al., 2004] and is distinguished from pTRM acquired on cooling from Ti> Tc.

The field function is convolved with the characteristic function v(Tb,Tub). The form of v(Tb,Tub) used by both
Fabian [2001] and Leonhardt et al. [2004] is based on the Cauchy-function:

u x; sð Þ � 1

11 x=sð Þ2
(5)

We follow the specific formulation of Leonhardt et al. [2004], where

v Tb; Tubð Þ5c sbð Þu sub2sb; ki sbð Þð Þ (6)

k1 sð Þ5a111a12u s2a1t; a13ð Þ for sb < sub (7)

k2 sð Þ5a211a22u s2a2t; a23ð Þ for sb � sub (8)

c sbð Þ5b sbð Þ
ð1

sb

u sub; k1 sbð Þð Þdsub1

ðsb

0
u sub; k2 sbð Þð Þdsub (9)

b sbð Þ5b11b2 u sb2bt; b3ð Þ (10)

s is reduced temperature, (T-T0)/(TC-T0). The aij parameters describe variation in the width of the Tub distri-
bution for constant Tb. A SD population will have a very narrow distribution and an MD population will
have a wider distribution. If ai2 5 0, the width of the unblocking temperature distribution is the same for all
sb. If ai2> 0, the distribution has a constant part ai1, and a variable part with a peak at ait and a width of
ai3. The bk describe the temperature range over which remanence is acquired. Examples of v(Tb,Tub) func-
tions used are shown in supporting information Figure S4.

As described, this phenomenological model does not explain the experimentally observed pTRM*-tail,
whereby a pTRM* acquired on cooling from Ti< Tc is not fully removed by zero field cooling from the same
Ti. Leonhardt et al. [2004] approximate the effects of a pTRM*-tail by allowing the pTRM*-tail to overprint
the NRM at Tub> Ti by a factor of s 5 0.1 (supporting information Figure S3e). This means that for acquisi-
tion of a pTRM* acquired by cooling from Ti to T0, H(Tb,Tub) 5 H where both Tb< Ti and Tub< Ti 1 s(Tc-T0).
Leonhardt et al. [2004] find that s 5 0.1 provides the best agreement between modeled and experimental
calculations of pTRM*-tails.

We add to this approach by incorporating the effects of the cation reordering in a manner similar to that
described above for the SD case. Integrations are carried out by a numerical summation over a grid with
18C resolution. In applying the phenomenological model, we modeled an SD, PSD, and MD scenario, follow-
ing Leonhardt et al. [2004]: SD (a11 5 a21 5 0.001, a12 5 a22 5 0, b1 5 0, b2 5 1, b3 5 0.2, bt 5 0.9); pseudo-
single domain, PSD (a11 5 a21 5 0.05, a12 5 a22 5 0, b1 5 0, b2 5 1, b3 5 0.5, bt 5 0.9); MD (a11 5 a21 5 0.4,
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a12 5 a22 5 0, b1 5 0, b2 5 1, b3 5 0.5, bt 5 0.9). The v(Tb,Tub) distributions for these three cases are shown
in supporting information Figure S4. PSD results are not shown. In all cases they are intermediary between
the SD and MD cases.

We apply the N�eel and phenomenological models to both basic thermal demagnetization experiments and
paleointensity experiments. For the paleointensity experiments, we present results for the IZZI (in-field – zero-
field, zero-field – in-field) protocol [Tauxe and Staudigel, 2004; Yu et al., 2004], which alternates the order in
which the in-field and zero-field treatments are applied in order to highlight behavior arising from nonreci-
procity of pTRM*. pTRM checks [Coe, 1967] are carried out during the ZI steps, following the zero-field mea-
surement. Modeled laboratory heating starts at 1008C and proceeds in 258C steps to 6008C. It is assumed that
during each temperature step 1 h is spent at Ti, and we neglect time spent ramping temperature up and
down. We allowed the laboratory field (Hlab) to be either parallel or perpendicular to the NRM, and in all cases
let the ancient field (Hanc) be equal to Hlab, so that the ideal slope of all pTRM-NRM (Arai) plots should be 1.
We show results from three cases: (1) the remanence is carried by a single, relatively disordered phase which
has a starting Tc0 53758C; (2) the remanence is carried by a single, relatively ordered phase which has a start-
ing Tc0 5 5258C; and (3), the remanence is carried by two phases, 75% by a disordered phase with Tc0 5 3758C,
and 25% by an oxyexsolved phase with Tc 5 5808C and which does not undergo cation reordering.

4. Results

4.1. Thermal Demagnetization
When we apply the models to thermal demagnetization, we find that for rapidly cooled samples with
Tc0< Tclose, the measured unblocking temperature distribution has a high-temperature tail that is not pre-
sent in the sample prior to laboratory heating (Figures 2a–2c). This is induced during laboratory heating

Figure 2. Thermal demagnetization modeling results. Solid blue line represents starting blocking temperature spectrum. Red circles are
final result, as measured during demagnetization experiment. (a-c) Starting Tc 5 3758C. (d-f) Starting Tc 5 5258C. (a, d) Model based on SD
N�eel theory, with minimum blocking temperature of 2008C. (b, e) Phenomenological model of Fabian [2000], SD-type: a115a2150.001,
a125a2250, b150, b251, b350.2, bt50.9. (c, f) Phenomenological model, MD-type: a115a2150.4, a125a2250, b150, b251, b350.5,
bt50.9. Insets show starting v(Tb,Tub) distributions.
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and should be identified by unblocking temperatures higher than Tc. (Because the total amount of time at
elevated temperature is much less during Tc measurement than during thermal demagnetization, it is usual-
ly possible to accurately measure Tc without inducing significant reordering at T< Tc.)

By contrast, slowly cooled samples with Tc0> Tclose have a measured blocking temperature spectrum that is
truncated with respect to the distribution prior to laboratory heating (Figures 2d–2f). This arises because for
T> Tclose, Tc is ‘‘reset’’ to 3758C and any remaining remanence is immediately wiped out.

4.2. Paleointensity Experiments
In the paleointensity experiments, the results are more complicated. For the purely SD case, modeled results
using N�eel theory and using the phenomenological model are nearly identical, and we show only the N�eel
results in Figure 3. Deviations from the ideal Arai slope are slight, but pTRM checks fail when significant
unblocking occurs in temperature intervals where cation reordering is also taking place (Figure 3). For
T< Tclose, Tc and Tb increase with progressive heating. This means that the pTRM* acquired during the
pTRM check will be less than the original pTRM* acquired at the same temperature. This type of pTRM check
failure is largest where the sample starts out in a relatively disordered state with Tc0 5 3758C and significant
variations in Tc happen at T< Tclose (e.g., Figures 3a, 3d, 3c, and 3f). For the first temperature step at
T> Tclose, the pTRM check deviates in the opposite sense: more pTRM* is acquired during the pTRM check
than during the original pTRM*. Because Tc is rapidly reset to 3758C on heating above Tclose, blocking tem-
peratures are relatively lower with respect to the laboratory heating temperature and more pTRM* may be
acquired. This type of failure is largest where Tc0 is 5258C and the sample is in a relatively stable and ordered
state until the laboratory temperature exceeds Tclose (Figures 3b and 3e).

While the pTRM check deviations are identical in the parallel and orthogonal cases, the deviations from the
ideal slope differ for these two cases. When the NRM is parallel to Hlab, all of the IZ steps fall exactly on the
ideal slope line. By contrast, the ZI steps fall below the line, leading to a slight zig-zag behavior in the tem-
perature interval where significant cation reordering is taking place (Figure 3a). During the ZI steps, less
pTRM* is gained compared to the amount of NRM lost, because of the increase in (un)blocking

Figure 3. Single-domain paleointensity modeling results using Neel theory. All experiments follow the IZZI protocol: blue symbols are
zero-field first (ZI), red symbols are in-field first (IZ). Squares are pTRM checks. Tb-min 5 2008C. Green line is ideal slope of 21. (a-c) NRM is
parallel to applied field. (d-f) NRM is orthogonal to applied field. (a, d) Single reordering phase with starting Tc0 5 3758C. (b, e) Single reor-
dering phase with starting Tc0 5 5258C. (c, f) Two-phase: one reordering phase with starting Tc0 5 3758C (70% of NRM), and one nonreor-
dering phase that unblocks between 520 and 5808C.
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temperatures between the two steps. The opposite is true during the IZ steps; not all of the pTRM* acquired
is removed by the subsequent zero-field step. However, because the NRM and Hlab are in the same direction
and of equal magnitude, the technique cannot distinguish between NRM and pTRM*. We note that if one
were to perform a standard Coe-type paleointensity experiment where the zero-field step is always per-
formed first, the Arai plot would be slightly concave up (sagging below the ideal slope) in the cation-
reordering temperature interval. When NRM is perpendicular to Hlab, both IZ and ZI steps fall below the ide-
al slope (Figure 3d). This deviation is slightly less for the IZ case which can lead to a slight zig-zag depend-
ing on how much reordering takes place in a given temperature interval.

Results for the MD case are shown in Figure 4 without pTRM*-tails and in Figure 5 incorporating pTRM*-
tails. Figures 4a and 4d show the results for the parallel and perpendicular case where Tc 5 3758C, but no
cation reordering is incorporated. There is no difference between the two cases, and the results demon-
strate the concave-up behavior that has been experimentally observed and is predicted by the phenomeno-
logical model [Fabian, 2001] due to the nonreciprocity of pTRM*. Figures 4b, 4c, 4e, and 4f incorporate
cation reordering and the results are essentially analogous those documented for the SD case, but any devi-
ations are no longer with respect to the ideal slope of 1, but with respect to the nonreordering case.

When we incorporate pTRM*-tails and before we consider the effects of cation reordering we see in the par-
allel case (Figure 5a) that the pTRM* acquired during the pTRM check is greater than that acquired during
the original pTRM* (as shown by Leonhardt et al. [2004]). This is true to a much lesser degree in the orthogo-
nal case (Figure 5d), but now a pronounced zig-zag effect is induced whereby the ZI steps fall closer to the
ideal slope than the IZ steps. This zig-zag behavior for the IZZI protocol is predicted by Yu et al. [2004] using
a different mathematical formulation of MD remanence behavior, and has also been experimentally
observed [Yu and Tauxe, 2005].

When we consider the additional effects of cation reordering, we see no deviation from the nonreordering
cases in temperature intervals where little cation reordering takes place. However, for intervals where signif-
icant reordering takes place, and for T< Tclose, the pTRM checks shift toward the left in the Arai plot, com-
pared to the nonreordering case (Figures 5b and 5e). In the parallel case (Figure 5b), this has the effect of
causing some of the pTRM checks to seemingly ‘‘pass,’’ when in fact the coincidence of the two pTRM*’s

Figure 4. Multidomain paleointensity modeling results. Symbols as in Figure 3. (a-c) NRM parallel to applied field. (d-f) NRM orthogonal to
applied field. (a, d) No reordering and starting Tc0 5 3758C. (b, e) Reordering incorporated and starting Tc0 5 3758C. (c, f) Reordering incor-
porated and starting Tc0 5 5258C.
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results from two separate effects (pTRM*-tails and cation reordering) that have opposite results and cancel
each other out. In the orthogonal case (Figure 5f), the pTRM checks in this same temperature interval now
appear to ‘‘fail’’ because they were less divergent to start with.

5. Discussion

For samples that contain homogeneous titanomagnetite with moderate degrees of titanium substitution (x
approximately 0.2 – 0.5), the sample’s thermal history will play a large role in determining the Curie and
unblocking temperature distribution that carries the NRM. Slowly cooled samples will have higher Curie and
unblocking temperatures because of the relatively ordered state of the titanomagnetite. By contrast, rapidly
cooled samples will have lower Curie and unblocking temperatures because a high-temperature, disordered
state is preserved by quenching.

Modeling results demonstrate that further cation reordering during progressive thermal demagnetization
makes it impossible to accurately measure the unblocking temperature spectrum. Although deviations
from the starting Tub spectrum are relatively small, they could lead to misinterpretation of results, especially
in cases where Tub may be linked to paleotemperature [e.g., Dunlop et al., 1997b, 1997a; McClelland et al.,
2004; McClelland-Brown, 1981; Middleton and Schmidt, 1982; Paterson et al., 2010]. The apparent high-
temperature ‘‘tail’’ induced where Tc0 is close to the quenched state may be interpreted as arising from an
MD contribution or from a second phase with a distinct Tc. In theory, this ‘‘reordering tail’’ can be identified
by unblocking temperatures higher than Tc, but in practice this may be complicated by the actual presence
of multiple phases.

In the case of the paleointensity experiments, the zig-zag and/or concave up behavior that arises from cat-
ion reordering (Figure 3) could be mistaken for similar behavior produced by nonreciprocity in MD grains.
However, the reordering effects are slight, and in practice most likely would not be distinguished from other
sources of noise.

The effects on pTRM checks are much more pronounced. In the SD case, the apparent failure of pTRM
checks could lead to rejection of results that are actually correct. For the MD case modeled here, the MD

Figure 5. Multidomain paleointensity modeling results incorporating pTRM tail effect. Symbols as in Figure 3. (a-c) NRM parallel to applied
field. (d-f) NRM orthogonal to applied field. (a, d) No reordering and starting Tc0 5 3758C. (b, e) Reordering incorporated and starting
Tc0 5 3758C. (c, f) Reordering incorporated and starting Tc0 5 5258C.
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behavior is so extreme that none of Arai plots shown would likely be allowed to ‘‘pass.’’ It may be possible
to interpret the sense in which pTRM checks fail in terms of the process causing the failure. Nonreciprocity
of pTRM* and cation reordering have opposite effects for T< Tclose, but the relative magnitude of each will
depend on the shape of the v(Tb,Tub) function; the angle of Hlab with respect to the NRM; the starting Tc0;
and the relative temperature intervals over which remanence is lost and over which cation reordering takes
place.

What is clear is that ‘‘failure’’ of pTRM checks is not necessarily a sign of chemical alteration, but may reflect
a change in the capacity for remanence acquisition that is independent of chemical alteration. In all cases,
the magnitude of the observed effect depends on what fraction of the remanence unblocks in the affected
temperature region.

IZZI-style paleointensity results from the Mt. St. Helens 1980 deposits are described in Bowles et al. [2015].
Comparison of the models with these data (Figure 6) shows some similarities, but also significant differ-
ences, as we describe below. The samples contain variable proportions of homogeneous MD titanomagne-
tite with Curie temperatures between 350 and 5008C and PSD oxyexsolved titanomagnetite with
Tc� 5408C. The homogeneous titanomagnetite has been shown to undergo significant reordering at tem-
peratures between �300 and 5008C, while the oxyexsolved titanomagnetite does not. Samples that contain
only the oxyexsolved titanomagnetite show ideal behavior in the paleointensity experiments (Figure 6a). By
contrast, samples dominated by the homogeneous titanomagnetite have univectoral decay up to �3508C
accompanied by a scattered but linear Arai plot (Figure 6b). At T> 3508C, sample behavior becomes
significantly more unstable, with extremely scattered and unpredictable directions and intensities. The tem-
perature at which samples become unstable coincides with the temperature where the reordering

Figure 6. IZZI-style paleointensity results from the Mt. St. Helens 1980 pyroclastic deposits. Data from Bowles et al. [2015]. (a) Specimen
MSH003-G3z1. NRM carried by oxyexsolved titanomagnetite. (b) Specimen MSH008-Jz2. NRM carried by homogeneous, MD titanomagne-
tite. (c) Specimen MSH007-D2z1 and (d) specimen MSH012-N4z1; NRM carried by both homogeneous and oxyexsolved titanomagnetite.
All specimens show an increase in unstable behavior in the temperature region over which the homogeneous titanomagnetite undergoes
significant reordering (�350 - 5008C).
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phenomenon becomes important on laboratory time scales. However, the nonideal behavior is considerably
more extreme and less systematic than that predicted by the models.

Samples that contain both fractions display an intermediate behavior (Figures 6c and 6d), where for
T< 300–3508C and T>�5008C pTRM checks pass and behavior is relatively ideal. However, in the reorder-
ing temperature interval of �300 to 5008C, behavior is nonideal, with points deviating from linearity and
failure of pTRM checks. Again, the deviation from linearity is more erratic than predicted by the model.
While pTRM check failure is also a feature of the model, the sense in which the checks fail is opposite to
that predicted by the reordering behavior. It may be that the pTRM check failure is instead dominated by
the pTRM* tail in these samples. What all the samples have in common, however, is an increase in unstable
behavior in the temperature interval over which significant reordering takes place (�300 – 5008C) and more
stable behavior at both lower and higher temperatures.

6. Conclusions

We have modeled the effects of Tc variations in titanomagnetite arising from a thermally activated reorder-
ing process on standard thermal demagnetization and paleointensity experiments. The results have impor-
tant implications for the interpretation of many paleomagnetic studies which rely on a titanomagnetite-
bearing remanence. Models based on both single-domain N�eel theory and a phenomenological model of
multidomain behavior show that it is not possible to accurately measure the unblocking temperature spec-
trum without modifying it. Samples with a starting Tc0< Tclose will develop a high-temperature ‘‘tail’’ and
samples with a starting Tc0> Tclose will have their original Tb spectrum truncated at T � Tclose. Differences
are not large, but could lead to misinterpretation of data. Modeled behavior during paleointensity experi-
ments varies slightly depending on domain state, angle of the laboratory field with respect to the NRM, and
the order in which the in-field and zero-field steps are applied during the experiment. However, in most
cases relatively small deviations from the ideal slope (or from the nonreordering case) are found. Modeling
predicts much larger deviations in the pTRM checks, with the checks shifted to the left (less pTRM*
acquired) in the region where significant reordering takes place. This arises from the fact that an increase in
Tc during experimental heating leads to a reduction in the capacity for remanence acquisition. Compared
to actual, IZZI-style paleointensity results, the modeled deviations are in the same temperature intervals but
are more systematic than observed in the actual data. Modeling suggests that a reordering process and
attendant Tc changes may be a common contributing factor to failure of paleointensity experiments,
although in practice it may be difficult to distinguish this type of failure from other causes of nonideal
behavior.
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